Archiv der Kategorie: Basiskonzepte der Biologie

Die Kennzeichen des Lebendigen sind die Kriterien, nach denen sich Lebewesen von Unbelebtem unterscheiden lassen. Nur wenn diese Kriterien erfüllt sind, handelt es sich um ein lebendes System. Für das Verständnis der Wissenschaft Biologie lassen sich daraus grundlegende Modellvorstellungen und Theorien ableiten, die häufig als Basiskonzepte, teilweise auch als Prinzipien bezeichnet werden. Basiskonzepte helfen, neue Sachverhalte zu erschließen und in das Wissenssystem einzubauen, weshalb sie auch Erschließungsfelder genannt werden. Dabei lassen sich solche „Prinzipien“ natürlich sehr unterschiedlich formulieren und abgrenzen. Basiskonzepte, wie sie im Rahmen der „Einheitlichen Prüfungsanforderungen in der Abiturprüfung“ (EPA) 2004 von der deutschen Kultusministerkonferenz aufgestellt wurden, spielen seither für die Formulierung von Lehrplänen und Curriccula eine entscheidende Rolle.
An dieser Stelle sollen Themen zu Basiskonzepten als strukturierende Prinzipien des Biologieunterrichts behandelt und Aspekte einzelner Basiskonzepte bzw. Prinzipien vorgestellt werden.

Wie Pflanzen funktionieren

LINK-NAME LINK-NAME

Der Artikel erschien in dem mittlerweile vergriffenen UB-Heft 355 „Struktur und Funktion bei Pflanzen“ von 2010. Diese Fassung wurde an einigen Stellen erweitert, verändert bzw. aktualisiert.

Was sind Pflanzen?

Eine leichte Frage? – Aber was könnte man darauf etwa einem Außerirdischen antworten? Vielleicht: „Pflanzen sind Nichttiere.“ Also alle Lebewesen, die keine Tiere sind, sich nicht wie diese fortbewegen, fressen, mit ihren Sinnesorganen die Umwelt wahrnehmen und auf diese Umweltreize reagieren, Lebewesen die keine Nerven und Muskeln besitzen sind Pflanzen.

Wenn man das Inhaltsverzeichnis des „Strasburger, Lehrbuch der Botanik“ – seit mehr als hundert Jahren das klassische Lehrbuch der Pflanzenkunde – aufschlägt, entspricht der Inhalt dieser Vorstellung. In dem Lehrbuch werden Bakterien, Archäen, Pilze, Schleimpilze, Algen, Moose, Farne und Samenpflanzen behandelt – auch in der 37. Auflage von 2014.  Einmal wird man bei genauerem Studium feststellen, dass die vorher aufgezählten „Vorurteile“ nicht alle aufrechterhalten werden können, zum zweiten sind die Unterschiede dieser Gruppen so groß, dass es nicht sehr sinnvoll erscheint, sie unter einem Oberbegriff zu fassen.

Vielleicht sollte man es deshalb mit einer positiven Definition versuchen: „Pflanzen sind grün“, sie enthalten Chlorophyll und sind damit zur Photosynthese in der Lage. Sie können aus Wasser und Kohlenstoffdioxid mithilfe von Lichtenergie und Mineralstoffen organische Stoffe wie Kohlehydrate, Lipide, Proteine und Nukleinsäuren aufbauen. Mit dieser Definition erreicht man, dass außer den Tieren auch die Pilze und die meisten Bakterien aus dem Pflanzenreich ausgeschlossen werden. Allerdings gibt es einige wirklich „echte Pflanzen“, die das Chlorophyll verloren haben und sich als Parasiten von anderen Pflanzen oder von Pilzen ihre Nährstoffe besorgen. Ihr Pflanzenstatus ist aber – wegen ihrer großen Ähnlichkeit zu verwandten grünen Pflanzen – kaum zu leugnen. Nicht sehr überzeugend an dieser Definition ist auch, dass damit sehr unterschiedliche Lebewesen, wie Blaugrüne Bakterien, viele chlorophyllhaltige Einzeller, mehrzellige, kugelige, fädige, flächige oder kompliziert strukturierte Algen sowie Moose, Farne und Samenpflanzen in einen Topf geworfen werden.

Deshalb erscheint es sinnvoller, als „Pflanzen“ Lebewesen zusammenzufassen, die nicht nur die Fähigkeit zur Photosynthese gemeinsam haben sondern auch noch weitere deutliche Ähnlichkeiten in Strukturen und Funktionen erkennen lassen. Solche Pflanzen haben einen dreidimensionalen Körper aus vielzelligen Geweben, der am Boden festgewachsen ist und sich in die Luft erhebt. Sie haben eine große Oberfläche, mit der sie im Stoffaustausch mit der Umgebung stehen und über die sie die für die Photosynthese nötige Lichtenergie auffangen können.

Entsprechend dem schon 1969 von Robert H. Whittaker vorgeschlagenen „Fünf-Reiche-System“ der Lebewesen  werden wir uns in diesem Heft mit „Pflanzen im engeren Sinne“, also Moosen, Farnpflanzen und Samenpflanzen beschäftigen, dabei stehen die Bedecktsamigen Samenpflanzen im Mittelpunkt. Dies erscheint gerechtfertigt, da auch nach neuesten phylogenetischenn Vorstellungen ( ADL u. a. 2005) auf molekulargenetischer Basis die whittaker´schen Plantae eine monophyletische Gruppe sind.

Aus diesen Überlegungen ergibt sich eine funktionsbestimmte Definition für typische Pflanzen:

Pflanzen sind festsitzende, nachwachsende  Lichtfänger mit Durchflusssystem

Festgewachsen in der Erde

Vom Lager zum Spross

Typisch für Pflanzen ist ein Vegetationskörper, der sich in die „Grundorgane“ Sprossachsen, Blätter und Wurzeln gliedert. Farnpflanzen und Samenpflanzen sind solche „Sprosspflanzen“ (Kormophyta). Die ursprünglichsten Pflanzen, die Moose, haben recht unterschiedliche Vegetationskörper, die jedoch in jedem Fall noch keine vollkommene Gliederung in Blätter, Sprossachsen und Wurzeln zeigen. Aber sie bilden wie Sprosspflanzen aus der befruchteten Eizelle einen von Schutzhüllen umgebenen Embryo, weshalb man beide zusammen auch als Embryophyta bezeichnet.

Abb. 1 Evolution der Pflanzen. Die für das Landleben besonders wichtigen neuen Merkmale der Sprosspflanzen sind am Beispiel von Rhynia dargestellt (Abb. teilweise aus Probst, W., Schuchardt,P. (Hrsg.): Biologie Lehrbuch für die S II, 584 S., Duden-Paetec, Berlin 2007)

Die ersten Pflanzen, die sich deutlich in den Luftraum erhoben, entstanden vor mehr als 400 Millionen Jahren,  im Silur. Diese Urfarne bestanden, wie etwa in den Gattungen Cooksonia und Rhynia, aus gabelig verzweigten Achsen, die einige Dezimeter hoch werden konnten (Bell, Hemsley 2000, Abb. 2). Bei der Differenzierung in Sprossachsen, Blätter und Wurzeln blieben die ursprünglichen Gewebe – Bildungsgewebe, Abschlussgewebe, Grundgewebe, Leitgewebe, Festigungsgewebe – erhalten. Sie sind nur entsprechend den unterschiedlichen Funktionen der verschiedenen Grundorgane jeweils anders angeordnet (Kasten Grundorgane).

Grundorgane der Sprosspflanzen

Abb. 2 Grundorgane der Sprosspflanzen

Sprossachsen

Sprossachsen ähneln in ihrem Aufbau deutlich den ursprünglichen Achsen der Urfarne. Sie dienen dazu, die Assimilations- und Transpirationsorgane, die Blätter, im Luftraum zu positionieren. Dazu benötigen sie je nach Höhe eine größere oder kleinere Biegungsstabilität, die durch besondere Festigungsgewebe und Einlagerung von Lignin in die Zellwände erreicht wird. Außerdem müssen durch Sprossenachsen Stoffe über größere Distanzen transportiert werden (Wasser- und Assimilatetransport, Transport von Mineralstoffen, Hormonen usw.). Sie wachsen über  Bildungsgewebe (Meristeme) an ihren Spitzen. Zunächst ruhende Meristeme in tiefer liegenden Bereichen (Knospen) führen, wenn sie aktiviert werden, zur Ausbildung von Seitensprossen (Zweigen).

Die Sprossachsen vieler Pflanzen sind zu sekundärem Dickenwachstum in der Lage, das von einem zylinderförmigen Bildungsgewebe, dem Kambium, ausgeht.

Blätter

Laubblätter sind Organe der Photosynthese und der Transpiration. Im Gegensatz zu Sprossachsen haben sie in aller Regel ein sehr begrenztes Spitzenwachstum, das später durch basales Wachstum ergänzt wird. Sie erreichen relativ schnell ihre endgültige Größe. Sie sind im typischen Fall in Stiel und Spreite gegliedert und zeigen eine deutliche Oben/Unten-Differenzierung der Gewebe als Angepasstheit an die Ausrichtung senkrecht zum Lichteinfall. Die Ausgestaltung der Blattorgane zeigt eine sehr große Vielfalt und viele Pflanzenarten kann man an der Form ihrer Blätter erkennen. Diese morphologische Vielfalt setzt sich in bestimmtem Umfang auch noch innerhalb einer Art und sogar innerhalb eines Individuums fort. Nicht selten kommt es zu einer großen Variationsbreite zwischen Jungendblättern und Altersblättern, Sonnenblättern und Schattenblättern usw. .          ).

Typische Bildungen der Blattepidemis sind die Spaltöffnungen, die aus zwei meist bohnenförmigen Zellen bestehen, die eine Öffnung umschließen, die je nach äußeren und inneren Bedingungen geöffnet und geschlossen werden kann. Sie erlauben den Pflanzen eine Regulation des Gasaustausches, insbesondere der Transpiration von Wasserdampf und der Aufnahme von Kohlenstoffdioxid. Entsprechend ihrer Funktion als Transpirations- und Photosyntheseorgane sind Blätter in der Regel dorsiventral organisiert und senkrecht zum Lichteinfall hin ausgerichtet. Die Epidermis der Blattoberseite enthält keine Spaltöffnungen, nach innen schließt an die obere Epidermis ein Gewebe aus zylinderförmigen, dicht gepackten Zellen an. Dieses Palisadenparenchym enthält besonders viele Chloroplasten. Zur Blattunterseite hin folgt das lockere Schwammparenchym, zwischen dessen rundlichen Zellen große Interzellularen ausgebildet sind, die direkt mit den Poren der Spaltöffnungen in der unteren Epidermis  in Verbindung stehen und so dem effektiven Gasaustausch dienen. Von diesem Grundaufbau eines Laubblattes gibt es allerdings sehr viele Abweichungen.

Wurzeln

Während Sprossachsen und Blätter in der Regel oberhalb der Bodenoberfläche gebildet werden, sind Wurzeln die im Boden liegenden Teile der Pflanzen. Neben der Stoffaufnahme dienen sie der Verankerung der Pflanzen und damit ihrer Standfestigkeit. Entsprechen dieser Funktionen tragen sie  keine Blätter und bilden auch keine Spaltöffnungen aus. Die Anordnung des mechanischen Gewebes im Zentrum stärkt die Zugfestigkeit und nicht die Biegungsstabilität. Meist handelt es sich um sehr stark verzweigte Organe, die durch diese starke Verzweigung eine große Oberfläche bilden. Diese Oberfläche wird zusätzlich an den Wurzelspitzen durch sogenannte Wurzelhaare – Auswüchse von Wurzelhaut-(Rhizodermis -)Zellen –  erhöht. Nur über diese vordersten Wurzelspitzen können die Pflanzen Wasser und Mineralstoffe aufnehmen. Bei ihrem Vordringen in den Boden werden die empfindlichen Wurzelspitzen von einer Wurzelhaube (Kalyptra) aus ständig nachwachenen Zellen geschützt.

Wie die Sprossachsen haben viele Wurzeln die Fähigkeit zum sekundären Dickenwachstum.

Sekundäres Dickenwachstum

Die kontinuierliche Verdickung der Achsenorgane ist für anhaltend wachsende große Pflanzen aus zwei Gründen wichtig:

  • zur Sicherung der Stabilität und
  • zur Gewährleistung der Transportkapazität

Im Gegensatz zu dem primären Dickenwachstum, das von den Apikalmeristemen ausgeht,  ist für das sekundäre Dickenwachstum ein zylinderförmiges Meristem im Achsenorgan, ein Kambium, verantwortlich. Es kann entweder als Restmeristem des Vegetationspunktes erhalten bleiben oder sich sekunär aus bereits differenzierten Zellen neu bilden.

Bei Einkeimblättrigen Bedecktsamern ist sekundäres Dickenwachstum selten. Die sprichwörtlich schlanken Palmenstämme sind ein Beispiel dafür, dass selbst baumförmige Pflanzen ohne sekunäres Dickenwachstum auskommen können, allerings nur mit einem sehr ausgeprägten primären Dickenwachstum. Bei den Wurzeln umgehen viele Einkeimblättrigen das Problem dadurch, dass immer wieder neue sekundäre, sprossbürtige Wurzeln gebildet werden.

Abb. 3 Auf der linken Seite der schematisch dargestellte Aufbau einer typischen Sprosspflanze mit den Grundorganen Wurzeln, Sprossachsen und Blätter, auf der rechten Seite verschiedene Sonderformen: zwei chlorophyllfreie Parasiten, eine winzige Schwimmblattpflanze, eine Unterwasserpflanze fließender Gewässer mit starker Strömung (Blütentang – Podostemaceae) sowie eine Wüstenpflanze mit maximalem Verdunstungsschutz durch kugelige Oberfläche (Blütentang nach Tulasne 1852 aus Bell 1994)

Metamorphosen

Komplexe Evolutionsschritte sind nicht umkehrbar oder wiederholbar. Dies gilt jedoch nicht für den Funktionswandel. So kennt man im Pflanzenreich sehr viele Beispiele dafür, dass sich aus Sprossachsen (erneut) flache blattähnliche Organe gebildet haben und zwar in der Regel bei Pflanzen, die vorher aus anderen evolutionären Gründen ihre Blätter verloren haben. Am häufigsten kommt es zu einem solchen Blattverlust bei Pflanzen trockener Standorte (Xerophyten), die dadurch eine Verringerung der transpirierenden Oberfläche erreichen. Wenn später unter günstigeren Bedingungen der Besitz blattähnlicher Organe wieder von Vorteil wäre, kommt es jedoch nicht zu einer „Regeneration“ der verlorenen Blätter, vielmehr bilden sich aus Sprossachsenabschnitten „neue“ Blätter (Phyllokladien). Der Weg, von gefiederten Blättern wieder zu gnzrndigen Blattern zu kommen, führt über den Verlust der Blattspreite und die Verbreitrung des Blattstiels (Phyllodien, mehrfach bei der Gattung Acacia)

Besonders charakteristische Blattmetamorphosen, auf die schon Goethe aufmerksam gemacht hat, stellen die Blütenorgane dar. Unterirdische Sprossabschnitte können Wurzeln sehr ähnlich werden. Von echten Wurzeln unterscheiden sie sich jedoch oft durch kleine Schuppenblättchen und durch die Art der Verzweigung. Viele solcher unterirdischer Sprossachsen, die wie Wurzeln aussehen, sind uns recht vertraut, etwa die Rhizome (Erdsprosse) der Quecken, des Giersch oder der Winden.

Man spricht auch von „Metamorphosen“, wenn sich Grundorgane zu „neuen Organen“ umbilden, z. B. zu Dornen oder zu Ranken. Dabei sind Spross- und Blattdornen häufig, Wurzeldornen kommen nur selten vor. Dasselbe gilt für Sprossranken und Blattranken, Wurzelranken sind selten, Haftwurzeln (Efeu!) häufiger.

Abb. 4 Metamorphosen von Grundorganen

Emergenzen, Haare, Drüsen

Neben den Sonderstrukturen aus umgebildeten Grundorganen bilden Pflanzen auf ihren Oberflächen und auch im Inneren eine Vielfalt von Spezialstrukturen aus: Im Gegensatz zu Dornen sind Stacheln  keine umgebildeten Grundorgane sondern Auswüchse oberflächennaher Gewebe. Haare entstehen aus einzelnen Oberflächenzellen, die sich jedoch mehrfch teilen können. Sie konnen rein mechanische Funktionen erfüllen, z. B. dem Verdunstungsschutz oder dem Lichtschutz dienen oder als kompakte Strukturen auch als Kletterhilfen. Besonders wirksame Fraßschutzeinrichtungen sind die Brennhaare der Brennnessel. Von manchen Haarzellen werden etherische Öle produziert (Drüsenhaare). Innere Drüsen sind oft mehrzellige Gebilde, die ihre Sekrete in interzellulare Hohlräume abscheiden. Sonderzellen in Geweben (Idioblasten) können der Stoffspeicherung oder der Ausscheidung dienen. Auch Harze und Milchsäfte können in speziellen Zellen im Inneren gebildet werden. Solche sogenannten sekundären Pflanzenstoffe sind für die Nutzung der Pflanzen als Heilkräuter oder Gewürze von Bedeutung.

Abb. 5 Emergenzen, Haare, Drüsen. 1 Papillenbildung bei Blütenblattepidermis vom Stiefmütterchen, 2 Klimmhaar des Hpfens, 3 Sternhaar einer Königskerze, 4 Brennhaar der Brennnessel mit mehrzelligem Sockel, 5 Drüsenhaar einer Minze,6 Drüsenhaar vom Lavendel, 7 Drüse vom Johanniskraut

Lichtfänger und Produzenten

Photoautotrophie

Das hervorragende gemeinsame Merkmal der Pflanzen ist, dass sie Lichtenergie zum Aufbau von organischen Bau- und Betriebsstoffen aus anorganischen Stoffen nutzen können (Photosynthese, vgl. z. B. UB 411, 328, 320, 249, 120, 35,). Sie fressen nicht, sie produzieren ihre Nährstoffe – Kohlenhydrate, Proteine, Lipide – selber und  die Energie dazu liefert das Sonnenlicht. Dabei gelingt Pflanzen nicht nur die Assimilation von anorganischen Kohlenstoff sondern auch von Nitraten, Phosphaten und Sulfaten. Ähnlich wie Photovoltaikanlagen eine möglichst große dem Licht zugewandte Oberfläche benötigen, gilt dies auch für die „Photovoltaikanlage grüne Pflanze“, ihre Panele sind die grünen Blätter.

Diese primäre Produktion von organischen Stoffen macht sie – zusammen mit Algen und vielen Prokaryoten – zu Primärproduzenten, von denen die Stoffkreisläufe und Energieflüsse in allen Ökosystemen und in der gesamten Biosphäre ausgehen.

Dabei darf man allerdings nicht unterschlagen, dass die Pflanzen – genau wie alle anderen Lebewesen – für den lebenserhaltenden Energieumsatz Nährstoffe benötigen. Sie können diese Stoffe jedoch – im Gegensatz zu Tieren und vielen anderen Lebewesen – selbst herstellen, allerdings nur in Zellen mit Chloroplasten. Einige Pflanzen haben keine chloplastenhaltigen Zellen mehr und leben als Parasiten von anderen Pflanzen oder von Pilzen. Alle Pflanzen haben viele chloroplastenfreie Zellen und Gewebe, insbesondere ist das ganze Wurzelsystem normalerweise chloroplastenfrei und muss von den grünen oberirdischen Pflanzenteilen versorgt werden.

Primärstoffwechsel und Sekundärstoffwechsel

Wichtigstes Organell des aufbauenden (anabolen) Stoffwechsels sind die Chloroplasten, wichtigstes Organell des abbauen (katabolen) Stoffwechsels die Mitochondrien. Für die Lebensfunktionen grundsätzlich wichtige Stoffwechselwege fasst man als „Primärstoffwechsel“ zusammen. Von Zwischenprodukten (Metaboliten) des Primärstoffwechsels gehen gerade bei Pflanzen eine überaus große Anzahl von Art zu Art und von Verwandtschaftsgruppe zu Verwandtschaftsgruppe unterschiedlicher Stoffwechselwege aus, die man als Sekundärstoffwechsel bezeichnet . Bis heute kann man sich keine rechte Vorstellung von der Funktion der unübersehbaren Vielfalt dabei produzierter, meist flüchtiger organischer Substanzen machen. Ein Teil dieser Substanzen wirkt als Signalstoff, ein weiterer Teil dient der Abwehr von Fressfeinden. Zum Teil handelt es sich wohl nur um Ausscheidungen überflüssiger Stoffe. Global-ökologisch spielen solche gasförmigen Ausscheidungen von Pflanzen (VOCs von „volatile organic compounds“) eine wichtige Rolle, denn sie können sekundär organische Aerosole bilden, die die Wolkenbildung fördern (Probst 2009 in UB 349).

Stofftransport  im Durchflusssystem

Voraussetzung für einen geordneten Stoffumsatz in einem Organismus ist, dass die Ausgangstoffe an den Reaktionsorten zur Verfügung stehen und dass die Endprodukte abtransportiert werden. Für die Stoffverteilung in den Pflanzen ist – anders als bei den durch ein Kreislaufsystem gekennzeichneten Tieren – der Wasserdurchfluss von den Wurzeln in die Blätter entscheidend. Auch Tiere müssen zwar ständig Wasser aufnehmen, doch im Vergleich zur im Körperkreislauf zirkulierenden Flüssigkeitsmenge ist diese Aufnahme gering – beim Menschen stehen 2-3 l täglicher Flüssigkeitsaufnahme 7000 bis 8000 l durch den Blutkreislauf bewegter Flüssigkeit gegenüber. Bei Pflanzen ist es genau umgekehrt. Auch hier gibt es in gewissem Umfang einen Kreislauf des Wassers zwischen Xylem und Phloem (Abb. 7), im Vergleich zum Wasserstrom, der vom Boden durch die Wasserleitungsbahnen bis zur Verdunstung in den Blättern führt, ist die dabei umgesetzte Menge aber sehr gering.

Abb. 6 Kreislaufsystem der Tiere und Durchflusssystem der Pflanzen

Die Notwendigkeit eines solchen Durchflusssystems hängt einmal mit der Aufnahme von Nährmineralien aus dem Boden zusammen. Für die Produktion organischer Nähr- und Baustoffe benötigen die Pflanzen außer Kohlenstoff, Wasserstoff und Sauerstoff vor allem die Elemente Stickstoff,Phosphor, Schwefel, Kalium, Calcium, Magnesium und Eisen, die als Mineralstoffionen mit der Bodenlösung aufgenommen und mit dem Wasserstrom an die Syntheseorte transportiert werden. Dies ist ein „positiver“ Grund für den Wasserdurchfluss.

Zum anderen ist die Kohlenstoffaufnahme nur über die oberirdischen Pflanzenteile aus der Luft möglich. Dabei ist das Kohlenstoffdioxid nur in sehr geringen Mengen in der Luft enthalten und um dieses wichtigste Gerüstelement aller organischen Verbindungen in ausreichender Menge aufnehmen zu können, ist eine große Oberfläche notwendig. Eine große aufnehmende Oberfläche bedeutet aber gleichzeitig eine große Oberfläche für die Wasserverdunstung. Dies ist ein „negativer“ (oder besser unvermeidlicher) Grund für den Wasserdurchfluss.

Eine große, dem Licht zugewandte Oberfläche ist – wie schon erwähnt – auch für die Photosynthese wichtig, zumal Pflanzen festgewachsen sind und dem Licht nicht hinterher laufen – höchstens ein bisschen hinterherwachsen – können. Die Verbindung mit der Wasserverdunstung ist dabei allerdings nicht ganz so eng wie bei der CO2-Aufnahme, da eine weitgehende Abdichtung der Oberflächen den Lichtfang nicht behindern würde.

Grundlage für alle Transportvorgänge in Pflanzen sind aktive oder passive Transporte durch Membranen, für Transporte über größere Entfernungen stehen spezielle Leitungsgewebe zur Verfügung.

Wasser- und Mineralstoffaufnahme in der Wurzel

Durch Diffusion bzw. Osmose wird Wasser an den Wurzelspitzen einmal in die Wurzelhaarzellen zum anderen kapillar in die Zellwände aufgenommen und osmotisch oder kapillar bis zu den Zellen der Endodermis geleitet. Dort verhindert eine Imprägnierung der seitlichen Endodermiszellwände einen weiteren kapillaren Wassertransport . Alles Wasser muss über die Membranen und das Plasma der Endodermiszellen geleitet werden. Dies gilt auch für die im Wasser gelösten Mineralstoffionen, die selektiv durch Zellmembranen aufgenommen werden, sowohl durch passiven als auch durch Stoffwechselenergie umsetzenden aktiven Transport.

Xylemtransport

Über die Endodermis gelangt das Wasser in die Leitbündel und in die bereits abgestorbenen röhrenförmigen Tracheen und Tracheiden. Treibende Kraft für den Weitertransport ist das negative Wasserpotenzial der Atmosphäre, das sich über die Spaltöffnungen, die Interzellularen der Blätter, die Kapillaren der Mesophyllzellwände und die Mesophyllzellen auf die Wassersäulen in den Leitungsbahnen auswirkt.

Dieser negative Druck kann jedoch nur zum Transport genutzt werden, wenn die Wasserfäden in den Tracheiden und Tracheen nicht abreißen. Dafür sind vor allem drei Sachverhalte entscheidend (Christian, Probst in UB 255,2010):

  1. Die Kohäsionskraft zwischen den Wassermolekülen
  2. Die Adhäsionskraft der Wassermoleküle an die Zellwände und Zellwandkapillaren
  3. Die Oberflächenspannung in den Zellwandkapillaren am Ende der Wassersäule

Dies würde im Prinzip ausreichen, um Wasser weit höher als 100 m zu transportieren. Da es sich jedoch nicht um reines Wasser handelt, kommt es in den Leitungsbahnen über kurz oder lang trotzdem zur Gasblasenbildung (Cavitation). Nach Kanduč et al. 2020 hängt dies mit wasserunlöslichem Lipiden in den Wasserleitungsbahnen zusammen. Werden solche Cavitäten zu groß, reißt die Wassersäule ab. Dadurch wird die Stärke der  theoretisch maximal tolerierbaren Unterdrücke von -1000 bar in reinem Wasser auf weniger als -100 bar reduziert..

Phloemtransport

Abb. 7 Druckstromtheorie – der kleiner Wasserkreislauf der Pflanzen

Auch für den Ferntransport der bei der Photosynthese produzierten Assimilate gibt es ein spezialisiertes Leitungssystem. Diese organischen Stoffe werden in wässriger Lösung über die Siebröhren bzw. Siebzellen des Phloems transportiert. Im Gegensatz zum Wasserstrom, der stets von den Wurzeln zu den Blättern fließt,  kann die Assimilatelösung bedarfsabhängig in beiden Richtungen fließen. Über 90% des Siebröhrensaftes besteht aus Zuckern, v.a. aus Rohrzucker (Saccharose), außerdem sind Aminosäuren, Amide, Nucleotide (viel ATP) und organische Säuren enthalten. Motor des Transports ist der hohe osmotische Wert am Ausgangspunkt. Dadurch strömt Wasser in die Siebröhre ein. Der hydrostatische Druck führt dazu, dass Wasser am Ende der Leitung ausgepresst wird und Wasser von der Seite in die Siebröhren mit der höheren Konzentration nachfließt (Druckstrommodell). Für diesen Transport sind die siebartig durchbrochenen Querwände von Bedeutung.

Normalerweise werden die Assimilate in die wachsenden Meristeme an Spross- und Wurzelspitzen und in Speicherorgane (Knollen, Rüben) transportiert,  überschüssiger Phloemsaft kann auch über besondere Drüsen (Nektarien) ausgeschieden werden. Vermutlich gehen die Nektardrüsen der Blüten auf solche Zucker-Ausscheidungsdrüsen zurück.

Blattläuse zapfen das Phloem an. Wenn sie ihre Rüssel aus den Siebröhren herausziehen, fließt der unter Druck stehende Phloemsaft noch einige Zeit nach und die überzieht die Blätter mit einem Zuckerfilm.

Durchlüftungssysteme

In den meisten pflanzlichen Gewebe schließen die Zellen nicht dicht aneinander, sie lassen vielmehr zwischen sich ein System aus Zwischenräumen (Interzellularen) frei, das letzten Endes über die oberflächlichen Spaltöffnungen mit der Außenluft in Verbindung steht. Der Stoffaustausch erfolgt über Diffusion. Dies gilt auch für Sumpf- und Wasserpflanzen und ihre unterirdischen bzw. untergetauchten Teile. Den langen Stängel der Seerosenblätter kann man als Schnorchel für das im Teichboden sitzende  Rhizom auffassen.

Beim Mikrokospieren pflanzlicher Gewebe stört häufig der Luftgehalt in der Interzellularen, weil er im Nasspräparat wegen der anderen Lichtbrechung der Luft als schwarz umrandetes Objekt sichtbar wird. Deshalb ist es sinnvoll, größere Pflanzenorgane, z. B. Blätter oder Sprossachsen, bevor man sie mikroskopiert, in einer Saugflasche zu „entlüften“.

Nachwuchs

Wachsen“ ist ein Begriff, der besonders mit Pflanzen verbunden wird, die man ja deshalb auch als „Gewächse“ bezeichnet. Wenn man Zweige abschneidet, wachsen sie nach, man kann Hecken hundertmal schneiden, Rasen tausendmal mähen  und Feldhecken alle 8 Jahre „auf den Stock setzen“. Aus Knospen treiben diese gestutzten Pflanzen immer wieder neue Sprosse. Früher waren Niederwälder so ausdauernde Brenn- und Nutzholzlieferanten, nachwachsenden Rohstoffquellen. Eiben und Buchsbäume  wurden von den Gärtnern der Barockgärten zu Skulpturen gestutzt.

Nachwuchs produzieren Pflanzen  häufig asexuell , z. B. über Ausläufer, Ableger, Brutknospen, Brutzwiebeln.  Nachwuchs kann aber auch sexuell hervorgebracht werden, bei ursprünglichen Pflanzen über einzellige Sporen, Samenpflanzen schützen ihren Nachwuchs im Samen, ähnlich wie Reptilien ihre Jungen  in Eiern mit Eihüllen.

Die Entwicklung einer Pflanze lässt sich in 3 Phasen einteilen:

  • embryonale Phase
  • Wachstums und Reifephase
  • Reproduktive Phase und Seneszenz 

Bei einjährigen Pflanzen kann dieser Lebenslauf innerhalb weniger Monate oder sogar Wochen ablaufen. Das wichtigste pflanzliche Versuchsobjekt, die Acker-Schmalwand (Arabidopsis thaliana) ist ein Beispiel dafür. Bei Bäumen wird die dritte Phase oft erst nach Jahren oder sogar Jahrzehnten erreicht und kann dann nahezu unbegrenzt anhalten.

Entwicklung des Embryos

Abb. 8 Entwicklung des Pflanzenembryos bis zur Keimung (nach Taiz, Zeiger, Physiologie der Pflanzen, Spektrum 2000)

Die ersten Entwicklungsschritte bis zur Anlage der Grundorgane laufen schon im Samen ab. Die Zygote streckt sich zunächst auf die etwa dreifache Länge, dann teilt sie sich inäqual. Aus der kleineren Zelle wird der Embryo (Keimling), die größere bildet den Suspensor, der den Embryo mit dem Nährgewebe der Samenanlage verbindet. Am Ende der Embryonalentwicklung steht das Herzstadium, in dem die Keimlingsstrukturen weitgehend festgelegt sind. An den beiden Endabschnitten der apikal-basalen Achse liegen die primären Meristeme, die als selbstregulierende Stammzellensysteme alle postembryonalen Strukturen der Pflanzen hervorbringen. Dazwischen liegen die Keimwurzel, das Hypokotyl (Sprossachse zwischen Wurzel und Keimblättern) und die Keimblätter. Die weitere Entwicklung führt im Prinzip immer wieder zu denselben Differenzierungen und damit auch zu denselben Strukturen (Wurzeln, Sprossachsen, Blätter). Diese Module können allerdings – z. B. bei der Blütenbildung (.s.u.) – erheblich variiert werden. Diese Entwicklung wird von Entwicklungsgenen gesteuert und von Umweltfaktoren und endogenen Faktoren moduliert.

Entwicklungskontrolle durch Genboxen

Alle pflanzlichen Entwicklungs- und Differenzierungsvorgänge werden von Phytohormonen gesteuert. Dazu müssen zunächst die Enzyme produziert werden, die für die Hormonsynthese notwendig sind. Gleichzeitig müssen auch Gene aktiviert werden, deren Produkte für die Empfindlichkeit einer Zelle gegenüber einem Hormon zuständig sind, z. B. die Rezeptormoleküle in der Zellmembran und die Proteine für eine mögliche Signalkette im Cytoplasma. Auch für die Steuerung der Translation im Zellkern und die anschließende Aktivierung oder Hemmung der Translationsprodukte können spezielle Genprodukte notwendig sein.

Alle Entwicklungsschritte werden dadurch möglich, dass von den Genen, die in allen Körperzellen vorhanden sind, einem genauen zeitlich–räumlichen Muster folgend immer nur ganz bestimmte Gene exprimiert werden. Dieses Muster der Entwicklung wird durch eine Hierarchie von Kontrollgenen möglich, die jeweils für Transkriptionsfaktoren codieren, die andere Gene an- oder abschalten können. Für die DNA-Bindung dieser als Transkriptionsfaktoren wirkenden Genprodukte ist eine besondere Proteindömäne verantwortlich, der einem bestimmten Genabschnitt entspricht, der als „Box“ bezeichnet wird. Bei diesen Boxen handelt es sich um sehr konservative Genabschnitte, die sich über lange Evolutionsabschnitte nicht verändert haben und die zum Teil allen Eukaryoten gemeinsam sind (Seyffert 2003, S. 699 ff)

Organidentitätsgene steuern die Bildung der Blütenorgane

Eine für Pflanzen besonders bedeutende Proteindomäne ist die MADS-Box. Mittlerweile kennt man über 100 verschiedene MADS-Box-haltige Transkriptionsfaktoren, die in allen Reichen der Lebewesen vorkommen. Der Name stellt die Anfangsbuchstaben von vier Genprodukten dar, von denen zwei bei Pflanzen, eines bei der Bäckerhefe und eines beim Menschen gefunden wurden. Erste erfolgreiche Untersuchungen zur Wirkung von Kontrollgenen bei Pflanzen wurden an MADS-Box-Genen durchgeführt, die für die Entwicklung des Blütenbereiches wichtig sind und Organidentitätsgene genannt wurden.

Als Blütenorgane bezeichnet man die wirtelig angeordneten Teile einer Blüte, die von außen (bzw. unten) nach innen (bzw. oben) als Kelchblätter, Kronblätter, Staubblätter und Fruchtblätter (meist verwachsen zum Stempel) bezeichnet werden. Schon Goethe war aufgefallen, dass es bei der Blütenbildung ab und zu „Verwechslungen“ zwischen den Blütenwirteln kommen kann, dass z. B. aus Staubblättern Kronblätter werden und „gefüllte“ Blüten entstehen.

Die Entwicklung zu einer Blüte beginnt am Vegetationspunkt einer Sprossachse. Das Meristem an der Sprossspitze bildet – induziert durch äußere oder innere Faktoren – keine Laubblattanlagen mehr, sondern Anlagen von Blütenorganen.  Dabei kann man drei Hierarchieebenen von Genen unterscheiden. Auf der untersten Ebene geht es um die Ausbildung der verschiedenen Blütenwirtel und dabei werden die Organidentitätsgene wirksam (Abb. 9):

Gen A wird in den beiden äußeren Wirteln exprimiert, die zu Kelch- und Kronblättern werden.

Gen B wird in den Wirteln zwei und drei exprimiert, die Kronblätter und Staubblätter bilden.

Gen C wird in den beiden inneren Wirteln exprimiert, aus denen Staubblätter und Fruchtblätter hervorgehen.

Die Wirkungsweise der Organidentitätsgene kann man sich so vorstellen, dass die Gene A, B und C jeweils nur für eine Untereinheit eines aus zwei Untereinheiten zusammengesetzten Transkriptionsfaktors codieren: A-A, A-B, B-C, C-C. Man kann in diesem Fall von einer kombinatorischen Genregulation sprechen. Die Zusammensetzung des Dimers entscheidet darüber, welche anderen Gene von dem Transkriptionsfaktor aktiviert werden. Besteht im Beispiel ein Dimer nur aus den beiden Untereinheiten A, werden Kelchblätter produziert, besteht es aus A und B, bilden sich Kronblätter aus, besteht es aus B und C, werden Staubblätter gebildet und besteht es aus zwei C´s, entstehen Fruchtblätter.

Wenn nun durch eine Mutation der Promotor, der normalerweise Gen C aktiviert, an Gen A gekoppelt wird, bilden sich keine Staub- und Fruchtblätter, sondern nur Kelch- und Kronblätter aus. Dieses Grundmuster wird durch weitere Organidentitätsgene noch etwas differenziert, außerdem gilt es nur für einen Teil der Bedecktsamer.

Abb. 9 Blühinduktionsgene steuern die Blütenbildung

Licht spielt als entwicklungssteuernder Faktor bei Pflanzen eine entscheidende Rolle. Lichtabhängige Entwicklungsvorgänge (Photomorphogenese) können von Blaulicht oder Rotlicht abhängen.

Keine Vorurteile gegenüber Pflanzen !

Gängige Vorurteile sprechen Pflanzen tierliche Fähigkeiten ab: Pflanzen sind bewegungslos, sie haben keine Sinnesorgane, kein Skelett und keine Muskeln, sie haben kein Nervensystem und sie können nicht Kommunizieren und Kommunikationen verarbeiten („Denken“). Gerade bei Kindern führen solche Vorstellungen dazu, dass Pflanzen nicht unbedingt als Lebewesen eingestuft werden, deshalb sollen sie etwas ausführlicher widerlegt werden.

Bewegungslos?

Wenn man die reife Frucht eines Springkrauts anfasst, spürt man eine Reaktion zwischen den Fingern, die fast an einen Muskel erinnert. Die Frucht platzt auf, indem sich die Fruchtklappen nach innen rollen und die Samen werden ausgeschleudert. Allerdings liegen dieser Bewegung keine Muskelzellen und auch kein Nervengewebe zugrunde, denn diese spezialisierten Zellen kommen bei Pflanzen nicht vor. Trotzdem sind Reaktionen auf Umweltreize und die Verarbeitung solcher Reize möglich und in einigen Fällen führt dies auch zu auffälligen und schnellen Bewegungen.

Krümmen, Klettern, Öffnen und Schließen – Wachstumsbewegungen

Viele beobachtbare Bewegungen von Pflanzen, die auch Reaktionen auf Umweltreize darstellen können, gehen auf Wachstumserscheinungen zurück. Wenn sich in der zylinderförmigen Sprossachse einer Pflanze die wachsend  Zellen auf der einen Seite stärker strecken als auf der anderen Seite, kommt es zu einer Krümmung. Wenn diese Streckungen periodisch um die Achse herum stattfinden, kommt es zu Windebewegungen. So kann das Sprossende einer Zaunwinde oder einer Bohnenpflanze kreisende Bewegungen ausführen, die wie das Suchen nach einer Unterlage aussehen. Ist diese Unterlage gefunden, wird sie relativ schnell umwunden, denn die Pflanze kann den Widerstand fühlen. Noch komplizierten wird es bei der Aufrollbewegung von Ranken. Auch hier wandert das Streckungswachstum um die Sprossachse, aber – da die Ranken am Vorder- und am Hinterende fixiert sind – muss mindestens ein Umkehrpunkt eingebaut werden. Bei der Steuerung dieser Bewegungsvorgänge von Windepflanzen spielen sowohl endogene Rhythmen als auch Umweltreize, z. B. Berührungsreize, eine wichtige Rolle.

Noch weiter verbreitet ist die Hinwendung pflanzlicher Sprossachsen zum Licht, also eine einfache Krümmungsbewegung in Richtung einer Lichtquelle. Umgekehrt zeigen Wurzeln oft eine Krümmung vom Licht weg. Solche Wachstumsbewegungen, die von einem Außenreiz ausgelöst werden, nennt man auch Tropismen und je nach Reiz spricht man von Photo-, Geo- oder Hydrotropismen, die positiv oder negativ sein können oder auch das Mittel zwischen zwei Reizeinflüssen einhalten können (Plagiotropismus), z. B. beim horizontalen Wachstum von Seitenzweigen. Nicht selten führen Pflanzenorgane richtiggehende Wachstumsprogramme durch. Die Blütenstiele von Mohnpflanzen z.B. krümmen sich vor dem Aufblühen stark ein, bei Auflühen strecken sie sich wieder. Eine ähnliche Abfolge von Krümmung und Streckung kann man bei den Blütenstände zu flach nichts beobachten.sdd

Vergleicht man solche Wachstumsbewegungen von Pflanzen mit Bewegungen von Tieren, so ergeben sich deutliche Unterschiede. Insbesondere sind diese auf Wachstumsvorgänge beruhende Bewegungen alle sehr langsam, sie können von uns nur indirekt wahrgenommen werden und sie sind eher mit den Form- und Proportionsveränderungen vergleichbar, die im Laufe der Keimesentwicklung von Tieren auftreten.

Explodieren, Schleudern, Klappen… – Turgorbewegungen

Die zweite große Gruppe pflanzlicher Bewegungen beruht auf Änderungen des Zellbinnendrucks von Pflanzenzellen, des sogenannten Zellturgors, der in der Regel durch den unterschiedlichen Wassergehalt der Zentralvakuolen der Pflanzenzellen zustande kommt. Dieser wird wiederum über den osmotischen Wert gesteuert.

Für fast alle Pflanzengruppen sind Spaltöffnungen charakteristisch. Das sind von zwei Schließzellen umgebene Poren in der Außenhaut (Epidermis), die in Abhängigkeit von äußeren und inneren Reizen geöffnet und geschlossen werden können. Ist der Turgor der bohnenförmigen Schließzellen hoch, bilden sie eine nahezu kreisförmige Gestalt, die in der Mitte einen Porus offen lässt. Ist der Turgor niedriger, sorgt der Druck des übrigen Gewebes dafür, dass die Schließzellen aneinandergepresst werden. Dies ist die klassische Bewegungsreaktion, es gibt viele Abwandlungen und Sonderformen, die durch die besondere Gestalt der Schließzellen und ihre Anordnung in der Epidermis zustande kommen. Turgorschwankungen sind aber in jedem Fall der Motor der Bewegung. Ursache für diese Turgorschwankungen sind Schwankungen im Ionengehalt, insbesondere im Kaliumionengehalt der Schließzellvakuolen und dieser Ionengehalt kann durch aktive Pumpmechanismen verändert werden. Die Regulation der Spaltöffnungsbewegung sorgt dafür, dass die Pflanzen mit der schwierigen Aufgabe zurecht kommen, in der trockenen, kohlenstoffdioxidarmen Atmosphäre weder zu verhungern noch zu verdursten.

Spektakulärer, da ohne optische Hilfsmittel sichtbar, sind andere Turgorbewegungen von Pflanzen. Da wären so auffällige Beispiele wie die „Schamhafte Mimose“ oder Sinnpflanze (Mimosa pudica) oder die Venusfliegenfalle (Dionaea muscipula) zu nennen. Die Reizreaktionen dieser Pflanzen erinnern wirklich an nerven- und muskelgesteuerte Bewegungen von Tieren. Für die Bewegungen sind nicht nur einzelne Zellen, wie bei den Spaltöffnungen, sondern ganze Gewebe verantwortlich, deren Turgor aktiv verändert werden kann. Dabei kommt die schnelle Bewegung in der Regel durch einen plötzlichen Turgorabfall zustande, die anschließende „Regeneration“, die mit einem Aufbau des alten Turgorzustanden verbunden ist, dauert etwas länger.

Ähnlich wie das Öffnen und Schließen einer Tür werden Turgorbewegungen zwar oft von Außenreizen bewirkt, sie laufen aber unabhängig von der Richtung der Reizquelle ab. Solche Bewegungen werden als Nastien bezeichnet

Neben reversiblen Turgorbewegungen kennt man irreversible. Hierzu zählt das oben angesprochene Beispiel des Springkrauts. In den schmalen zylinderförmigen Zellen der äußeren Fruchtwand wird ein hoher Turgordruck aufgebaut, der schließlich zu einem Aufreißen der Frucht an präformierten Nähten zwischen den Fruchtblättern führt. Sind die Fruchtblätter erst voneinander getrennt, können sich die zylinderförmigen Zellen ausdehnen und dadurch werden die Fruchtblätter nach Innen eingerollt. Dabei spielt allerdings auch noch die elastische Zellwand eine Rolle. Wenn sich die Zellen der Außenwand erst einmal abgerundet haben, ist eine Rückkrümmung er Fruchtklappen nicht mehr.

Verbiegen und Verdrehen  – Quellungsbewegungen

Für das Funktionieren von Pflanzen sind auch Bewegungen von Bedeutung die keine physiologischen sondern rein physikalische Ursachen haben, hierzu zählen Quellungs- und Kohäsionsbewegungen. Entscheidend für diese Bewegungen sind Zellulosestrukturen (Abb. 3). Zellulose ist aus fädigen Molekülen aufgebaut, die zu sogenannten Mizellen zusammengefasst sind. Diese Zellulosesemizellen können in unterschiedlicher Richtung in eine Zellwand eingelagert sein, ähnlich wie die Faserstrukturen im Papier. Zwischen die Mizellen kann Wasser eingelagert werden. Dies führt zu einer Ausdehnung und zwar stärker quer zur Faserrichtung als in Faserrichtung. Sind die Faserrichtungen in zellulosehaltigen Pflanzenstrukturen geordnet aber  in verschieenen Schichten unterschiedlich, so kann dies beim Quellen zu Krümmungsbewegungen führen. Bei den Schuppen von Nadelholzzapfen zum Beispiel, aber auch bei vielen Fruchtklappen oder -zähnchen sind die Zellulosemizellen außen vorwiegend quer und innen längs angeordnet. Die stärkere Außenquellung bei Wassereinlagerung führt dazu, dass sich Nadelholzzapfen bei Feuchtigkeit schließen und bei Trockenheit durch nach außen Krümmen der Schuppen wieder öffnen. Dadurch wird erreicht, dass die Samen nur bei Trockenheit ausfallen können, was für deren Windverbreitung von Vorteil ist. Weitere auffällige Beispiele für solche Quellungsbewegungen zeigen viele Öffnungsklappen von Früchten oder die Peristomzähnchen an den Kapseln von Moossporogonen.

Je nach Anordnung der Micellen kann bei diesen Bewegungen nicht nur zu Krümmungen sondern auch zu Schraubungen kommen. Besonders einrucksvoll ist die lange, wie ein Drillbohrer wirkene Fruchtklappe des Reiherschnabels.

Auch solche Quellungsbewegungen können mit dem Bruch von präformierten Nähten verbunden sein. Bei vielen Schmetterlingsblütlern öffnen sich die Hülsen nahezu explosionsartig, beim Blauregen (Wisteria sinensis) zum Beispiel mit einem richtigen Knall. Dies kommt dadurch zustande, dass bei Austrocknung sich allmählich eine Spannung aufbaut, die schließlich zum Aufreißen an präformierten Nahtstellen führt. Oft kann man dieses Aufreißen als kleinen Knall wahrnehmen (z. B. bei Lupinen, beim Blauregen oder bei der Blatterbsen-Wolfsmilch).

Bei dem Aufreißen von Farnsporangien, spielt die Köhäsion der Wassermoleküle eine wichtige Rolle. 

Von einem Ort zum andern

Pflanzen können nicht aktiv kriechen, laufen, schwimmen oder fliegen, sich zum Beispiel gerichtet auf eine Reizquelle (Taxie) zubewegen oder einer Spur folgen. Passive Ortsbewegungen sind aber möglich. So sind viele Wasserpflanzen nicht festgewachsen. Sie fluten frei an der Oberfläche oder untergetaucht im Wasserkörper und werden von Strömungen mitgetragen. Nur so konnte sich die Wasserhyazinthe (Eichhornia crassipes) – ursprünglich im Amazonasgebiet zuhause – über fast alle tropischen und subtropischen Gewässer verbreiten und die Kanadische Wasserpest (Elodea canadensis) hätte andres nicht in kurzer Zeit zu einer die Schiffahrt bedrohenden „Pest“ in  europäischen Gewässern werden können.

Einjährige  Wüsten-oder Steppenpflanzen können, wenn sie nach der Samenreife absterben, zu „Wüstenrollern“ werden, die vom Wind beträchtliche Strecken über den Steppenboden gerollt weren und dabei die Samen allmählich ausstreuen.

Dies schafft den Übergang zu den Pflanzenteilen, die auf Fortbewegung spezialisiert sind, weil sie der Ausbreitung dienen sollen. Sie werden Diasporen genannt. Diasporen können Sporen, Samen, Früchte, Teilfrüchte und vegetative Ausbreitungseinheiten wie Brutknospen, Brutzwiebeln, Spross- und Wurzelknollen oder Butkörper sein. Triebkräfte bzw.Transportmittel für die Ortsbewegung sind Wind, Wasserströmung, die Schwerkraft, Tiere und der Mensch. Dabei wird in der botanischen Literatur streng zwichen Ausbreitung, dem Fortbewegungsvorgang einer Diaspore, und der oft daraus resultierenden geografischen Verbreitung einer Pflanzenart unterschieden.

Knochenlos?

Die Bewegungen der Tiere kommten i. A. durch das Zusammenspiel von Muskeln und Skelett zustande. Dabei kann es sich um ein inneres Knochenskelett (Wirbeltiere), einen äußeren Skelettpanzer (Indsekten und andere Panzerhäuter – Ecdysozoa) oder auch ein Hydroskelett (Regenwurm und andere Würmer) handeln. Pflanzen  haben sowohl ein den Knochen entsprechendes Innenskelett, das aus Geweben mit verdickten Zellwänden besteht, als auch ein Hydroskelett.

Tierzellen haben keine Zellwände, die harten Skelettelemente bilden sich aus Abscheidungen der Zellen in den extrazellulären Raum. Demgegenüber besitzt jede Pflanzenzelle eine feste Zellwand, die vor allem aus langkettigen Polysacchariden, insbesondere aus Zellulose, besteht. Es können aber weitere Stoffe eingelagert oder aufgelagert sein, z. B. Lignin bei verholzten Zellwänden oder Siliziumdioxid bei Gräsern und Schachtelhalmen. Pflanzenzellen machen in der Regel nach ihrer Bildung eine lange Phase der Volumenzunahme durch, wobei eine starre Zellwand sehr hinderlich wäre. Deshalb sind die Polysaccharidfasern in den Zellwänden junger Pflanzenzellen noch wenig fixiert und der Volumenzunahme folgend können immer neue Fasern eingebaut werden. Erst wenn die Zelle ihre endgültige Größe erreicht hat, kommt es zu einer zunehmenden Stabilisierung und Verfestigung der Wände, die vor allem durch einen regelmäßigen Wechsel in der Textur der Zellulosefibrillen und zunehmenen Querverbindungen zwischen den Fibrillen erreicht wird.

Durch die Bildung von Zellen mit sehr dicken Zellwänden können mechanisch stark belastbare Gewebe entstehen. Dabei kann es sich um lange Zellfasern handeln, die vor allem Zug- und Dehnungsstabilität bewirken und die von der Textilindustrie auch als „Pflanzenfasern“ genutzt werden (Baumwolle, Hanf, Lein, Jute, Sisal usw.) oder um isodiametrische Steinzellen, die vor allem Druckbelastungen standhalten. Durch die kompakte Anordnung von Zellen mit stark verdickten und verholzten Zellwänden kann eine hohe Druck- und Biegungsstabilität erreicht werden.

Besonders eindrucksvoll sind die kompakten Holzkörper der großen Bäume, die allerdings zum großen Teil aus abgestorbenen Zellen bestehen. Der lebende Baum bildet nur einen hautartigen Überzug über dem toten Holzskelett. Es gibt aber auch beeindruckene Beispiele für Leichtbauweisen. Viele Pflanzenkonstruktionen zeigen, wie mit möglichst geringem Materialaufwand möglichst große Stabilität oder Festigkeit erzeugt werden kann, z. B. reißfeste Blätter, biegungsstabile Grashalme, oder tragfähige Säulenkakteen.

Typisch für Pflanzenzellen sind außerdem Vakuolen mit wässerigem Inhalt, die bei ausgewachsenen Zellen meist den größten Anteil des Zellinneren ausmachen (Zentralvakuole). Je höher der Gehalt der Vakuole an osmotisch wirksamen Substanzen, je niedriger also ihr Wasserpotenzial, desto mehr Wasser wird von außen angezogen und desto größer wird der Binnendruck des Zellkörpers gegen die Zellwand, den man auch als Turgor bezeichnet. Für die Stabilität eines Pflanzensprosses ist dieses durch den Turgor gebildete Hyroskelett von großer Bedeutung. Dies kann man daran erkennen, dass Pflanzen bei Wasserverlust „verwelken“. Sie sind dann nicht mehr in der Lage,  ihr eigenes Gewicht zu tragen: Ihre Blätter hängen schlaff herab und sie biegen sich zum Boden.

Vakuolen dienen aber auch als Stoffreservoir für die Pflanzenzellen. Hier können organische Säuren gespeichert werden, ebenso wasserlösliche Farbstoffe. Es kann auch zum Ausfallen schwer löslicher Verbindungen in Vakuolen kommen, die dann mit dem Absterben der entsprechenden Pflanzenteile, z. B. der Blätter, auf diese Weise ausgeschieden werden. Eine wichtige Funktion der Vakuolen ist auch die der Wasserspeicherung. Besonders große Vakuolen kommen in den Früchten vor und wir genießen den leckeren Vakuoleninhalt, wenn wird die saftigen Früchte essen oder die ausgepressten Fruchtsäfte trinken.

Sinnenlos?

Pflanzen haben keine richtigen Sinnesorgane wie Augen und Ohren, sie sind aber durchaus in der Lager, physikalische und chemische Umweltreize wahrzunehmen, insbesonere Licht und Schatten, Schwerkraft,  Erschütterungen und Berührungen, Wärme (bzw. Temperaturunterschiede) sowie Wasser  und bestimmte Mineralstoffe.

Für die Lichtwahrnehmung sind v.a.zwei Pigmentsysteme, das Phytochromsystem und das Phototropinsystem verantwortlich. Das Phytochrom ist – wie das Chlorophyll und das Häm – ein Tetrapyrol, das allerdings keinen Porphyrinring bildet, sondern in offenkettiger Form vorliegt. Durch die Absorption von Photonen kann es seine Konfiguration ändern. Dadurch wirkt es wie ein lichtabhängiger Schalter.  Bei Belichtung mit hellrotem Licht der Wellenlänge 665 nm wird Phytochrom  in ein Molekül umgewandelt, das dunkelrotes Licht (735 nm) absorbiert, bei Belichtung mit dunkelrotem Licht wird dieses wieder in das Hellrot-absorbierende Phytochrom zurück verwandelt. Die jeweils zuletzt eingestrahlte Lichtqualität entscheidet über die ausgelöste Entwicklung. In der Zelle ist das Phytochrom an ein Protein gebunden. Das Phytochromsystem ist z. B. für die Samenkeimung von Licht- und Dunkelkeimern und für das extreme Streckungswachstum im Dunkeln (Etiolement, Vergeilung) verantwortlich.

Für die Krümmung von Pflanzensprossen zum Licht (Photropismus) ist nur der blaue Anteil des Lichts verantwortlich. Als wahrnehmendes Pigmentsystem konnte das Chromoprotein Phototropin nachgewiesen werden. Blaulicht wird von dem Apoprotein es Phototropins, einem Flavinmononucleotid, absorbiert und dies bewirkt, dass ein Phosphat an das Phototropin angehängt wird. Das so aktivierte Phototropin setzt eine Signaltransduktionskette in Gang, die dazu führt, dass im Sprossmeristem verstärkt das Phytohormon Auxin produziert wird. Es wird zunächst auf die dunkle Seite des Vegatationskegels verlagert und dann vorwiegend über die basalen Zellmembranen weitergegeben. Dafür sind bestimmte Effluxproteine und Afflux-Carrier verantworlich.  Das Auxin verstärkt das Streckungswachstum der Zellen dadurch, dass die H+-ATP-aseaktivität und die K+-Aufnahme durch die Zellmembran verstärkt werden.

Abb. 10 Das Phytohormon Auxin verstarkt das Streckungswachstum von Zellen. Einseitig aufgetragene, Auxin-haltige Wuchsstoffpaste führt zum Krümmungswachstum eines Kalanchoe-tubilora-Sprosses.

Abb. 11 Phototropismus; Krümmung durch einseitige Auxinwirkung

Auch zur Wahrnehmung der Schwerkraft bzw. der Massenbeschleunigung haben Pflanzen sehr empfindliche Einrichtungen, die in mancher Hinsicht an Schweresinnesorgane von Tieren erinnern. Da in Schwerkraft-empfindlichen Pflanzenteilen wie Wurzelhauben, Keimscheiden und Sprossachsen auffällig assymmetrisch gelagerte Stärkekörner (in Amyloplasten) auftreten, spricht man auch von Statolithenstärke. Es wir vermutet, dass der entscheidende Reiz die partielle Dehnung der äußeren Zellmembran ist, die durch das Gewicht des Protoplasten ausgelöst wird. Die Statolithenstärke erhöht das Gewicht.

Viele Pflanzen – v.a. kletterne Sprossachsen und Ranken – können Berührungsreize wahrnehmen. Bei der fleichfessenen Venus-Fliegenfalle gibt es eine Reizwahrnehmung durch Sinnesborsten, ein Aktionspotenzial und eine Erregungsleitung . Noch ausgeprägter ist die Erregungsleitung bei der Sinnpflanze (Mimosa pudica).

Wurzelspitzen können chemische Reize wahrnehmen, z. B. Phosphationen, Wassermoleküle und Sauerstoffmoleküle. Auf diese Weise können Baumwurzeln kleinste Risse in unterirdischen Wasserleitungen aufspüren und in den Wasserleitungen dann verstopfende „Wurzelzöpfe“ bilden.

Sprachlos und gedankenlos?

Vor mehr als 35 Jahren erregte ein Buch mit dem Titel „Das geheime Leben der Pflanzen“ viel Aufsehen (Tompkins, Bird 1973). Die Autoren stellen darin „Pflanzen als Lebewesen mit Charakter und Seele und ihren Reaktionen in physischen und emotionalen Beziehungen zum Menschen“ dar. Sie schildern, wie eine ausgedehnte sprachliche Kommunikation mit Pflanzen möglich sei und wie man die Gefühle seines Gummibaumes oder seiner Palmlinie durch Zuspruch günstig oder ungünstig beeinflussen könne. Pflanzen werden in diesem Buch gewissermaßen als „bessere Menschen“ dargestellt. Von Botanikern und Pflanzenphysiologen wurde diese Veröffentlichung natürlich nicht ernst genommen und zu Recht ist es schnell still geworden um die angeblich objektiven Experimente der an Lügendetektoren und Oszilloskope angeschlossenen Pflanzen. Allerdings weiß man heute viel mehr über Signalaufnahme, Verarbeitung und Weitergabe von Pflanzen und über Formen pflanzlicher Kommunikation als vor 30 oder 40 Jahren und dabei wurden durchaus erstaunliche Fähigkeiten entdeckt. So besitzen Pflanzen ein großes Repertoire an Signalstoffen, die sie in Abhängigkeit von Umwelteinflüssen einsetzen können, um im eigenen Pflanzenkörper oder auch bei Nachbarpflanzen und sogar bei Tieren Reaktionen hervorzurufen.

Signalstoffe, die steuernd und regelnd in die inneren Entwicklungs- und Stoffwechselprozesse einer Pflanze eingreifen, werden in Analogie zu tierlichen Hormonen als Phytohormone bezeichnet. Phytohormone sind relativ kleine Moleküle, die Informationen von ihrem Bildungsort zu Zielzellen und Zielgeweben übertragen. In der Regel setzen sie in den Zielzellen eine Signaltransduktionskette in Gang, die zu einer Reaktion der Zelle führt . Diese Reaktion kann direkt im Cytoplasma stattfinden, sie kann aber auch über  Transkriptionsfaktoren zum An- oder Abschalten von Genen führen. Dabei spielen Rezeptoren in der Zellmembran, verschiedene Proteine (G-Proteine, Proteinkinasen, phosphorylierte Proteine als Transkriptionsfaktoren) und kleine, als sog. sekundäre Botschafter (second messenger) wirkende Moleküle und Ionen wie Ca++, und cyclisches Adenin-  bzw. Guanin-Monophosphat  (cAMP, cGMP) eine Rolle (Tab. Phytohormone).

Viele Pflanzen produzieren chemische Abwehrstoffe, mit denen Fressfeinde oder Krankheitserreger abgewehrt werden können. Oft werden solche Stoffe erst produziert, wenn die Pflanzen von pflanzenfressenden Insekten oder anderen Herbivoren angeknabbert werden. Die Konzentrationen von Limonen und anderen Monoterpenen im Gewebe von Fichten und Lärchen zum Beispiel erhöhen sich als Reaktion auf Verletzungen. Limonen hat eine starke toxische Wirkung auf Borkenkäfer. Auch das Alkaloid Nikotin, das z. B. in Tabakpflanzen vorkommt, ist ein hochwirksamen Insektengift. In beschädigten Blättern erreicht es eine bis zu 10fach höhere Konzentration als in unbeschädigten.

Bestimmte durch Fraßfeinde hervorgerufene Verletzungen können Pflanzen dazu veranlassen, Stoffe wie Jasmonate  als Signalstoffe an die Umgebung abzugeben. Diese Pheromone regen dann auch bei Nachbarpflanzen die Produktion von Abwehrstoffen an. Die Pheromonwirkung ist nicht nur auf Pflanzen derselben Art beschränkt. Manche Pflanzenarten setzen als Reaktion auf Herbivorenbefall sogar Substanzen frei, die die Parasiten dieser Pflanzenfresser anlocken. Maispflanzen, die durch den Fraß von Raupen der Zuckerrübeneule beschädigt wurden, produzierten unterschiedlich flüchtige Terpenoide, die nachweislich als Lockstoff für die auf den Raupen parasitierende Schlupfwespen (Cortesia marginiventris) wirken. . Die Signalketten, die von der Vielfalt flüchtiger Pflanzensubstanzen an ihren Zielen ausgelöst werden können, sind bisher zum großen Teil unbekannt, aber es gibt auch schon viele erforschte Beispiele (Abb. 10).

Besonders vielfältig ist der Signalaustausch der Pflanzen mit ihren Bestäubern, sowohl über optische als auch über chemische Signale

Abb. 12 Signalstoffe bei Pflanzen

Ebenso wie bei der tierlichen Kommunikation spielt auch bei Pflanzen die Täuschung eine Rolle (Kasten Duftmimikry bei Orchideen).

Interesse wecken für das Andere? –  Pflanzenkunde unterrichten

Pflanzen sind für Kinder und Jugendliche i.d.R. weniger faszinierend als Tiere. Dies belegen mehrere empirische Studien (z. B. Hesse 2000). Während schon Kleinkinder von Tieren begeistert sind und ihnen ihre ganze Aufmerksamkeit zuwenden, sind Pflanzen selbst für Kinder im Grundschulalter in der Regel gar keine richtigen Lebewesen. Pflanzen, Nicht-Tiere, reagieren nicht, wenn man sie anspricht oder streichelt, sie bewegen sich nicht von der Stelle, sie bellen, brüllen oder zwitschern nicht und sie lassen keinen Schmerz erkennen. Die große Bedeutung, die Pflanzen für das Landschaftsbild haben, ist für Kinder ebenfalls nicht wichtig, da sich Interesse und  Gefühle für Landschaftsästhetik erst später entwickeln. Allerdings gibt es durchaus animierende Gefühle zu Pflanzen, die mit Ästhetik, Abenteuerlust oder Freude an technischen Funktionen zu tun haben:

  • Aus Pflanzen etwas gestalten: Blumenstrauß-Pflücken, Kränze und Blumenketten binden…
  • Aus Pflanzenteilen etwas konstruieren: Weidenpfeifen und Panflöten bauen, Wasser durch Löwenzahnstängel leiten, aus einem Schilfblatt ein Segelschiffchen bauen, einen Haselzweig zum Flitzebogen machen…
  • Pflanzenumgebungen für Abenteuer nutzen: auf Bäume klettern und Baumhäuser bauen, an einer Liane schaukeln, Baumstämme als Wippe nutzen, im Maisfeld Verstecken spielen, sich in Laubhaufen vergraben…

Auch das Phänomen der Samenkeimung und des Wachstums oder das Ableger Großziehen kann Kinder und Jugendliche faszinieren.

Pflanzenkunde-Unterricht muss an solche Erfahrungen und Vorstellungen anknüpfen. Entsprechende Versuche hat es in der Biologiedidaktik immer wieder gegeben: UB 184 „Kreative Botanik“, UB 275 „Pflanzen züchten und vermehren“, UB 286 „Außergewöhnliche Pflanzen“,  „Pflanzen stellen sich vor“, „Gärten zum Leben und Lernen“  usw.

Im Rahmen des Modellversuches „Praxis integrierter naturwissenschaftlicher Grundbildung“ (PING) des Landes Schleswig-Holstein wurde für den 5/6. Jahrgang eine UE „Ich und die Pflanzen“ entwickelt, bei der der lebensweltliche Bezug der einzelnen Themen besonders wichtig genommen wird. Dabei wird allerdings in Kauf genommen,  dass es oft nicht eigentlich um „Pflanzenkunde“ sondern um Selbsterfahrung („Phantasiereise zur blauen Blume“) oder um irgendwelche Nutzungen von Pflanzen oder pflanzlichen Produkten geht („Wie energiesparend kann ich mit Holz kochen“). Dabei ist der Ansatz sicherlich richtig, bei der Pflanzenkunde verstärkt von eigenen Erfahrungen oder Erfahrungen mit Tieren auszugehen, z. B. durch Fragestellungen wie „Können Pflanzen sehen?“, „Können Pflanzen atmen?“, „Können Pflanzen fühlen?“, „Können Pflanzen laufen, schwimmen, fliegen, klettern…?“ oder „Können Pflanzen um Hilfe rufen?“ . Dabei könnte von der eigenen Erfahrung  (Wie klettere ich? Welche Hilfsmittel nutze ich zum Klettern?) die Funktion des Kletterns bei Pflanzen und dann der Bau (Pflanzenlösung des Funktionsproblems) behandelt werden. Ästhetische Erlebnisse mit schönen Blüten oder bizarren Blattmustern können der Ausgangspunkt für Fragen nach der biologischen Funktion und der physikalischen Grundlage der Phänomene sein – z. B. leuchtende Blütenfarben durch Totalreflexion an Interzellularen, Fettglanz durch Reflexion an Stärkeschichten, Samteffekt durch Lichtabsorbtion an feinen Papillen usw.

Gerade weil Kinder Pflanzen zunächst als keine echten Lebewesen oder Mitgeschöpfe ansehen,  ist der Überraschungseffekt groß, wenn sie an Pflanzen tierliche Fähigkeiten entdecken können, z. B. rasche Bewegungsreaktionen auf Reize oder das „Fleischfressen“. Dabei kann sich die Lehrkraft Charles Darwin zum Vorbild nehmen. In seiner Autobiografie schreibt er: „Es hat mir immer große Freude bereitet, die Pflanzen in der Stufenleiter organisierter Wesen zu erhöhen. Ich empfand daher ein besonderes Vergnügen, als ich zeigen konnte, wie viele und wie wunderbar schön angepasste Bewegungen die Spitze einer Wurzel besitzt“ (Darwin, Erinnerungen…1876-1881, Aulis,Köln 1982, S.159).

Für unmittelbare Erfahrungen, Beobachtungen und Experimente am lebenden Objekt sind Pflanzen besonders gut geeignet., da die Untersuchungsobjekte i. d. R. leicht zu beschaffen sind , und  auch,  weil ethische Probleme, wie sie beim Experimentieren mit Tieren auftreten können, hier keine Rolle spielen. Schließlich stehen Pflanzen beim „Biologieunterricht im Freien“, bei Geländepraktika, Exkursionen, Schulgartenprojekten und  Klassenfahrten schon deshalb im Vordergrund, weil sie die Struktur einer Lebensgemeinschaft maßgebend prägen, weil sie als leicht zugängliche Zeigerorganismen dienen können und weil man  über Pflanzenarten viele ökologische Zusammenhänge erschließen kann.  Auch wenn bei der Freilandbiologie ökologische Fragestellungen im Vordergrund stehen, kann man gerade auf Exkursionen auch viele Form-  und Funktionszusammenhänge beobachten, erleben und verstehen.

Der richtige Weg einer zwar „humanzentrierten Pflanzenkunde“, der aber dazu führt, dass die Lernenden auch die Pflanze selbst und nicht nur ihre Beziehung zu derselben als interessant begreifen, bleibt das schwer erreichbare aber lohnende Ziel.

Quellen

Adl, S., M. u. a.( 2005) :The New Higher Level Classification of Eukaryotes with Emphasis on the Taxonomy of Protists. J. Eukaryot. Microbiol., 52(5), 2005 pp. 399–451 http://myweb.dal.ca/asimpso2/sopclass.htm

Bell, A.D. (1994): Illustrierte Morphologie der Blütenpflanzen, 335 S.. Stuttgart: Ulmer

Bell, P.R., Hemsley, A.R. (20002): Green plants. Their origin and diversity. Cambridge Univ. Press

Bildungsserver Hessen http://lernarchiv.bildung.hessen.de/sek_i/biologie/themen/botanik/index.html

Braune, W., Leman A., Taubert, H. (20028): Pflanzenanatomisches Praktikum I. Spektrum, Heidelberg/Berlin: Spektrum

Darwin, C. (1982): Erinnerungen an die Entwicklung meines Geistes und Charakters…Urania Leipzig 1982, Lizenzausgabe; Köln:  Aulis

Frey, W., Lösch, R. (20103): Lehrbuch der Geobotanik. München: Elsevier

Goethe, J.-W. von: Die Metamorphose der Pflanzen http://www.zeno.org/Literatur/M/Goethe,+Johann+Wolfgang/Naturwissenschaftliche+Schriften

Heldt, H.-W (20033).: Pflanzenbiochemie. Heidelberg/Berlin: Spektrum

Hesse, M. (2000): Erinnerungen an die Schulzeit – Ein Rückblick auf den erlebten Biologieunterricht junger Erwachsener. Zeitschrift für Didaktik der Naturwissenschaften 6, 187-201

Institut für Qualitätssicherung Schleswig-Holstein (IQSH): PING–Material (2006):

Ich und die Pflanze http://ping.lernnetz.de/pages/n350_DE.html

Kanduč, M. et al. (2020): Cavitation in lipid bilayers poses strict negativ pressure tability limit in biological liquids. PNAS, vol.117,pp.1033-1039

Lüttge, U., Kluge, M., Thiel, G. (2010): Botanik. Weinheim:  Wiley-VCH

Martin, K. (2002): Ökologie der Biozönosen. Berlin/Heidelberg: Springer

Munk, K. Hrsg (2009): Botanik. Taschenlehrbuch Biologie, 573 S., Stuttgart: Thieme

Nabors, M. W. (2007): Botanik.  München:. Pearson Deutschland

Preitschopf, W.: Sekundärstoffe http://infowis.de/kapitel/sekundae.html

Probst, W. (1999): Halme und Stängel. In: Deutsche Gartenbaugesellschaft/G. Hütten (Hrsg.): Wege zur Naturerziehung, S. 116-133

Probst, W., Hrsg.(1998-2001): Gärten zum Leben und Lernen. Seelze: Kallmeyer   (16 Hefte)

Probst, W. (20072): Pflanzen stellen sich vor. Köln:  Aulis

Probst, W. (2009): Stoffkreisläufe. Basisartikel in UB 349 (33.Jg), S.2-11. Seelze: Friedrich

Probst, W., Schuchardt,P., Hrsg. (20205): Basiswissen Biologie, Abitur. Berlin: BI-Duden

Purves, W. K. u. a. (201910): Biologie. München: Elsevier

Kadereit, J. W. u.a.(201437): Lehrbuch der Botanik (Ersthrsg. E. Strasburger)  Heidelberg: Spektrum

Seyffert, W.: Lehrbuch der Genetik. Spektrum, Heidelberg/Berlin 20032

Taiz, L., Zeiger, L., Møller, I., M., Murphy, A. (2018): Plant Physiology and Development. Oxford: Sinauer

Urry, L. A. u.a. (201911): Campbell Biologie. München:. Pearson Deutschland

Whittaker, R. (1969): New concepts of kingdoms or organisms. Evolutionary relations are better represented by new classifications than by the traditional two kingdoms.. Science 163: pp. 150–160 doi:10.1126/science.163.3863.150. PMID 5762760.

Frühe Evolution und Symbiose

LINK-NAME
Was ist Leben? Wie ist Leben entstanden? Wie hat sich Leben entwickelt? Diese Fragen sind alt, es werden immer wieder neue Antworten gefunden, aber wirklich beantwortet sind sie noch nicht. Hier soll ein Aspekt besonders betrachtet werden, dessen Bedeutung für die Entstehung und erste Entwicklung des Lebens und der Lebewesen auf der Erde erst in den letzten Jahrzehnten allgemein anerkannt wurde, die Symbiose.

Die Einteilung der Lebewesen

Die Vielfalt der Lebewesen wurde traditionell in „Pflanzen“ und „Tiere“ eingeteilt. Schon LINNÉ verteilte alle Lebewesen auf diese beiden „Reiche“. In der makros­kopischen Welt fällt es uns im allgemeinen auch nicht schwer, ein Lebewesen als Pflanze oder Tier zu erkennen. Auch nachdem man mit Hilfe von Mikroskopen die Welt der Mi­kroorganismen immer besser kennenlernte, behielt man lange Zeit diese Eintei­lung bei. So wurden Einzeller zu den Tieren gerechnet, wenn sie kein Chlorophyll ent­hielten und keinen Kohlenstoff assimilieren konnten. Zu den Pflanzen rechnete man die Einzeller mit Chloroplasten. Manche, wie etwa die „Augentierchen“ (Euglena), brachten sowohl Zoologen als auch Botaniker in ihren Systemen unter.

Aber in der ersten Hälfte des 20. Jahrhunderts wurde immer deutlicher, dass der grundlegendste Unterschied zwischen den Lebewesen nicht  „Tier“ oder „Pflanze“ sondern die Organisation der einzelnen Zellen ist. Bei den „Kernlosen“ sind die Zellen wesentlich einfacher gebaut. Sie enthalten keinen Zellkern und es fehlen ihnen viele typische Zellorganelle. Bei den „Kernhaltigen“  sind außer den Zellkernen auch noch andere typische Zellorganelle, insbesondere Mito­chondrien, Plastiden, Zentriolen, Geißeln usw., in den Zellen enthalten und sie sind durch ein komplexes inneres Membransystem kompartimentiert. Die für diese unterschiedlichen Organisationstypen eingeführten Begriffe „Prokaryoten“ und „Eukaryoten“ gehen auf den französischen Mikrobenforscher Edouard Chatton zurück, der die Namen in einer Veröffentlichung von 1937 verwendete (Katscher 2004). Doch erst 25 Jahre später gewannen diese Bezeichnungen auf Grund einer Arbeit von Stanier und van Niel (1962) allgemeine Akzeptanz und wurden auch in Lehrbüchern übernommen.

In den 1970 er Jahren untersuchte der amerikanische Mikrobiologe Carl Woese die Verwandtschaftsbeziehungen innerhalb der Bakterien durch Vergleich der ribosomalen RNA. Dabei fand er heraus, dass es zwei grundlegend unterschiedliche Typen von Prokaryoten gibt, die er zunächst als Bakterien und Archaebakterien bezeichnete. Aufgrund der großen Unterschiede zwischen diesen beiden Gruppen und der teilweisen Ähnlichkeit der Archaebakterien mit den Eukaryoten schlugen er und andere (Woese, Kandler, Wheelis 1990) später vor, eine Dreiteilung der Lebewesen in die drei Domänen Archaea, Bacteria und Eukarya vorzunehmen. Dieses Drei-Domänen-Konzept setzte sich allmählich durch, obwohl es auch starke Gegner gab, zum Beispiel den Evolutionsbiologen Ernst Mayr (1998) und die Wiederentdeckerin der Endosymbiontentheorie Lynn Margulis (1998).

Aus Tiefsee-Geothermalquellen wurden 2010 Sedimente entnommen, in denen man in den folgenden Jahren Archäen nachweisen konnte, die sich deutlich von den bisher bekannten Archäen unterscheiden. Vergleichende Untersuchungen der Genome von Lokiarchaeum und von Eukaryoten deuten auf einen gemeinsamen phylogenetischen Ursprung, eine Monophylie, hin. Das würde bedeuten, dass die Eukarya eine Schwestergruppe der Lokiarchaeota innerhalb der Archaea, sind, dass es also aus kladistischer Sicht nur zwei Domänen Bacteria und Archaea gibt (Spring et al. 2015; Zaremba-Niedwiedzka et al. 2017).

Einteilung der Lebewesen. A, nach Zellen ohne Kern und Zellen mit Kern; B die Kernlosen bestehen aus zwei sehr unterschiedlichen Gruppen; C drei Domänen; D die Kernhaltigen sind Teil der Archäen (Grafik W.Probst)

Urzelle oder Ursuppe?

Allen Lebewesen gemeinsam sind eine Zellstruktur, DNA, der genetische Code sowie mRNA, tRNA und eine durch Ribosomen vermittelte Übersetzung (Translation) des Nukleinsäurecodes in Proteine. Dies spricht dafür, dass alle Lebewesen von einem gemeinsamen Vorfahr abstammen (last universal common ancestor LUCA). Wenn sich alle heute lebenden Arten auf  eine Ursprungsart zurückführen lassen, könnte man Rückschlüsse auf die Eigenschaften dieses Urahnen ziehen, wenn man in den Genomen Nukleinsäurenabschnitte finden würde, die allen heutigen Lebewesen gemeinsam sind.  Eine Analyse von 6,1 Mill. Protein-codierender Gene von sequenzierten prokaryotischen Genomen hat zu der Schlussfolgerung geführt, dass LUCA ein anaerober, CO2– und N2-fixierender, H2-abhängiger thermophiler Prokaryot war und danach an einer an CO2, H2 und Eisen reichen Hydrothermalquelle lebte (Weiss et al. 2016). Diese Ergebnisse sind jedoch nicht ganz unumstritten, da nicht immer eindutig geklärt werden kann, welche Gene wirklich ursprünglich sind und welche durch horizontalen Gentransfer später erworben wurden.

Die Bedeutung des horizontalen Gentransfers bzw. des Austauschs und der Aufnahme von Nukleinsäuremolekülen durch frühe, zellulär organisierte Lebewesen  könnte  so stark gewesen sein, dass die Gene in einem Urzustand des Lebens noch nicht sehr eng an bestimmte zelluläre Lebewesen gekoppelt sondern eher Allgemeingut waren. In einer solchen „Ursuppe“ existierten zelluläre Elemente (Protocyten) neben freien RNA- und DNA-Molekülen (Ribozyme, Viroide) und Virus-ähnlichen Partikeln (Virionen, von Proteinhüllen umgebene Nukleinsäuremoleküle).  Zwar wurde lange Zeit angenommen, dass Viren erst entstehen konnten, nachdem es zelluläres Leben gab, da sie auf den Proteinsyntheseapparat von Zellen angewiesen sind. Aber die Entdeckung von Riesenviren (Mimivirus) hat diese Ansicht ins Wanken gebracht. Diese 2003 beschriebenen bakteriengroßen Viren aus Amöben haben zwar auch keine eigenen Ribosomen aber doch ein sehr komplexes Genom, das auch Gene enthält, die man vorher nur von zellulären Organismen kannte (La Scola et al. 2003).

„Ursuppe“ aus zellulären Elementen (Protocyten) neben freien RNA- und DNA-Molekülen (Ribozyme, Viroide) und Virus-ähnlichen Partikeln (Virionen, von Proteinhüllen umgebene Nukleinsäuremoleküle) und Proteinen, strukturiert durch anorganische Kompartimente (Grafik W.Probst)

Ein Austausch und eine Aufnahme von Nukleinsäureabschnitten durch Zellen und Virionen hätte zunächst die Ausbildung spezifischer Zelltypen, die in „darwinschen Wettbewerb“ miteinander treten konnten, verhindert. Der heute noch weitverbreitete horizontale Genaustausch bei Bakterien und Archäen wäre dann ein Relikt dieses Anfangszustandes.

Nach dieser Vorstellung wäre es auch möglich, dass Bakterien und Archäen sich nicht auf eine gemeinsame Protocyte zurückführen lassen, sondern dass ihre Wurzeln auf unterschiedliche Vorläuferzellen der Ur-Lebensgemeinschaft zurückgehen.

Entwicklung von Archäen und Bakterien ohne LUCA (Grafik W.Probst)

LECA und Mitochondrien

Die meisten neueren Untersuchungen deuten drauf hin, dass die erste eukaryotische Zelle (last eukaryotic common ancestor LECA) durch die Aufnahme eines α-Proteobakteriums durch ein Archaeum, vermutlich aus der Asgard-Gruppe (Eme et al. 2017, Zaremba-Niedzwiedzka et al. 2017), entstanden ist. Für diesen symbiotischen Weg zur ersten eukaryotischen Zelle gibt es zwei unterschiedliche Hypothesen.

Zwei Wege zur eukaryotischen Zelle (Grafik W.Probst)

Nach der traditionellen Vorstellung haben sich in der Archäenzelle als Voraussetzung für die Aufnahme des Proteobakteriums zunächst ein Großteil der für die Eukaryotenzellen typischen komplizierteren Innenstrukturen entwickelt, insbesondere das Cytoskelett, die Kernmembran und die Fähigkeit zur Phagocytose. Dann wurden α-Proteobakterien zunächst als Nahrung aufgenommen. Einige Bakterien widerstanden der Verdauung und wurden zu Endosymbionten, gut geschützt in der Wirtszelle, die vor allem von dem überschüssigen ATP ihrer Mieter profitierte. Die Endosymbionten gaben ihre Selbstständigkeit immer mehr auf, indem Gene aus ihrem Genom in das Wirtszellengenom verlagert wurden (Endosymbiontischer Gentranfer EGT). So entwickelten sich aus den endosymbiontischen Bakterien allmählich Organelle. Nach dieser Vorstellung betrieben die aufgenommenen α-Proteobakterien bereits eine aerobe Atmungskette, bei der als Endprodukte außer ATP CO2 und H2O gebildet wurden.

Eine Alternative Vorstellung geht davon aus, dass die symbiontische Zusammenarbeit von α-Proteobakterien und Archäen unter anaeroben Verhältnissen begann und dass die Archäen noch keine Eukaryoten-Innenstrukturen hatten. In einer sauerstofffreien Umgebung nutzten methanogene Archäen von zumindest fakultativ anaeroben α-Proteobakterien produziertes CO2 und H2 für die Energiebereitstellung durch Reaktion dieser Ausgangsstoffe zu Methan. Je größer die Berührungsflächen der beiden verschiedenen Prokaryoten-Zellen, desto effektiver konnte der Stoffaustausch sein. Dies führte schließlich dazu, dass das α-Proteobakterium ganz von dem Archaeum umschlossen wurde. Die weitere Entwicklung des Archaeums zur Eucyte und des Endosymbionten zum Mitochondrium verlief parallel.

Es spricht vieles dafür, dass sich das intrazelluläre Membransystem einschließlich der Kernmembran dabei vom Endosymbionten ausgehend ausgebildet hat, und zwar durch Abschnürung von Vesikeln von der äußeren Zellmembran des gramnegativen Bakteriums (Gould, Garg, Martin 2016). So entstanden allmählich die verschiedenen membranumschlossenen Kompartimente der Eucyte: die doppelte Kernmembran, das Endoplasmatische Retikulum, der Golgi-Apparat und verschiedene Membranbläschen wie Lysosomen und Peroxisomen. Ein Argument für diesen Weg ist, dass die umhüllende Zellmembran der Eukaryoten, obwohl ursprünglich aus einer Archäenzelle hervorgegangen, in ihrem Aufbau mehr einer Bakterienzellmembran entspricht. Bei Archäen sind die Fettsäuren nicht – wie bei Bakterien oder Eukaryoten – verestert. Sie bilden Glyceroldiether oder sogar Bis-Glycerol-Tetraether (einschichtige Membran, Monolayer) und statt einfacher, unverzweigter Fettsäuren kommen oft verzweigte Ketten vor. Der Austausch dieser Glycerolether gegen Glycerolester könnte dadurch zustande gekommen sein, dass die äußere Zellmembran allmählich durch den Einbau von Membranvesikeln des Endosymbionten umgebaut wurde.

Eine weitere Stütze dieser Entstehungshypothese der Eukaryoten bilden die sogenannten Hydrogenosomen, ATP-bildende Organellen, die in anaerob lebenden Protisten und anderen niederen, in sauerstofffreiem Milieu existierenden Lebewesen vorkommen. Ihre Homologie mit Mitochondrien hat man erst durch Genomanalysen festgestellt. Die meisten Hydrogenosomen enthalten zwar keine DNA, aber in den Kernen der zugehörigen Organismen konnte man Mitochondriengene nachweisen. Anders als bei Mitochondrien dienen bei Hydrogenosomen zur ATP-Bildung nicht Sauerstoffmoleküle sondern Wasserstoffionen (Protonen) als Elektronenakzeptoren. Dabei wird CO2, H2 und Acetat freigesetzt.

ATP-Bildung in Hydrogenosomen (aus Wikipedia)

Nach der ersten Entstehungshypothese müsste man annehmen, dass sich die Hydrogenosomen durch Reduktion aus aeroben Mitochondrien entwickelt haben. Geht man davon aus, dass es sich um den ursprünglichen Zustand handelt und dass sich die Mitochondrien aus Hydrogenosomen entwickelt haben, wäre dies eine Stütze der zweiten Entstehungshypothese.

Für beide Vorstellungen gilt, dass im Laufe der Endosymbiose immer mehr Gene aus dem α-Protobakterium in das Wirtszellengenom übertragen wurden (EGT). So entstand schließlich das Mitochondrium, ein Zellorganell, das nur noch wenige eigene Gene  – bei menschlichen Mitochondrien 37 (Archibald 2014) – und einen stark reduzierten Proteinsynthese-Apparat besitzt. Die meisten Mitochondrien-Proteine werden im Cytosol produziert und über spezielle Membranproteine in die Mitochondrien transportiert.

Plastiden

Auch für die Chloroplasten und alle verwandten, insgesamt als Plastiden bezeichneten  Zellorganelle ist heute unbestritten, dass sie durch Endocytosymbiose entstanden sind. Dabei kann man zwischen primärer und sekundärer Endocytosymbiose unterscheiden. Bei der primären Endocytosymbiose wurden Cyanobakterien von eukaryotischen Zellen aufgenommen, bei der sekundären Endocytosymbiose bereits Plastiden enthaltende eukaryotische Zellen. Man kann drei Organismengruppen unterscheiden, deren Plastiden auf primäre Endocytosymbiose zurückzuführen sind:

  • die Chlorophyta mit Chloroplasten (Grünalgen einschließlich der grünen Pflanzen)
  • die Rhodophyta mit Rhodoplasten (Rotalgen)
  • die Glaucophyta mit blaugrünen Plastiden (übersetzt „Blaugraue Algen“, nicht zu verwechseln mit dem alten Begriff „Blaualgen“ für Cyanobakterien; kleine Gruppe einzelliger Algen)

Die Plastiden der Glaucophyta sind den Cyanobakterien noch sehr ähnlich. Sie werden deshalb auch als Cyanellen bezeichnet. Wie die Zellen der Cyanobakterien enthalten sie Phycobilisomen als Photosynthese-Antennen. Zwischen den beiden Zellmembranen existiert noch eine dünne Peptidoglycanschicht, die typische Zellwandsubstanz der Bakterien. Das Genom ist allerdings durch EGT schon sehr stark verkleinert auf etwa ein Zehntel der Größe eines frei lebenden Cyanobakteriums.

Phycobilisom – Lichtsammelkomplex in den Photosynthesemembranen von Cyanobakterien, Glaucophyta und Rhodophyta (W.Probst nach G.Richter aus Kadereit 2014)

Die Plastiden der Rhodophyta enthalten ebenfalls Phycobilisomen als Fotosynthese-Antennen aber keine Peptidoglycanschicht. Charakteristisch sind  als zusätzliche Pigmente Phycobiline (offenkettigen Tetrapyrrole) wie Phycocyan und Phycoerythrin, die für die häufig rötliche Färbung der Rotalgen verantwortlich sind.

Rhodoplast der Rotalgen mit Phycobilisomen auf den Thylakoiden; rechts einzellige (oben) und vielzellige (unten) Beispiele für Rhodophyta (W. Probst nach versch. Vorlagen)

Die Chlorophyta enthalten Plastiden ohne Phycobilisomen und Peptidoglycanschicht. Charakteristisch für ihre Chloroplasten sind geldrollenartig gestapelte Doppelmembran-Pakete (sogenannte Grana).

Wichtigstes Fotosynthese-Pigment in den Plastiden aller drei Gruppen ist Chlorophyll a. Bei den Chlorophyta kommt außerdem Chlorophyll b vor.

Aufgrund von Fossilfunden und molekulargenetischen Daten vermutet man, dass die endosymbiotische Aufnahme von Cyanobakterien durch eukaryotische, mitochondrienhaltige Einzeller vor etwa 1,5 Milliarden Jahren stattfand (Parfrey, L. W. et al. 2011). Man nimmt an, dass die Cyanobakterien durch Phagocytose als Nahrungspartikel aufgenommen wurden. Dabei werden die aufzunehmenden Nahrungspartikel von einer Phagocytose-Membran umhüllt, in welche Verdauungsenzyme abgegeben werden (Endosomen). Die heutigen Plastiden haben nur die zwei auf die Cyanobakterien zurückgehenden Außenmembranen. Von der „Verdauungsmembran“ der eukaryotischen Zelle ist nichts übrig geblieben.

1 eukaryotische Zelle und Cyanobakterium; 2 beginnende Phagocytose; 3 Cyanobakterium in Endosom; 4 auf dem Weg zum Organell: Endosomenmembran verschwunden, Cyanobakterien-DNA durch EGT reduziert (Grafik W. Probst)

Auch bei den Plastiden ist vom ursprünglichen Genom des Cyanobakteriums nur ein Bruchteil im Organell zurückgeblieben. Von 2000-12.000 Genen bei Cyanobakterien sind in Plastiden noch 60-200 nachzuweisen (Archibald 2014 nach Dragan et al. 2013). Umgekehrt findet sich aber eine beachtliche Anzahl von Cyanobakterien-Genen in den Zellkernen der Plastiden-haltigen Eukaryoten. Bei einer Untersuchung der Modell-Landpflanze Acker-Schmalwand konnten Martin et al. (2002) etwa 4500 der 25.000 Gene der Pflanze auf einen cyanobakteriellen Ursprung zurückführen. Dabei muss natürlich berücksichtigt werden, dass bei den Genomen der Pflanzen Verdopplungen von Teilen oder ganzen Genomen eine wichtige Rolle gespielt haben. Dabei wurden auch die von Cyanobakterien stammenden Gene verdoppelt. Überraschend war, dass nur etwa 50 % dieser Gene für Proteine zu codieren scheinen, die mit Funktionen im Chloroplasten zu tun haben. Ähnliche Verhältnisse konnten später auch für andere Plastiden-haltige Eukaryoten festgestellt werden. Daraus lässt sich erkennen dass der Vorgang der Endocytosymbiose und der damit verbundene endosymbiontische Gentransfer (EGT) weit über die Photosynthesefunktion hinausgehende Folgen hatte. Das Ergebnis waren völlig neue Organismen!

Aufgrund der deutlichen Unterschiede der Plastiden von Glaucophyta, Rhodophyta und Chlorophyta liegt die Vermutung nahe, dass ihrer Entstehung drei getrennte Endosymbiosen zugrunde liegen. Durch molekulargenetische Untersuchungen konnte diese ursprüngliche Annahme jedoch nicht bestätigt werden. Die Restgenome aller drei Plastiden-Typen zeigen große Übereinstimmung. Außerdem treten bestimmte für die Chloroplastenmembran-Durchlässigkeit wichtige Proteine, die von den Kernen der Algenzellen gebildet werden, bei allen drei Gruppen auf. Man nimmt deshalb an, dass es einen gemeinsamen Vorfahr gab und dass die Endosymbiose zur Bildung der Chloroplasten nur einmal stattgefunden hat (Archibald 2014 nach Martin et al. 1998, Turner et al. 1999, McFadden,van Dooren 2004). Glaucophyta, Rhodophyta und Chlorophyta werden deshalb in der phylogenetischen Systematik als Monophylum angesehen und als Archaeplastida bezeichnet.

Sekundäre Plastiden

Schönaugengeißler (Euglena viridis) und einer seiner Chloroplasten (W. Probst nach versch. Vorlagen)

„Augentierchen“ (besser Augengeißler, Euglena viridis), einzellige, schnell schwimmende grüne Algen, die man in Tümpeln und Pfützen finden kann, faszinierten schon die ersten Mikroskopiker. Da ihre Chloroplasten Chlorophyll a und b enthalten, wurde lange Zeit angenommen, dass sie zu den Grünalgen (Chlorophyta) gehören. Erst eine gründliche Untersuchung durch die Algenforscherin Sarah Gibbs führte zu der erstaunlichen Erkenntnis, dass die Chloroplasten von Euglena aus einer endosymbiontischen Grünalge hervorgegangen sind (Gibbs 1978), die Augentierchen selbst aber in eine völlig andere Verwandtschaftsgruppe gehören. Anlass für die genaue Untersuchung war, dass die Chloroplasten – wie schon länger bekannt – nicht von zwei sondern von drei Membranen umgeben waren.

Bei verschiedenen anderen Algen kommen sogar Plastiden mit 4 Membranhüllen vor. In solchen von vier Membranen umgebenen Plastiden von Schlundgeißlern (Cryptophyta) wurden zwischen den zwei äußeren und den zwei inneren Membranen Nukleinsäure- haltige Körper entdeckt, die man als Reste von ehemaligen Zellkernen der endosymbiontischen Eukaryoten identifizieren konnte und die man deshalb als „Nucleomorphe“ bezeichnet. Bei der zweiten Endosymbiose kam es – genauso wie bei der ersten – zu einem endosymbiontischen Gentransfer. Bei vielen Algen wie Euglena, Kieselalgen und großen Braunalgen (Tangen) ist der Kernrest der aufgenommenen eukaryotischen Alge vollständig verschwunden, d. h. die Gene wurden vollständig in den Wirtskern integriert, aber an den drei oder vier Hüllmembranen der Plastiden kann man erkennen, dass diese das Ergebnis von zwei Endosymbiosen sind.

Schlundgeißler (Cryptophyceae) mit 4 Hüllmembranen um seine Plastiden und einem Kernrest (Nucleomorph) zwischen den beiden äußeren und den beiden inneren Membranen (W. Probst nach versch. Vorlagen)

Die Chomatophoren der Schlundgeißler haben sich aus endosymbiontischen Rotalgen entwickelt. Dies gilt auch für andere Algen mit bräunlichen oder gelblichen Chromatophoren aus der Verwandtschaftsgrupp der Heterokontophyta, zum Beispiel für die Kieselalgen, die Goldalgen und die Braunalgen.

Eine  weitere Algengruppe mit sekundären Chloroplasten, die auf Grünalgen zurückgehen, sind die Chlorarachniophyta, amöboide Eukaryoten aus der Gruppe der Rhizaria. Ihre Chloroplasten sind ebnfalls von vier Hüllen umgeben und sie enthalten Nukleomorphe. Auch sie wurden früher zu den Grünalgen gerechnet. Sie sind zwar zur Photosynthese fähig, aber wie chlorophyllfreie Amöben ernähren sie sich auch durch Phagocytose von Bakterien und kleinen Einzellern.

Bei Dinoflagellaten kennt man auch tertiäre Endocytobiosen, bei denen eine einzellige Alge aus der Gruppe der Cryptophyta als Endosymbiont aufgenommen wurde.

Auf dem Weg zur Chloroplastenbildung

Die Schalenamöbe Paulinella chromatophora  hat eine ellipsoide oder birnenförmige aus spiralig angeordneten Silikatplatten zusammengesetzte Schale. Sie lebt zwischen Wasserpflanzen oder im oberflächlichen Sediment von Süßgewässern. In ihrem Inneren enthält sie zwei wurstförmige blaugrüne Körper, die man zunächst als Chromatophoren bezeichnete. Durch molekulargenetische Analysen konnten sie als Abkömmlinge Blaugrüner Bakterien der Gattungen Synechococcus  bzw. Prochlorococcus identifiziert werden. Die Aufnahme dieser Endosymbionten, die mit den Vorfahren der Plastiden nicht näher verwandt sind, liegt bei weitem nicht so lange zurück wie bei den Plastiden. Die Endosymbiose ist zwar schon weit fortgeschritten, sodass weder Paulinella noch ihre Chromatophoren für sich alleine lebensfähig sind. Sie enthalten noch 867 Proteine codierende Gene, was etwa einem Viertel des Genoms von frei lebenden Synechococcus-Arten entspricht. Die Genanalyse des Wirtsgenoms zeigte, dass hier schon  Endosymbionten-Gene enthalten sind. Es konnte auch eindeutig nachgewiesen werden, dass vom Kern codierte Proteine in die Chromatophoren transportiert wurden. Man kann sagen, dass diese Endosymbionten bereits auf dem Weg zum Organell sind. Sie werden deshalb von manchen Forschern auch schon als Chloroplasten oder Plastiden bezeichnet. Aufgrund der genetischen Untersuchungen vermutet man, dass die Endosymbiose von Paulinella etwa 100 Millionen Jahre alt ist (Archibald 2014).

Der zu den Glomeromyceten zählende Pilz Geosiphon pyriforme ist anders als die übrigen Vertreter dieser Pilzklasse kein Mykorrhizapilz, aber er enthält endocytosymbiontische Blaugrüne Bakterien der Gattung Nostoc. Bisher kennt man keine andere Pilzart mit endosymbiontischen Cyanobakterien. Der photosynthetisch aktive Symbiosepartner wächst in blasenförmigen Erweiterungen der Pilzhyphen, die etwa 1 x 1,5 mm groß sind. Geosiphon ist ohne seine Endosymbionten nicht lebensfähig, der Endocytosymbiont Nostoc punctiforme kann dagegen auch frei lebend gedeihen. Frei lebende Nostoc-Fäden aus wenigen Zellen werden von den Pilzhyphen in einem bestimmten Entwicklungsstadium des Pilzes über Endocytose aufgenommen. Nach der Aufnahme wachsen die Pilzhyphen zu den makroskopisch erkennbaren Blasen aus, in denen sich die aufgenommenen Nostoczellen vermehren. Außer normalen Zellen bildet Nostoc auch Heterocysten aus, die zur N2-Fixierung in der Lage sind – also eine „Stickstoffsymbiose“ wie bei Hüllsenfrüchtlern und anderen Pflanzen. Der Pilz erhält von den Blaugrünen Bakterien einen Teil des gebildeten Zuckers und des gebundenen Stickstoffs, dafür liefert der Pilz seinem Endosymbionten Wasser, Phosphat und Kohlenstoffdioxid und alle weiteren benötigten anorganischen Stoffe. Außerdem  schützt er Nostoc vor Stress durch giftige Schwermetalle. Geosiphon bildet – wie viele Glomeromyceten – auch noch eine Symbiose mit einem Bakterium, über die aber bisher nur wenig bekannt ist. Zum anderen bildet der Pilz enge Gemeinschaften mit Hornmoosen und mit dem Lebermoos Blasia pusilla, die beide ihrerseits mit Nostoc in einer extrazellulären Symbiose leben. Glomeromyceten waren vermutlich als Symbiosepartne für die Besiedelung terrestrischer Lebensräume durch die ersten Pflanzen sehr wichtig, möglichrweise sogar Voraussetzung (Wang et al. 2010). Schüßler (2011) vermutet, dass es sich bei der Endosymbiose von Geosiphon und der Arbusculären Mykorrhiza von den meisten heute bekannten Glomeromyceten um eine parallele Entwicklung mit ähnlichen Austauschvorgäng handelt. Bei Gloeosiphon ist der Photosynthese betreibende Partner (Cyanobakterium) innen, im anderen Fall (Pflanze) außen.

Die Kieselalge Rhopalodia gibba besitzt – wie alle Kieselalgen – sekundäre Plastiden, die auf Rotalgen-Endosymbionten zurückgehen. Außerdem enthalten die Zellen dieses Einzeller aber einen weiteren Endosymbionten, der zunächst als „Sphaeroid“ beschrieben wurde. Man konnte nachweisen, dass es sich dabei um ein endosymbiontisches Cyanobakterium aus der Gattung Cyanothece handelt. Dieser Endosymbiont führt allerdings keine Photosynthese mehr durch, aber er kann molekularen Stickstoff assimilieren. Sein Genom enthält mit 2,6 Millionen Basenpaaren noch etwa die Hälfte einer frei lebenden Cyanobakterienart der Gattung Cyanothece (Archibald 2014). Die genetischen Verhältnisse dieser Kieselalge sind dementsprechend recht kompliziert. Im Zellkern findet man

  • Gene der Rotalge, von der der Chloroplast abstammt,
  • von dem Cyanobaktium, das zum primaren Chloroplasten der Rotalge wurde und
  • von dem Genom des weiteren stickstoffbindenden Cyanobakteriums.

Außerdem enthalten Chloroplast und Cyanobakterienendosymbiont noch eigene Genomreste. Diese verschiedenen Gene und ihre Produkte  wirken bei dem effektiven Ablauf des Zellstoffwechsels zusammen.

Pflanzentiere und Kleptoplasten

Alle Photosynthese betreibende Algen und alle grünen Pflanzen verdanken ihre Fähigkeit zur Kohlenstoffassimilation ursprünglich endosymbiontischen Cyanobakterien. Aber darüber hinaus ist es im Laufe der Evolution immer wieder zu einer Kooperation zwischen Kohlenstoff-heterophen und Kohlenstoff-autotrophen Lebewesen gekommen. Die Autotrophie durch Endosymbiose ist eine Fortsetzungsgeschichte.

Schon im 19. Jahrhundert wurden ver­schiedene Symbiosen von Algen mit Nie­deren Tieren und Pilzen entdeckt. Karl Brandt (1881 nach Sapp 1994) be­schrieb die endosymbiontischen Mikroalgen in Einzellern, Hohltieren, Mollusken und Würmern. Er nannte die grünen Vertreter „Zoochlorellen“ und die gelbbräunlich ge­färbten „Zooxanthellen“. Keeble untersuchte und beschrieb 1910 als erster die grünen, darmlosen wurmähnlichen Tiere (Gattung Symsagittifera früher Convoluta) der bretonischen Atlantikküste und nannte sie „plant animals“. Sie werden heute der an der Basis des Tierreiches stehenden Gruppe der Acoelomorpha zugeordnet.

Titel von Frederik Keebles Monografie über die „Pflanzentiere“

Keebles Zeicchnung der beiden Acoelomorpha Symsagittifera roscoffensis und Convoluta convoluta,  früher zuden Strudewürmern gerechnet

Während es sich bei den „Zoochlorellen“ tatsächlich um Grünalgen handelt, allerdings wohl um eine polyphyletische Gruppe, stammen die  „Zooxanthellen“ aus ganz unterschied­lichen Verwandtschaftsgruppen der „Protisten“. Sie ähneln sich, weil sie ihre Gestalt als Endosymbionten erheblich vereinfacht haben. Eine be­sonders verbreitete endosymbiontische Alge gehört zu den Dinoflagellaten (Gattung Symbiodinium), andere werden den Kieselalgen, den Goldalgen und den Haftfaden­geißlern zugeordnet. Bei tropischen Foraminiferen und bei Schwämmen konnte man sogar Rotalgen als Endocytobionten nachweisen (Reisser 1992).

Nehmen die Partner nur über die äußere Oberfläche Kontakt auf, so spricht man von Exosymbiose. Ein gutes Beispiel dafür ist die Flechtensymbiose. Kolonisiert der klei­nere Part­ner den größeren, indem er in sein Körperin­neres ein­dringt, so spricht man von Endosymbiose (Acoelomorpher Symsagittifera roscoffensis und Zoochlorelle Tetraselmis convolutae), wenn er so­gar in die Zel­len des Partners eindringt, von Endocytosymbiose (Paramecium bursaria und Chlorella). Gerade dieser letzte Fall ist bei einzelligen Algen be­sonders häufig. Verbreitet sind solche Endocytosymbiosen nicht nur bei Einzellern wie Wimpertierchen, Foraminiferen und Wurzelfüßern, sondern auch bei Nesseltieren (einschließlich der Korallen), Niederen Würmern und marinen Schnecken.

Schlundsackschnecken Elysia viridis in der Flensburger Förde, 5.7.2011 (Foto J. Langmark)

Eine besondere Art der „sekundären Kohlenstoffautotrophie“ kennt man von der Schneckenordnung der Schlundsackschnecken (Ordnung Sacoglossa). Diese Gruppe mariner Hinterkiemer ernährt sich vorwiegend von  siphonalen Algen, also Fadenalgen, deren Zellfäden nicht durch Querwände unterteilt sind. Die Schnecken stechen die Algen mit einem stilettartig spe­zialisierten Zahn an. Nach dieser Punktation saugen sie den Zellsaft durch ihren muskulösen Pharynx ein. Auf diese Weise können große Zellsaftmengen durch einen Einstich aufgesaugt werden. Die grüngefärbte Meeresschnecke Elysia chlorotica saugt an der Schlauchalge Vaucheria litorea. Sie verdaut einen Großteil des Zellsaftes und integriert die Plastiden durch Phagocytose in die Epithelzellen ihres Verdauungstraktes. Durch Versuche in Aquarien konnte man feststellen, dass die Schnecken ohne Nahrung nur durch Belichtung 8-9 Monate überleben können. In diesem Zusammenhang hat man von „Chloroplastensymbiose“ gesprochen, besser wäre wohl die Bezeich­nung Kleptoplastie (altgriech. kleptein = stehlen), da diese Organelle tatsächlich von den Algen gestohlen oder ausgeborgt worden sind. Zu einem Gentransfer von den Plastiden in die Zellkerne von Schneckenzellen kommt es in diesem Falle allerdings nicht.

Stammbaum der Photobionten und ihren direkten bzw. indirekten Symbiosen mit Blaugrünen Bakterien. Die breiten farbigen Verbindungsbahnen deuten die Verwandtschaftsbeziehungen der Wirtzellen bzw. -organismen an, die Pfeile zeigen die Herkunft der Plastiden. Nur der unterste braune Pfeil markiert die Endocytosymbiose, die zu den Mitochondrien führte. Die verschiedenen Farben markieren die großen Verwandtschaftsgruppen Sar, Archaeplastida, Excavata und Opisthokonta (Grafik W. Probst).

„Verdauungsendosymbiosen“

Viele von Pflanzensäften lebende Insekten (Wanzen, Zikaden, Blattläuse) kooperieren zur besseren Nahrungsnutzung mit endosymbiontischen Bakterien. Eine besonders enge Symbiose besteht zwischen Blattläusen und den endocyto­biontischen Bakterien der Gattung Buchnera, die in speziellen, großen Darmzellen leben, die als Bakteriocyten bezeichnet werden. Die Endosymbionten werden von Generation zu Generation über die Eier weitergegeben. Buchnera ist verwandt mit Escherichia coli, aber im Gegensatz zu diesem weit verbreiteten Darmbakterium ist ihr Genom wesentlich kleiner. Dafür sind in einer Zelle über 100 Kopien enthalten. Eine vollständige Genomanalyse von Buchnera ergab, dass keine Gene für Zellober­flächen-Lipopolysaccharide und Phospholipide vorhanden sind. Ebenso fehlen die meisten Regulatorgene und Gene, die der Verteidigung der Zellen nach außen die­nen. Das enge Zusammenleben mit den Wirten wird auch dadurch deutlich, dass von Buchnera alle für seinen Wirt essentiellen Aminosäuren gebildet werden. Dafür sind mindestens 55 Gene verantwortlich. Umgekehrt werden von dem Bakterium keine für den Wirt nicht essentiellen Aminosäuren produziert. Die Blatt­läuse bilden statt des insektenüblichen stickstoffhaltigen Exkrets Ammoniak Glutamin, das von den Bakterien diekt als Ausgangsstoff für die Produktion der essentiellen Ami­nosäuren verwendet wird. Diese Komplementari­tät zeigt, dass die Symbiose schon sehr lange erfolgreich arbeitet.  Da Buchnera sogar seine Außenmembran vom Wirt erhält, kann man sagen, dass bei dieser Symbiose ein Stadium erreicht ist, das Buchnera schon fast als ein Zellorganell erscheinen lässt.

Noch komplizierter ist die Doppelendocytobiose in Darmzellen von Motten-Schildläu­sen (Aleyrodoidea). Durch Genanalysen entdeckte man, dass in den  Darmzellen-Bakterien ein weiteres endosymbiontisches Bakterium lebt (McCutcheon, von Dohlen 2011).

Viele ähnliche Beziehungen kommen bei Holz bzw Zellulose fressenden Insekten wie Tabakskäfer, Borkenkäfer und Termiten vor. Auch blutsaugende Egel, Zecken und Läuse bessern die Inhaltsstoffe ihrer relativ einseitigen Nahrung durch symbiontische Darmbakterien auf. Sie können in besonderen Darmzellen, in Darmaussackungen oder auch frei im Darmlumen vorkommen. Aber auch für Säugetiere einschließlich des Menschen ist das Darm-Mikrobiom von großer Bedeutung und erfüllt in vielen Fällen die Definition der mutualistischen Symbiose. Die für die menschliche Ernähung so wichtig Milchproduktion de Rinder ist abhänig von den endosymbiontischen Darmmikroben dieser Herbivoren.

Gibt es Monophylie?

Es wird immer deutlicher, dass Endosymbiosen und auch Endocytosymbiosen im Laufe der Stammesgeschichte der Lebewesen eine große Rolle gespielt haben. Wie erste Untersuchungsergebnisse zeigen, sind dabei viele Gene von den Endosymbionten auf ihre Wirte übertragen worden. Die von der synthetischen Theorie der Evolution verwendete Bezeichnung „Gendrift“ für einen Evolutionsfaktor gewinnt dadurch eine ganz neue Bedeutung. Allerdings handelt es sich bei der hier betrachteten „Gendrift“ nicht um ein zufälliges Ereignis, sondern um die Folge einer auf kooperativen Stoffwechselvorgängen beruhenden engen Kooperation zwischen verschiedenen Organismen. Die moderne phylogenetische Systematik (Kladistik) versucht, das System der Lebewesen aufgrund einer auf genetischen Grundlagen beruhenden Stammbaum-Rekonstruktion aufzustellen. Taxonomische Einheiten sollen eine Monophylum darstellen, d. h., sie sollen sich auf eine Ursprungsart zurückführen lassen, die außer den Vertretern des Taxons keine anderen Nachkommen hat. Diese Methode – so schwierig sie auch im Detail sein mag – ist in sich logisch, solange Gene nur vertikal weitergegeben werden. Sobald es aber häufiger zu einer horizontalen Genweitergabe kommt, entstehen Probleme. Denn nun geht es nicht nur um gemeinsame Nachfahren sondern auch um gemeinsame Vorfahren. Ich komme zurück auf unsere einleitende Betrachtung der Großeinteilung der Lebewesen. Nach neuesten Erkenntnissen sind die Eukaryoten ein Teil der Archäen, allerdings nur, soweit es um die Wirtszelle geht. Die für die Entstehung und Weiterentwicklung sehr wichtigen Mitochondrien und Plastiden kommen aus der Domäne Bakterien. Die Eukaryoten haben also mindestens einen weiteren gemeinsamen Vorfahr im Vergleich zu den übrigen Archäen, soweit es sich um Plastiden-haltige Eukaryoten handelt sogar mindestens zwei weitere. Durch die Kombination ist wirklich etwas Neues entstanden, dem man mit gewissem Recht eine eigene Domäne zuerkennen könnte. Nach kladistischen Taxonomieregeln müsste das aber bedeuten, dass man die im übrigen ziemlich gut definierten Archäen nicht mehr als eine systematische Einheit ansehen könnte, da es sich um kein Monophylum handelt. Die sogenannte Asgardgruppe müsste als eigene, den übrigen Archäen und den Bakterien gleichrangige Einheit angesehen werden. Da die Eukaryoten wahrscheinlich sogar aus der Mitte der Asgardgruppe entstanden sind, wäre unter Umständen eine weitere Aufspaltung notwendig. Ich denke, phylogenetische Taxonomen müssten hier zu Kompromissen finden. Das gilt nicht nur für dieses basale Beispiel, sondern für viele ähnliche Fälle.

Stammbau ohne und mit horizontalem Gentransfer (Grafik W. Probst)

Quellen

Archibald, J. (2014): One plus one equals one. Symbiosis and the evolution of complex life. Oxford: Oxford University Press

De Bary (1879): Die Erscheinung der Symbiose. Straßburg: Trübner

Delwiche, C. F. (1999): Tracing the Thread of Plastid Diversity Through the Tapestry of Life. The American Naturalist 154, Supplement: .Evolutionary Relationships Among Eukaryotes, pp 164-177. doi:10.1086/303291  

Delwiche, C., F., Cooper, E., D. (2015): The evolutionary origin of terrestrial flora. Current Biology 25, S. R899-R910

Eme, L., Spang, A., Lombard, J., Stairs, C. W. & Ettema, T. J. G. (2017): Archaea and the origin of eukaryotes. Nat. Rev. Microbiol. 15, pp 711–723

Gibbs, S. P. (1978): The chloroplasts of Euglena may have evolved from symbiotic green algae. Canadian Journal of Botany 56 (22), pp 2883–9. doi:10.1139/b78-345

Gould, S. B., Garg, S. G., Martin, W. F. (2016): Bacterial Vesicle Secretion and the Evolutionary Origin of the Eukaryotic Endomembrane System. Trends Microbiol., 24 (7); pp 525-534. doi: 10.1016/j.tim.201603.005. Epub 2016 Mar 31

Kadereit, J. W., Körner, C., Kost, B., Sonnewald (2014): Strasburger Lehrbuch der Botanik, 37. A., Berlin/Heidelberg: Spektrum

Katscher, F. (2004): The history of the terms Prokaryotes and Eukaryotes. Protist, Vol. 155, pp 257–263, http://www.elsevier.de/protist

Keeble, F. (1910): Plant animals. A study in symbiosis. Cambridge: Univ. Press.

Klemmstein, W. (2017): Viren – ein Perspektivenwechsel. Unterricht Biologie 429,41.Jg., S.2-11

Kremer, B.P., Hauck, A. (1996): Algen in Symbiose – ein klassischer Fall für Zwei. Praxis der Naturwissenschaften 45 (1): 19-22

La Scola, B. et al. (2003): A giant virus in amoebae. Science 299 (5615), pp 2033

Lee, R. L. (2008):  Phycology. 4th ed..Cambridge (UK): Cambridge Univ. Press

Margulis, L. (1998): Symbiotic planet. A new look at evolution. Amherst (USA, Mass.): Sciencewriters

Margulis, L. ,Sagan, D. (2002): Aquiring genomes. A theory of the origin of species. Basic Books

Martin, W. et al. (2002): Evolutionary analysis of Arabidopsis, cyanobacterial, and chloroplast genomes reveals plastid phylogeny and thousands of cyanobacterial genes in the nucleus. PNAS 99 (19), pp 12246–12251 http://www.pnas.org/content/99/19/12246.full

Mayr, E. (1998): Two empires or three? PNAS 95 (17), pp 9720-9723, http://www.pnas.org/content/95/17/9720.full

McCutcheon, J.P., von Dohlen, C. D. (2011): An Interdependent Metabolic Patchwork in the Nested Symbiosis of Mealybugs. Current Biology 21 (16), pp1366-1372 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3169327/

Probst, W. (2002): Leben heißt zusammenleben. Unterricht Biologie 280, Jg.26, S. 4-14

Reisser, W. (1992): Algae in Symbiosis: Plants, Animals, Fungi, Viru­ses, Interactions Explored. Bri­stol:  Inter Press Limited

SAPP, J. (1994): Evolution by Association. New York/Oxford: Oxford University Press

Sapp, J. (2005): The Prokaryote-Eukaryote Dichotomy: Meanings and Mythology. Microbiol. Mol. Biol. Rev. 69 (2), pp. 292-305

Schüßler, A. (2011): The Geosiphon pyriformis symbiosis – fungus „eats“ cyanobacterium. http://www.geosiphon.de/geosiphon_home.html

Spring, A. et al. (2015): Complex archaea that bridge the gap between prokaryotes and eukaryotes. Nature 521, pp 173-179

Stanier, R. Y., van Niel, C.B. (1962): The concept of a bacterium. Arch. Mikrobiol. 42, pp 17–35

Turner, S. et al. (1999): Investigating deep phylogentic relationships among cyanobacteria and plastids by Small Subunit rRNA squence analysis. Journal of Eukaryotic Microbiology 4, pp 327-338

Wang, B. et al. (2010): Presence of three mycorrhizal genes in the common ancestor of land plants suggests a key role of mycorrhizas in the colonization of land by plants. New Phytol. 186(2), pp 514-525. http://onlinelibrary.wiley.com/doi/10.1111/j.1469-8137.2009.03137.x/epdf

Wegener-Parfrey, L. u.a. (2011). Estimating the timing of early eukaryotic diversification with multigene molecular clocks. PNAS 108, S. 13224-13226, http://www.pnas.org/content/108/33/13624.full

Weiss, M. C. et al. (2016): The physiology and habitat of the last universal common ancestor. Nature Microbiol. 16116. http://www.molevol.hhu.de/fileadmin/redaktion/Fakultaeten/Mathematisch-Naturwissenschaftliche_Fakultaet/Biologie/Institute/Molekulare_Evolution/Dokumente/Weiss_et_al_Nat_Microbiol_2016.pdf

Woese, C. R., Fox, G.E. (1977):  Phylogenetic structure of the prokaryotic domain: the primary kingdoms. PNAS 74(11), pp 5088–5090. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC432104/

Woese, C.R., Kandler, O., Wheelis, M.L. (1990): Towards a natural system of organisms: proposal for the domains Archaea, Bacteria, and Eucarya. PNAS 87(12), pp 4576-4579 https://www.ncbi.nlm.nih.gov/pubmed/2112744?dopt=Abstract

Zaremba-Niedzwiedzka,K. et al. (2017): Asgard Archaea illuminate the origin of eukaryotic cellular complexity. Nature 541 (Jan.2017), pp 353-358

https://www.arcella.nl/paulinella-chromatophora

http://www.geosiphon.de/geosiphon_home.html

https://microbewiki.kenyon.edu/index.php/Aphids_and_Buchnera

Kompartimentierung – aufgeteilt und doch verbunden (zu UB 340)

LINK-NAME

Grenzen und Ordnung

Ein Schulhof in der großen Pause: Kinder und Jugendliche scheinen ungeordnet durcheinander zu laufen. Einige bilden Gruppen, die stehen oder sich langsam bewegen, andere rennen kreuz und quer, wieder andere gehen gemächlich einzeln oder zu zweit, sitzen auf Banketten oder auf dem Boden. Schaut man dem Treiben länger zu, erkennt man Regeln und Strukturen. Es gibt die sich lebhaft unterhaltenden Gruppen älterer Schüler, ebenso Mädchenzirkel oder auch einen handgreiflichen Streit mit Zuschauern, Pärchen und Einzelgänger, jüngere und ältere Schüler und Schülerrinnen, die sich räumlich streng getrennt aufhalten. Man kann feststellen, dass es eine unsichtbare, aber allen bekannte Kompartimentierung des Schulhofes gibt, die dem bunten Treiben deutliche Grenzen setzt. Dabei kann man zwischen räumlichen (Klassenraum, bestimmter Bereich des Pausenhofes, Lehrerzimmer…) und nicht räumlichen Kompartimenten (Jahrgänge, Klicken) unterscheiden.

Betrachtet man das Innere  einer Zelle mit einem starken Lichtmikroskop, kann man auch scheinbar Ungeordnetes beobachten, nicht zuletzt die zitternde Bewegung kleiner Cytoplasmabestandteile, die Robert Brown 1827 als „Molekularbewegung“ erklärt hat. Die exakte Beobachtung durch immer besser auflösende bildgebende Verfahren, Färbungen und Markierungen  hat  jedoch gezeigt, dass die „Protoplasten“ ein in viele definierte Kompartimente aufgeteiltes  sehr komplexes System darstellen.

Immer wenn Wechselwirkungen und Austauschvorgänge eingeschränkt werden, entstehen abgegrenzte Bereiche, in denen mehr solche Austauschvorgänge stattfinden, als in den Bereichen außerhalb des Kompartiments. Die Einschränkungen können auf verschiedene Weise stattfinden. Neben physischen Barrieren können dies auch Bindungen sein, die freie Beweglichkeit verhindern: Man kann einen Hund am Streunen hindern, indem man ihn in einen Käfig sperrt, aber auch indem man ihn an eine Kette legt. Schließlich ist auch in der Biologie eine Kompartimentierung nicht nur räumlich zu denken.  Auf molekularer Ebene gibt es bestimmte Markierungen von Molekülen  oder Zellorganellen,  die Kontakte und Wechselwirkungen begrenzen, z.B. bei der selektiven Wirkung von Hormonen oder Neurotransmittern. Andere nichträumliche Kompartimente sind biologische Arten und die Unterscheidung zwischen „eigen“ und „fremd“.

Im Zustand maximaler Unordnung oder maximaler Entropie gibt es keine Barrieren. Demgegenüber bedeutet Kompartimentierung Ordnung, aber auch unterschiedlich intensive Wechselwirkungen, Hierarchien, Netze, Transportsysteme, Informationen, Informationsverarbeitung, Steuerung und Regelung. Solche Ordnung durch Abgrenzung ist charakteristisch für den gesamten Kosmos. Hier soll es jedoch um die Kompartimente des Lebens und der Lebewesen gehen. Leben wie wir es kennen, ist an einzelne Lebewesen, an Individuen gebunden, die von ihrer Umwelt deutlich abgegrenzt sind. Individuen sind die „Grundkompartimente“ des Lebendigen. Aber jeder Organismus ist auch in seinem Inneren in mehr oder weniger abgeschlossene Reaktionsräume unterteilt. Ebenso geht die Kompartimentierung auf Ebenen oberhalb des Individuums weiter.

In der Regel geht man von einer Komplexitätszunahme dieser Grundkompartimente im Laufe der Evolution aus. Prokaryoten sind weniger kompartimentiert als Eukaryoten, Einzeller weniger als Vielzeller usw. Gleichzeitig bedeutet diese Komplexitätszunahme immer auch eine Überschreitung von vorher bestehenden Grenzen: Eukaryoten sind ein Symbioseprodukt verschiedener Prokaryoten, Vielzeller sind Aggregationen von Zellen, zwischen denen mehr Stoff- und Informationsaustausch stattfindet, als zwischen Einzellern. Seltener ist auch eine Reduktion der Kompartimentierung im Laufe der Evolution möglich, z.B. bei manchen Parasiten.

„Vernetzung“ ist  nur möglich, wo es abgegrenzte Bereiche gibt, aber eben auch nur, wo diese Grenzen ausreichend offen sind. In Science-Fiction Entwürfen werden immer wieder Visionen entwickelt, in denen durch neuartige und umfassende Vernetzungen „Superintelligenzen“ entstehen (vgl. z. B.  Stanislaw Lems „Solaris“, Crightons „Die Beute“ oder Schätzings „Der Schwarm“. Aber auch in der realen Biologie gibt es Beispiele für „extended organisms“ wie Polypenstöcke, Termiten- und Ameisenkolonien und natürlich alle Formen von Symbiosen.

Lebensentstehung

Schon die Entstehung des Lebens aus unbelebten Vorstufen ist mit zusätzlicher Kompartimentierung verknüpft. Die meisten Vorstellungen von der Biogenese gehen  davon aus, dass diese Abgrenzung bereits durch Membranen stattgefunden hat, deren Grundaufbau den heutigen Biomembranen ähnelte. Andere Vorstellungen nehmen an, dass die Grenzbereiche selbst Ausgangspunkt der Lebensentstehung waren, z. B. dass sich Lebensmoleküle an mineralische Oberflächen festgeheftet haben und dadurch ein geordneter Ablauf von Stoffwechselreaktionen möglich wurde (vgl. z. B. Wächtershäuser 2000).

Das „Genkonzept“ von der Entwicklung des Lebendigen sieht in den Nucleinsäuren die „Startmoleküle“ des Lebens. Am Anfang standen RNA-Moleküle, die auch als Enzyme wirken können. Aus der Kooperation solcher Nucleinsäuren mit einer zweiten Molekülklasse, den Proteinen, soll sich dann LUCA (Last Universal Common Ancestor), der letzte gemeinsamen Vorfahr aller Lebewesen, entwickelt haben. Eine Suche nach den Genresten von Luca war jedoch bisher nicht sehr erfolgreich. Deshalb wurde die  Vorstellung entwickelt, dass es eine Lebensgemeinschaft von Urlebewesen gab, die zwar gegeneinander abgegrenzt waren, und dadurch jeweils einen eigenen Stoffwechsel hatten, aber ihre Gene teilten. Der bis heute weitverbreitete horizontale Genaustausch bei Prokaryoten wäre dann Rest dieses Urzustandes, eines Zustandes, indem es das Kompartiment „Art“ noch nicht gab (Whitfield 2004).

Die inneren Kompartimente der Eucyten

Charakteristisch für die Zellen der Eukaryoten ist, dass sie stark differenzierte innere Membransysteme ausgebildet haben. Die meisten dieser Membransysteme sind entweder unmittelbar miteinander verbunden oder sie stehen über den Austausch von Vesikeln miteinander in Verbindung, Membran umschlossenen Blasen, die sich von Membranen abschnüren oder sich mit Membranen vereinigen können . Zu diesen Membransystemen gehören

  • Kernhülle und Endoplasmatisches Retikulum (ER)
  • Golgiapparat (Dictyosomen)
  • Lysosomen
  • Vakuolen
  • Peroxisomen bzw. Microbodies
  • Plasmamembran (als Abschluss des Zellkörpers nach außen)

Nicht mit den übrigen Membransystemen in Verbindung stehende Kompartimente, die durch Doppelmembranen vom Zytoplasma abgegrenzt sind:

  • Plastiden
  • Mitochondrien

Eine Erklärung für die Sonderstellung dieser beiden Zellorganelle ergibt sich aus ihrer stammesgeschichtlichen Entstehung aus Endosymbionten. Während die Innenmembran der Mitochondrien stark aufgefaltet ist, enthalten die Plastiden insbesondere die grünen Chloroplasten in ihrem Inneren ein weiteres Membransystem aus sogenannten Thylakoiden, das durch Abschnürung aus der inneren Plastidenmembran entsteht, aber im Endzustand nicht mehr mit ihr verbunden ist. In als Grana bezeichneten Thylakoidstapeln sind die Pigmente und Enzyme der Photosynthese untergebracht. Plastiden sind über dünne, von beiden Membranen umgebene ?lasmakanale, den sogenannten Stromuli untereinander und auch mit Zellkern und Mitochondrien verbunden (Krupinska et al. 2010).

Das zweite Kompartimentierungssystem der Zellen besteht aus fädigen Proteinstrukturen: Aktinfilamenten, Mikrotubuli und intermediären Filamenten. Alle drei stellen Polymere aus kleineren Proteinmolekülen dar (Abb.  ). Sie bilden in der Zelle ein netzartiges Gerüst, das auch an der Zellmembran verankert ist. Aktinfilamente sind, oft in Verbindung mit dem Motorprotein Myosin, für Bewegungen der ganzen Zelle – besonders augenfällig bei Muskelzellen – sowie unterschiedliche Viskositätszustände des Cytoplasmas zuständig. Sie können äußere Gestaltänderungen der Zellen bewirken. Mikrotubuli bewegen Zellorganelle durch das Cytosol und Chromosomen bei der Mitose. Sie sind die bewegenden Strukturen von Cilien und Geiseln. Intermediäre Filamente sind sehr stabile seilartige Fadenstrukturen, die z.B. für die Stabilität des Zellkerns und der Nervenfasern und für die Zerreiß- und Zugfestigkeit von Epithelien verantwortlich sind.

Kompartimente bei Prokaryota

Das innere Membransystem der Eucyten ermöglicht die vielfältigen nebeneinander ablaufenden Reaktionen in der Zelle, in dem es Reaktionsräume, Speicherräume und Entsorgungsräume gegeneinander abgrenzt. In Procyten ist das innere Membransystem im Allgemeinen nicht so stark ausgeprägt, wenngleich auch die Zellen vieler Prokaryoten reichlich innere Membranen enthalten, die aus Einstülpungen der Zellmembran hervorgehen. Bei den Cyanobakterien tragen diese intracytoplasmatischen Membranen (ICM) die Pigmente und Enzyme für die Photosynthese, bei aeroben Bakterien sind die Enzyme für die Zellatmung an inneren Membranen verankert. Dafür, dass auch in Prokaryoten viele Stoffwechselreaktionen parallel stattfinden können, ohne sich gegenseitig zu behindern, sind neben Membranabgrenzungen Proteinstrukturen verantwortlich, die im Cytosol oder an der Zellmembran relativ fest verankert sind und Stoffwechselpartner an sich binden.

Es gibt Hinweise, dass die stärkere Kompartimentierung der Eucyten mit dem steigenden Sauerstoffgehalt der Atmosphäre zusammenhängt. Nach Acquisti et al. (2007) sind sauerstoffreiche Membranproteine bei einer reduzierenden Umgebung weniger stabil als sauerstoffarme. Gerade für Signal übertragende Transmembranproteine sind solche sauerstoffreichen Domänen aber charakteristisch. Mit der Erhöhung des atmosphärischen Sauerstoffgehaltes  konnte der Einbau solcher Proteine in Biomembranen zunehmen. Dies betrifft insbesondere die für die Signalübertragung durch Membranen nötigen Proteine mit relativ großen auf der Außenseite der Membran liegenden Rezeptorstrukturen.

Struktur und Funktion von Biomembranen

Schon bevor man Biomembranen im Elektronenmikroskop sichtbar machen konnte, ließen bestimmte chemische und physikalische Eigenschaften darauf schließen, dass Lipide ein wichtiger Bestandteil dieser Membranen seien. So beobachtete man, dass fettlösliche Substanzen von den Zellen viel leichter aufgenommen wurden, als wasserlösliche. Außerdem stellte man fest, dass Zellmembranlipide auf Wasser einmolekulare Schichten bilden, um die Zelle aber in einer Doppelschicht vorliegen müssen (Gorter, Grendel 1925 nach Helmich 2001/2005). Dass Zellmembranen auch für Wasser und anorganische Ionen in gewissem Umfang durchlässig sind, kann man sich nur erklären, wenn man annimmt, dass in die Lipiddoppelschicht auch Proteinmoleküle eingelagert sind. Eine der ersten Vorstellungen vom Aufbau der Membranen ging von einer Lipiddoppelschicht, vorwiegend aus Phospholipiden, aus, auf der Proteine aufgelagert sein sollten. In einer Weiterentwicklung dieses Modells gingen Singer und Nicolson 1972 davon aus, dass die Proteinmoleküle in der Lipidschicht wie Eisberge im Meer schwimmen. Einige Proteinmoleküle durchdringen die Lipidschicht (Tunnelproteine, Kanalproteine), sie können passiven oder aktiven Stofftransport und Signalübertragung durch die Membran vermitteln.

Die Vorstellung einer Membran als Flüssigkeitsfilm mit frei beweglichen Proteinen stimmt jedoch nicht ganz, die Proteine sind in ihrer Beweglichkeit durchaus eingeschränkt, dabei kann z. B. das Cytoskelett an der Membraninnenseite eine Rolle spielen, das Bereiche mit bestimmten Proteinmolekülen „einzäunt“. Gleichzeitig wirken bestimmte Proteine wie „Zaunpfosten“ (Fence-and-Picket-Modell, Suzuki 2005). Diese abgegrenzten Bezirke können aber von bestimmten Proteinen auch übersprungen werden (Abbot 2005). Eine andere Modellvorstellung geht davon aus, dass es in den Membranen floßartige Lipidschollen („lipid rafts“) gibt, die zähflüssiger sind und mit ihren Proteinen in dem Lipidfilm driften. Dabei können einzelne Proteine von diesen Flößen aufgenommen oder abgegeben werden (Simons, Ikonen 1997).

Der Aufbau der Lipiddoppelschicht ist für deren Flüssigkeit von Bedeutung. Ungesättigte Fettsäuren in den lipophilen Schwänzen der Phospholipide haben einen Knick, der die Moleküle am dichten Zusammenrücken hindert, und fördern dadurch die Fluidität. In die Lipiddoppelschichten eingebaute Cholesterinmoleküle vermindern bei mäßigen Temperaturen die Membranflüssigkeit, weil sie die Beweglichkeit der Phospholipide einschränken. Bei niedriger Temperatur stören sie jedoch die regelmäßige, dichte Packung und verhindern dadurch, dass die Membranen „kristallisieren“.

Die wichtigsten Funktionen der Membranproteine sind:

  • Transport (passiv, aktiv)
  • Enzymaktivität
  • Signalübertragung
  • Verbindung von Zellen
  • Zellerkennung
  • Verankerung am Cytoskelett und an der extrazellulären Matrix

Neben Proteinen sind für die Zellerkennung auch Membran gebundene Kohlenhydrate von großer Bedeutung (Glykoproteine und Glykolipide).

Vom Einzeller zum Vielzeller

Auch Vielzeller entstehen normalerweise aus einer Zelle. Nach den Mitosen bleiben die Zellen jedoch verbunden und geben damit einen Teil ihrer Selbständigkeit auf. Während sie zunächst noch weitgehend identisch und damit „totipotent“ sind, differenzieren sie sich im Laufe der weiteren Entwicklung und damit können nur noch bestimmte Zelltypen aus ihnen hervorgehen („multipotent“). Schließlich sind sie überhaupt nicht mehr teilungsfähig. Damit ist der natürliche Tod der Zellen der Vielzeller vorprogrammiert.

Dieser Übergang von Einzellern zu Vielzellern , der vor etwa einer Milliarde Jahre stattfand, konnte nur funktionieren, wenn weitere Probleme gelöst wurden. Bei Einzellern läuft die natürliche Selektion zwischen den einzelnen Zellen ab. Sie sind die Einheiten der Selektion. Bei Vielzellern darf es keine Selektion zwischen den Körperzellen geben. Das kann nur gelingen, wenn es einen Erkennungsmechanismus von „eigen“ und „fremd“ gibt. Ein solches Selbsterkennungssystem kann als der Anfang eines Immunsystems aufgefasst werden.

Dieses Selbsterkennungssystem ist bei „niederen“ Vielzellern noch nicht sehr ausgeprägt. Deshalb funktioniert z.B. das Propfen bei Pflanzen – sogar zwischen Individuen verschiedenen Arten – meist sehr gut. Auch bei koloniebildenden Tieren ist das Erkennungssystem im Allgemeinen so, dass es zwischen den Einzelindividuen einer Kolonie nicht unterscheidet. Relativ gut untersucht sind die Verhältnisse bei dem koloniebildenden Manteltier Botryllus schlosseri. Das genetisch verankerte „Selbsterkennungssystem“ dieser Seescheide erlaubt nur die Fusion von genetisch nahe verwandten Kolonien. Von manchen Forschern wird daraus gefolgert, dass der ursprüngliche  Sinn des Immunsystems die Verhinderung solcher Zellinvasionen war, die eine Konkurrenz unterhalb des Individuums bewirken würden. Evolutionsbiologisch gesehen könnte man sagen, das Selbsterkennungssystem sorgt bei Vielzellern dafür, dass  der Gesamtorganismus und nicht einzelne Zellen oder Zelllinien die Einheit der Evolution sind.

Diese Sicht  könnte auch ein neues Licht auf das Wirkungsgefüge von Krebsbildungen werfen. So weiß man heute, dass spezielle Krebsstammzellen für die Krebsbildung und die Metastasenbildung entscheidend sind (Clarke, Becker 2007). Weissmann (Ainssworth 2006) sieht gewisse Parallelen zwischen Krebszellen und den Gewinner-Stammzellen von Botryllus. Er meint, wenn man die Gene der Botryllus-Übernahme-Zellen entschlüsseln würde, würde man wahrscheinlich Ähnlichkeiten bei den Genen finden, die Krebszellen ihre tödliche Entwicklung ermöglichen.  Aus dieser Sichtweise könnte man Krebs als ein Relikt bzw. einen Atavismus aus der Zeit des Übergangs von Einzellern zu Vielzellern ansehen.

Zellen und Gewebe

Die Plasmamembran ist die äußere Grenze einer Zelle, aber die meisten Zellen bilden weitere Strukturen aus, die außerhalb der Plasmamembran liegen. Pflanzenzellen z. B. sind von einer festen Zellwand aus Zellulose umgeben. Bei Pilzen besteht diese Zellwand aus Chitin. Die Zellen vielzelliger Tiere besitzen zwar keine den Pflanzenzellen vergleichbare Zellwände, sie verfügen aber über eine hoch entwickelte extrazelluläre Matrix, die vorwiegend aus von der Zelle abgesonderten Proteinfasern (Kollagene, elastische Fasern) und einer Grundsubstanz aus Glykosaminglykanen, Proteoglykanen und  Adhäsionsproteinen (Glykoproteinen) besteht. Diese extrazelluläre Matrix ist mit Proteinen der Zellmembran verbunden (Integrine) und über diese in die Membran integrierten Proteinmoleküle ist auch ein Signalaustausch von der extrazellulären Matrix in das Cytosol der Zelle hinein möglich.

In einem Verband aus vielen Zellen (Gewebe) kann die extrazelluläre Matrix koordinierende Signale übertragen. Dies spielt eine wichtige Rolle bei der embryonalen Gewebe- und Organentwicklung, aber auch bei der Tumorbildung. Dabei spielt die Basallamina als besondere Ausbildung der Extrazellulären Matrix, die Zellen und Epithelien von umgebenden Bindegeweben trennt, eine wichtige Rolle.

In vielzelligen Tieren und Pflanzen sind viele Einzelzellen zu funktionsfähigen Geweben und Organen verbunden. Durch spezielle Plasmaverbindungen können nicht nur kleine Moleküle, Wasser und Ionen sondern auch Proteine und RNA-Moleküle ausgetauscht werden. Für den Transport dieser größeren Moleküle sind Cytosklelettfasern verantwortlich. Bei Pflanzen nennt man diese Verbindungen Plasmodesmen. Bei Tieren gibt es verschiedenen Typen von Zellverbindungen. Besonders häufig sind solche Zellverbindungen in Epithelgeweben, welche die inneren und äußeren Oberflächen eines Tierkörpers auskleiden. Gap Junctions (Kommunikationskontakte) bilden winzige Cytoplasmakanäle zwischen benachbarten Tierzellen. Durch diese Kanäle können Salze, Zucker, Aminosäuren und andere kleine Moleküle bis zu einem Molekulargewicht von 2.000 diffundieren. Weitere Zellverbindungen sind Tight Junctions oder Verschlusskontakte, die Epithelzellen gürtelartig verbinden und verhindern, dass extrazelluläre Flüssigkeit durch ein Epithel hindurchsickert. Im Gehirn bilden die dichten Tight Junctions  zwischen den Endothelzellen der Blutkapillaren die Blut-Hirn-Schranke. Desmosomen und Adhärenz-kontakte („Haftkontakte“) wirken nietenartig und verbinden verschiedene Zellen zu einer Gewebeschicht.

Von Geweben zu Organen

Gewebe setzen sich aus einheitlichen Zellen zusammen, verschiedene Gewebe sind im Tierkörper zu Organen zusammengefasst. Die verschiedenen Organe stehen zwar in enger Wechselwirkung miteinander, durch die  starke Abgrenzung dieser Einheiten sind aber verschiedene Funktionen wie Verdauung, Atmung, Blutkreislauf oder Exkretion erst möglich. Solche Organe bilden als Ganzes relativ abgeschlossene Systeme im Organismus und erst dadurch wird z. B. die Organtransplantation möglich.

Größere Organismen benötigen zum Stofftransport spezielle Transportsysteme. Bei Pflanzen handelt es sich dabei überwiegend um Durchflusssysteme, bei Tieren um Kreislaufsysteme. Auch diese Systeme müssen vom übrigen Körpergewebe mehr oder weniger abgeschlossen sein, um einen wirkungsvollen Stofftransport zu ermöglichen. Aber auch offene Kreislaufsysteme, wie es z. B. für die große Gruppe der Insekten charakteristisch sind, können sehr effektiv arbeiten.

Ein besonders wichtiges, stark kompartimentiertes Stoffwechselorgan des menschlichen Körpers und des Körpers der Wirbeltiere ist die Leber. Beim Menschen liegt sie im oberen Teil der Bauchhöhle unmittelbar unter dem Zwerchfell Sie ist mit einer Masse von rund 2 Kilogramm die größte Körperdrüse. Pro Minute wird sie  von einem Liter Blut durchflossen.

Die diffizile Kompartimentierung der Leber gestattet, dass mehr als 500 verschiedene Stoffwechselvorgänge hier stattfinden können. Zunächst sorgen zwei Zufluss- und zwei Abflusssysteme dafür, dass sich in den Hepatocyten die richtigen Konzentrationsgefälle einstellen können, die für die Umbaureaktionen Voraussetzung sind:

  • Die Pfortader stellt die Verbindung zum Darm her und sorgt dafür, dass die vom Darm resorbierten Nährstoffe zur Leber gelangen.
  • Über die Leberarterie werden den Hepatocyten Sauerstoff und Signalstoffe, aber auch Aufbaustoffe zugeführt.
  • Über die Lebervene werden Abfallstoffe zur Ausscheidung durch die Niere und CO2 zu Abgabe in der Lunge abtransportiert.
  • Auch mit Gallenflüssigkeit werden Abfallstoffe über die Gallengänge und die Gallenblase zum Dünndarm abtransportiert., z.B. die Abbauprodukte des Häms, die gelben Bilirubine.

Die Leber besteht aus einem größeren rechten und einem kleineren linken Lappen, die sich jeweils in Tausende Leberläppchen unterteilen. In der Mitte jedes dieser Läppchen von etwa 1 mm Durchmesser liegt eine kleine Zentralvene, die das Blut zur Lebervene leitet. Zwischen den Läppchen liegen Bindegewebsfelder, durch die sich je ein feiner Ast der Leberschlagader und der Pfortader zeiht, deren Blut durch das Leberläppchen zur Sammelvene sickert, sowie ein Gallenkanälchen, das im Läppchen produzierte Gallenflüssigkeit in zum Blutstrom entgegen gesetzter Richtung zur Gallenblase abtransportiert. Das kleinste Kompartiment des Organs Leber ist die Leberzelle (Hepatozyt). Die Leberzellen sind lamellenartig angeordnet und lassen Kanälchen frei, durch die das Blut sickern kann (Sinusoide).

In den Leberzellen werden viele Eiweißmoleküle aufgebaut, außerdem werden Giftstoffe und Stoffe, die aus dem Körper befördert werden, sollen für die Ausscheidung vorbereitet. Die Glucose aus der Verdauung der Kohlenhydrate kann in den polymeren und damit osmotisch unwirksamen Speicherstoff Glykogen umgewandelt werden, der zum Teil in der Leber selbst gespeichert werden kann. Verschiedene Lipide werden in der Leber aus ihren Bestandteilen aufgebaut und umgebaut, u. a. das Cholesterin.

Bei dem Abbau und Umbau von stickstoffhaltigen Proteinen wird mehr Stickstoff frei als für den neuen Eiweißaufbau benötigt wird. Dieser überschüssige Stickstoff wird in der Leber in Harnstoff umgewandelt, ein Sekretionsprodukt, das an die Lebervene abgegeben, von den Nieren herausgefiltert und mit dem Urin ausgeschieden wird. Auch die Gallenflüssigkeit wird in der Leber produziert und durch besondere Gallengänge zur Gallenblase befördert, von der aus sie über den Gallengang in den Dünndarm ausfließt. Sie besteht aus Gallensäuren bzw.-salzen, Lipiden, Cholesterin und Farbstoffen. Diese Farbstoffe sind Abbauprodukte des Hämoglobins, die sogenannten Bilirubine. Sie sind sowohl für die Gelbfärbung der Gallenflüssigkeit und des Urins als auch für die Braunfärbung des Stuhls verantwortlich. Die Gallensäuren sind Abbauprodukte des Cholesterins. Sie helfen als Emulgatoren bei der Fettverdauung im Dünndarm. Wird der Abfluss der Gallenflüssigkeit verhindert – z.B. durch Gallensteine oder eine Leberentzündung – kann der Bilirubinüberschuss im Blut eine Gelbsucht bewirken.

Durch Schädigungen, wie sie z. B. durch reichlichen Alkoholkonsum hervorgerufen werden können, kann es zur sogenannten Leberzirrhose kommen. Dabei handelt es sich um eine teilweise Zerstörung der Leberzellen. Abgestorbene Hepatozyten werden durch Bindegewebe ersetzt, welches das Organ durchzieht und noch funktionsfähige Zellen isoliert. Diese isolierten Inseln sind von den Zufuhr- und Abfuhrsystemen mehr oder weniger abgetrennt und können deshalb die vielseitigen Stoffwechselaufgaben nicht mehr erfüllen. Dadurch, dass weniger Pfortaderblut aufgenommen werden kann, kommt zu einem Rückstau. Durch die Gefäßwände wird Wasser in die Leibeshöhle filtriert. Der Abtransport der Gallenfarbstoffe über die Gallenblase wird behindert, wodurch es zu gelbsuchtartigen Zuständen kommt usw.

Kompartimente oberhalb des Individuums

Auch oberhalb der Organisationsebenen Zelle, Gewebe, Organ, Organismus ist die Biosphäre in viele Kompartimente gegliedert, wie Populationen, Arten, Biozönosen, Ökosysteme, Biome, Reviere, Areale usw. Dabei wird hier noch deutlicher, dass es neben räumlich definierbaren Kompartimenten auch Kompartimente gibt, die sich aus den besonderen Eigenschaften ihrer Bestandteile ergeben: Populationen und Arten sind durch den gemeinsamen Genpool und die Fähigkeit zum Genaustausch (Sexualität) gekennzeichnet. Räumlich kann sich eine Population aber über den ganzen Erdball erstrecken. Reviere und Areale können sich räumlich vielfach überlappen und überdecken. Derselbe geographische Raum kann z.B. viele Reviere verschiedener Arten enthalten. Ein geographischer Raum mit vielen gemeinsamen Artarealen wird als Floren- oder Faunenregion bezeichnet.

Besonders einschneidend ist die Grenze, die einen Organismus bzw. ein Individuum gegen seine Umwelt abgrenzt. Kreislaufsysteme überschreiten diese Außengrenze ebenso wenig, wie Zellen mit dem speziellen genetischen Programm, das nur für dieses Individuum gilt.  Ein  spezielles Signalsystem sorgt für  die Koordination aller Zellen, Gewebe und Organe innerhalb des Individuums, nur wenig davon dringt  nach außen. Innerhalb des Organismus wird durch aufeinander abgestimmte Stoffwechselvorgänge ein stoffliches Gleichgewicht aufrecht erhalten, das man mit einem eigenen Begriff „Homöostase“ kennzeichnet und das die Grenzen des Organismus nicht überschreitet.  Wenn die genannten individuellen Schranken überschritten werden, nehmen wir das als etwas Besonderes wahr: Bei Säugetieren ist der Kreislauf des Muttertieres mit dem Embryo verbunden, bei Kolonie  bildenden oder Staaten bildenden Tieren  sind die Individualgrenzen ebenfalls mehr oder weniger stark aufgelöst.

Auch der Sexualvorgang ist eine besondere Grenzüberschreitung, durch die gleichzeitig ein höheres Kompartiment gebildet wird, die Gemeinschaft aller Individuen, zwischen denen Gene ausgetauscht werden können, die Art. Die individuellen genetischen Programme machen die innerartliche Evolution möglich, die Genpools  der Populationen und Arten sind die Grundlage für die Evolution oberhalb des Artniveaus.

Die Individuen, die zu einer Art gehören, haben in der Regel ähnliche Ansprüche an ihre Umwelt. Im Bezug auf bestimmte Umweltfaktoren spricht man vom „Toleranzbereich“ der Art. Diese verschiedenen Toleranzbereiche beschränken die Verbreitung der Art. Die räumliche Verbreitung, das Artareal, wird aber auch durch erdgeschichtliche Entwicklungen bestimmt. Dazu gehören tektonischen Vorgänge, insbesondere Verschiebungen der Kontinentalplatten, Gebirgsbildungen und Überflutungen (Meerestransgressionen), Klimaeinbrüche und in der Folge auch Konkurrenzbeziehungen zu Arten, zu denen vorher kein Kontakt bestand.

Arten stehen in vielen Wechselbeziehungen mit der Umwelt und mit anderen Arten. Vorwiegend durch geografische und geologische Gegebenheiten werden diese Wechselbeziehungen aber beschränkt und gelenkt. In bestimmten Gebieten und zwischen den darin vorkommenden Arten sind die Wechselbeziehungen vielfältiger als nach außen. Die Folge ist, dass sich die Biosphäre abgestuft in viele Teilräume untergliedern lässt, die allgemein als Ökosysteme bezeichnet werden. Ein solches Ökosystem kann ein kleines Feldgehölz, eine Weidetümpel oder eine Blockhalde an einem Bergsturz sein, aber auch der Amazonas-Regenwald, das Kongobecken,  die circumpolare Tundra oder ein Ozean. Großökosysteme, die sich in viele Teilsysteme untergliedern,  werden auch Biome genannt (Whittaker 1975, Walter 1976, UB 299). Sind sie vorwiegend von den Klimazonen der Erde bestimmt, nennt man sie Zonobiome, in den verschiedenen Höhenstufen der Gebirge unterscheidet man Orobiome, besondere Bodenbedingungen führen zu speziellen Pedobiomen.

Kleine Ökosysteme, die eine Landschaft untergliedern, werden oft auch als „Biotope“ bezeichnet,  obwohl dieser Begriff in der ökologischen Terminologie ursprünglich nur den Lebensraum ohne die Lebensgemeinschaft bezeichnet. Der Begriffswandel lässt sich aus der Naturschutzpraxis erklären: Wenn man ein bestimmtes Ökosystem durch Naturschutzmaßnahmen einrichten will, muss man zunächst die standörtlichen Bedingungen schaffen. So „legt man einen Biotop an“ –  z.B. einen Gartenteich oder eine Natursteinmauer –, der dann durch Bepflanzung oder natürliche Ansiedlung von Arten zum Kleinökosystem wird.  Oft wird mit dem Begriff „Biotop“ auch gleich ein bestimmter ökologischer Wert verbunden.  „Biotopkartierungen“ in der Kulturlandschaft  erfassen in der Regel nur besondere, „ökologisch wertvolle“, „naturnahe“ Landschaftselemente.

Eine andere Kompartimentierung der Landschaft ergibt sich aus den Revieren verschiedener Tierarten. Die Grenzen werden hier vorwiegend durch das agonistische Verhalten der Revierbesitzer errichtet. Aber auch spezielle akustische, optische oder chemische Signale wirken begrenzend.

Grenzen in Naturlandschaften sind oft nicht sehr scharf, sondern durch Übergänge gekennzeichnet, die man mit einem eigenen Begriff erfasst: Ökotone. So ist es oft nicht möglich, die Grenzen zwischen zwei Ökosystemen (oder zwei Pflanzengemeinschaften) genau festzulegen. In Kulturlandschaften sind die Grenzen jedoch in der Regel scharf, da sie durch menschliche Aktivitäten bedingt sind. Sehr gut lässt sich dies von Flugzeug aus oder an den Bildern von Google Earth erkennen. So ist es auch kein Wunder, dass die durch die „Pflanzenoziologie“ gekennzeichneten Pflanzengesellschaften vor allem für Mitteleuropa zu einem sehr differenzierten System ausgebaut wurden. Allerdings wird sich „ein mehr Außenstehender … die Frage aufwerfen, ob die Katalogisierung aller, auch der kleinsten Vegetationseinheiten Mitteleuropas die dafür aufgewendete Mühe lohnt. Dies wäre vom wissenschaftlichen Standpunkt aus durchaus zu bejahen, wenn die derzeitigen Pflanzengesellschaften ähnlich unveränderliche Einheiten wären wie die taxonomischen, aber das sind sie nicht“ (Walter 1973, S.115).

In den heutigen Kulturlandschaften ist die „Überkompartimentierung“ ebenso ein Naturschutzproblem wie die „Unterkompartimentierung“ durch riesige Monokulturen. Von einem durch Ackerflächen umschlossenen Kleinkompartiment „Feldgehölz“ aus ist es z. B. für viele Tiere schwierig, in andere, ähnliche Biotope zu gelangen. Feldhecken begrenzen Kulturflächen, sie sind aber auch Verbindungswege zwischen Ökosystemen. Besonders stark wirkende Grenzen sind Verkehrswege, weshalb man an einigen wenigen Stellen sinnvoller Weise so genannte Biotopbrücken über Autobahnen gebaut hat, um deren Landschaft zerschneidende Wirkung zu mindern.

Das „Basiskonzept „Kompartimentierung“ im Unterricht

„Lebende Systeme zeigen abgegrenzte Reaktionsräume. Dieses Basiskonzept hilft z. B. beim Verständnis der Zellorganellen, der Organe und der Biosphäre“. So steht es in der „Einheitlichen Prüfungsanforderung in der Abiturprüfung Biologie“ nach dem Beschluss der KMK-Konferenz vom 05.02.2004. In Lehrbüchern tritt der Begriff jedoch meistens nur im Zusammenhang mit der „Zellkompartimentierung“ auf, seltener auch im Zusammenhang mit der „Kompartimentierung des Organismus“ (z.B. Biesalski, Grimm 2002).

Damit wird die Intention der „Basiskonzepte“ oder „Erschließungsfelder“ nicht erfüllt. Denn dadurch, dass Basiskonzepte biologische Phänomene umreißen, die in der Regel durch viele, wenn nicht alle Organisationsebenen des Lebendigen hindurchreichen, sollen sie biologische Fachkenntnisse strukturieren und dadurch fassbarer und merkbarer machen.

Wie könnte gerade das Basiskonzept „Kompartimentierung“ helfen, Lernen zu verbessern? Wie könnte es kumulatives und outputorientiertes Lernen fördern?

Die wichtigste Gemeinsamkeit der Kompartimente auf allen biologischen Organisationsebenen ist die selektive Abgrenzung. Dies betrifft den Austausch von Stoffen, von Energie und von Information. Diese Einschränkungen können aber – ähnlich wie eine Zollstation und eine Grenzkontrolle an einer Ländergrenze – zur Steuerung und  Regelung, auch zur gezielten Signalweitergabe genutzt werden.

Damit hat man ein strukturierendes Prinzip für viele biologische Sachverhalte gewonnen, das so unterschiedliche Inhalte, wie „Stoffkreisläufe in Ökosystemen“ und „Intrazelluläre Regelprozesse“ oder „Biomembranen“ und „Vernetzung von Biotopen“ in Beziehung bringen kann. Gleichzeitig kann man neue Inhalte mit diesem Prinzip aufschließen, erklären, besser verstehen und einordnen (Outputorientierung).

Kompartiment Grenze für Abgrenzung durch Grenzüberwindung durch
Membranumschlossenes Zellkompartiment Moleküle, Ionen Lipiddoppelschicht Tunnel- und Carrierproteine, signalübertragende Proteine, lipophile Moleküle
Organ Blut, Lymphe u.a. Körperflüssigkeiten Epithelien Blutgefäße, Lymphe
Organismus Stoffe, Energie, Signale Haut, Epithelien Verdauungssystem, Sinnesorgane, Kommunikationssysteme
Art, Population Gene Kreuzungsbarrieren, Inkompatibilitätsfaktoren Migration, Hybridisierung, horizontaler Gentransfer
Areal (Verbreitungsgebiet) Individuen einer Art (oder einer höheren Verwandtschaftsgruppe) Geographische und geologische Barrieren, Konkurrenzdruck anderer Arten Verschleppung von Individuen durch natürliche oder vom Menschen verursachte Vorgänge
Revier Individuen Agonistisches Verhalten; akustische, optische, chemische Signale Revierkämpfe
Ökosystem Individuen, Stoffe, Energie Geografische Barrieren Tierwanderungen, Transport von Vermehrungseinheiten, Stofftransport über Gewässer, Wettergeschehen wie Luftströmungen
Biom Ökosysteme,  Arten/Populationen, Individuen Klimagrenzen, geographische Barrieren Klimaänderungen, Erosion, Tektonik

Wenn man erkannt hat, dass Grenzen auch etwas mit Austausch zu tun haben, versteht man das in lebenden Systemen  immer wiederkehrende Prinzip der Oberflächenvergrößerung zur Förderung von Austauschprozessen besser. Auch der modulartige Aufbau von Lebensstrukturen kann mit dem Prinzip der Kompartimentierung in Verbindung gebracht werden (Grundorgane der Pflanze, die sich immer wiederholen; Metamerie bei Tieren). So kann dieses Basiskonzept, wie auch andere, helfen, über Querverbindungen  vernetztes Lernen zu erleichtern und doch bei dieser Vernetzung Chaos zu vermeiden. „Alles hängt mit allem zusammen“, ist zwar eine korrekte Beschreibung der Welt, verhilft aber kaum zu einem besseren Weltverständnis.

In diesem Artikel sind wir von den kleinsten Kompartimenten des Lebendigen in den Zellen ausgegangen und haben uns dann über Organe und Organismen zu den Überindividuellen Kompartimenten der Biosphäre emporgearbeitet. Dies muss aber nicht der Weg sein, der sich auch für den Schulunterricht anbietet. Die frühe Behandlung cytologischer und sogar molekularbiologischer Inhalte  führt zwangsläufig dazu, dass die „organismische Biologie“ an Bedeutung verliert. Gerade in den Klassenstufen 5 bis 7 hat die unmittelbare Begegnung mit Tier- und Pflanzenarten, möglichst in ihren natürlichen Lebensräumen, einen besonders animierenden und prägenden Einfluss. Dies ist nämlich der Zeitabschnitt, in dem sich bei mangelnder Förderung das Interesse an der „grünen Biologie“ allmählich verliert. Ziel einer ausgewogenen Allgemeinbildung sollte es aber sein, Interesse und Kenntnis der „Vielfalt des Lebendigen“ in den makroskopischen Dimensionen zu erhalten und zu fördern. Deshalb wäre es durchaus sinnvoll, von Individuen und Arten ausgehend in den unteren Klassen der SI einen deutlichen Schwerpunkt auf Lebensräume und Ökosysteme zu legen und diese „Landschaftsbiologie“ auch mit Unterrichtsabschnitten im Gelände zu vermitteln. Das würde z. B. bedeuten, dass man wichtige heimatliche Lebensräume wie Fließgewässer und Teich, Hecke und Wald, Wiese und Weide aus eigener Anschauung kennen lernt und dass man möglichkeiten der landschaftsgestaltung im eigenen Schulgarten erfährt.. Cytologische und molekularbiologische Inhalte sollten schwerpunktmäßig auf die letzten Klassenstufen verlegt werden. Die in der Makrobiologie gewonnen Vorstellungen  zur Kompartimentierung könnten dann als Modelle für mikroskopische und submikroskopische Vorstellungen dienen. Begriffe wie „Tunnelprotein“, „Fence-and-Picket-Modell“ oder „aktiver und passiver Transport“ bauen  ja ohnehin makroskopischen Vorstellungen auf.

Literatur und URLs

Abbot, A.: Cell biology: Hopping fences. Nature 433, p.680-683, 2005

Acquisti, C., Kleffe, J., Collins, S.: Oxygen content of transmembrane proteins over macroevolutionary time scales. Nature 440, p.47-52, 2007

Ainsworth, C.: Cell biology: The Story of I. Nature 440, p. 730-733, 2006

Alberts, B., Bray, D. Lewis, J., Raff, M., Roberts, K., Watson, J.D.: Lehrbuch der molekularen Zellbiologie. Wiley-VCH, 2001

Archibald, J.: One plus one equals one- symbiosis and the evolution of complex life. Oxford University Press 2014

Biesalski, H.K., Grimm, P.: Taschenatlas der Ernährung. Thieme, Stuttgart, 2.A., 2002

Brenner, K.-U.: Der Körper des Menschen. Weltbild, Augsburg 1990

Campbell, N.A., Reece, J.B. (Hrsg. d. dtsch. Ausg. H. Markl): Biologie. Spektrum, Heidelberg/Berlin, 6. A. 2003

Clarke, M.F., Becker, M.W.: Krebs – sind Stammzellen schuld? Spektrum der Wissenschaft ,  S. 56-63, Januar 2007

Einheitlichen Prüfungsanforderung in der Abiturprüfung Biologie. Beschluss der Kultusministerkonferenz vom 01.12.1989 i. d. F. vom 05.02. 2004

Faller, A.,  Schünke, M.: Der Körper des Menschen. Thieme, Stuttgart 1999

Frey, W., Lösch, R.: Lehrbuch der Geobotanik. Elsevier, München 2.A. 2004

Graf, D.: Nano-Katastrophen (Michael Crighton: Die Beute). UB Kompakt 312 (Jg. 30), S.25-28, 2006

Heinrich, D., Hergt, M.: dtv-Atlas zur Ökologie. dtv, München, 3.A. 1994

Helmich, U. :Biomembranen. http://www.u-helmich.de/bio/cyt/reihe03/membran01.html , 2001/2005

Höffeler, F.: Bildatlas Cytologie. Harri Deutsch, Frankfurt a. M. 2003

Kattmann, U. (Hrsg.): Bioplanet Erde. UB 299 (Jg. 28), 2004

Krupinska, K., Desel, C., Mulisch: Stromuli – Plastidenbrücken im Netzwerk der Zelle. In: Biologie in unserer Zeit 40/3: S. 162–17, 2010,

Pott, R.: Allgemeine Geobotanik: Biogeosysteme und Biodiversität. Springer, Berlin 2005

Probst, W., Schuchardt, P. (Hrsg.): Biologie Ausgabe B. Duden-Paetec, Berlin/Frankfurt a.M. 2007

Probst, W. (Hrsg.): Miteinander- Beziehungennund Wechselwirkungen. UB 280 (Jg. 26), 2002

Probst, W. (Hrsg.): Ameisen und Termiten. UB 306 (Jg. 29), 2006

Rottmann, S.: Hier geht´s an die Nieren. UB 313 (Jg. 30), S.30-37, 2006

Ruppert, W. (Hrsg.): Struktur und Funktion. UB 232 (Jg.22), 1998

Simons, K., Ikonen, E. : Functional rafts in cell membranes. Nature 387, p. 569–572. 1997.

Suzuki, K. et al.: Rapid Hop Diffusion of a G-Protein-Coupled Receptor in the Plasma Membrane as Revealed by Single-Molecule Techniques. Biophysical Journal 88:3659-3680 (2005) http://www.biophysj.org/cgi/content/full/88/5/3659#FIG1

Wächtershäuser, G.: Evolution of the first metabolic cycles. Proceedings of the National Academy of Sciences, Vol. 87, Jan. 1990, p. 200–204

Wächtershäuser, G.: Origin of Life: Life as we don’t know it. Science 289 (5483), 25. August 2000, S. 1307–1308

Walter, H.: Die ökologischen Systeme der Kontinente (Biogeosphäre). G. Fischer, Stuttgart 1976

Walter, H.: Allgemeine Geobotanik. Ulmer, Stuttgart 1973

Whitfield, J.: Born in a watery commune. Nature 427, 19.  Febr. 2004, p.674-676

Whittaker, R.H.: Communities an ecosystems. Macmillan, London/New York, 2.ed. 1975

Extrazelluläre Matrix:

http://www.unifr.ch/anatomy/elearningfree/allemand/bindegewebe/sfa/d-sfa.php

http://www.uni-tuebingen.de/uni/kxm/Courses/documents/GV0607ECM.pdf

Genzyme Deutschland: Einführung in das Krankheitsbild des Morbus Pompe. Neu-Isenburg, 2008. http://www.genzyme.de/thera/pompe/de_p_tp_thera-pompe.asp

Arealkunde

http://weinmannia.botanik.uni-hohenheim.de/Studienunterlagen_Dalitz/PDF/Arealkunde.pdf

Biotopbrücken

http://www.umweltbundesamt.at/umweltschutz/naturschutz/lebensraumschutz/vernetzung/lrv_empfehlungen/

Botanische Exkursionen

33  Jahre nach der 2. Auflage der „Botanischen Exkursionen im Winterhalbjahr“ und 27 Jahre nach der 2. Auflage der „Botanischen Exkursionen im Sommerhalbjahr“ hat der Springer-Verlag von beiden Büchern einen Nachdruck herausgegeben.

Auf einer Exkursion am 3^.5.1980 an der Rodau, PH Flensburg

Auf einer Exkursion am 30.5.1980 an der Rodau, PH Flensburg

Eine Besonderheit unseres Exkursionskonzeptes in den 1980er Jahren war eine Hinwendung von der „Demonstrationsexkursion“ zur „Arbeitsexkursion“. Der Exkursionsleiter oder die Exkursionsleiterin sollten nicht die einzigen Agierenden in einer Schar von ZuhörerInnen sein, vielmehr sollten sich die ExkursionsteilnehmerInnen selbst aktiv am Geschehen beteiligen. Dies war der Grund dafür, dass wir bei jeder Exkursion Arbeitsaufgaben für die Teilnehmer angegeben haben. Außerdem sollten die unter dem Titel angeführten thematischen Schwerpunkte auf Möglichkeiten hinweisen, mit dem speziellen Exkursionsthema über die Formenkenntnis hinaus Inhalte aus der Allgemeinen Biologie zu vermitteln.

Laubgehölze im Winter, Ausschnitt aus den Merk- und Bestimmungstabellen in den "Exkursionen im Witerhalbjahr"

Laubgehölze im Winter, Ausschnitt aus den Merk- und Bestimmungstabellen in den „Exkursionen im Winterhalbjahr“

Wichtiger Bestandteil der Exkursionsbücher waren  Merk- und Bestimmungstabellen, die allerdings kein Ersatz für einen wissenschaftlichen Bestimmungsschlüssel sein sollen. Sie sind in erster Linie als Gedächtnisstütze im Gelände und als Hilfe bei der Vorbereitung gedacht, da sie – übersichtlich angeordnet – die nicht mikroskopischen Unterscheidungsmerkmale zusammenstellen. In dieser Funktion haben sie sich im Unterricht vielfach bewährt.

Eindruck von einer Botanischen Exkursion um 1965 (aus: Botanische Exkursionen im Winterhalbjahr)

Eindruck von einer Botanischen Exkursion um 1965 (aus: Botanische Exkursionen im Winterhalbjahr)

Ich bin auch heute noch der Meinung, dass biologische Formenkenntnis einen wichtigen Teil der Allgemeinbildung ausmacht und deshalb auch unverzichtbare Unterrichtsstoff in den allgemein bildenden Schulen sein sollte. Dies wiederum setzt voraus, dass auch Biologielehrerinnen und -lehrer eine entsprechende Schulung erhalten sollten – auch wenn der Umfang der Life Sciences sich in den 40 Jahren, seitdem die Bücher konzipiert wurden, sehr stark vergrößert hat. Die „Botanischen Exkursionen“ können dazu vielleicht auch heute noch einen wichtigen Beitrag leisten und ich freue mich deshalb, dass der Springer-Verlag sie mit einem Nachdruck und einer Ausgabe als E-Book wieder zugänglich macht. Bei der Benutzung der Bücher darf allerdings nicht übersehen werden, dass sich im Hinblick auf Systematik, Taxonomie und Nomenklatur der Pflanzen und Pilze in den letzten Jahrzehnten sehr viel verändert hat. Zu verdanken ist dies vor allem den ganz neuen Möglichkeiten, die sich durch vergleichende molekulargenetische Untersuchungen ergeben haben.

Haller, B./Probst, W.: Botanischer Exkursionen Band I, Winterhalbjahr, Springer-Verlag, Berlin Heidelberg 1978,1983, Nachdruck 2016, ISBN 978-3-662-48687-0 eBook: 978-3-602-48688-7

Haller, B./Probst, W.: Botanischer Exkursionen Band II, Sommererhalbjahr, Springer-Verlag, Berlin Heidelberg 1980,1989, Nachdruck 2016, ISBN 978-3-662-48685-6 eBook: 978-3-602-48686-3

13./14. Oktober 1815: Chamisso und Eschscholtz entdecken den Generationwechsel


Es ist nur wenig bekannt, dass Adelbert von Chamisso, deutscher Dichter der Romantik mit französischen Wurzeln, auch Naturwissenschaftler war. Zusammen mit Johann Friedrich Eschscholtz entdeckte vor 200 Jahren, am 13. und 14. Oktober 1815 den Generationswechsel an freischwimmenden Manteltieren, sogenannten Salpen.
Chamisso und Eschscholtz nahmen in den Jahren 1815-1818 an einer russischen Expedition teil, die von dem russischen Grafen Romanzoff finanziert wurde. Kapitän des Expeditionsschiffes war Otto von Kotzebue, Sohn des 1819 ermordeten Dichters August von Kotzebue. An dieser Expedition durfte der deutsch-französische Dichter Adelbert von Chamisso (1781 – 1838), der einige Semester Naturwissenschaften an der jungen Berliner Universität studiert hatte, als Naturforscher teilnehmen. Der Doktor der Medizin und Zoologe Eschscholtz fungierte als Schiffsarzt.

Gerne würde ich Chamissos Reise nachreisen. Das wäre heute mit den modernen Verkehrsmitteln nicht so schwierig, für einen Rollstuhlfahrer trotzdem nicht ganz einfach. Einfach ist es aber, mithilfe von Google Earth Chamissos Reise nachzuvollziehen und einen aktuellen Blick auf die Orte und Landschaften zu werfen, die er vor 200 Jahren besucht hat. In dem Buch „Der Palme luft’ge Krone – mit Chamisso auf Weltreise“ habe ich versucht, auch Informationen über die Zeit vor Chamissos Besuch zu geben und einen Blick auf die Geschichte der folgenden 200 Jahren bis heute zu werfen.
TitelChamissoDas Buch ist vor einem Jahr beim Wagner Verlag, Gelnhausen, erschienen. Nach Insolvenz dieses Verlags im Frühjahr dieses Jahres war es als vergriffen gemeldet, eine Neuauflage ist beim Angele Verlag erschienen.
Wilfried Probst (2.A., 2015): Der Palme luft’ge Krone – mit Chamisso auf Weltreise. Ochsenhausen: Angele Verlag. ISBN 978-3-940857-12-5; 14,80 €

https://www.buchhandel.de/buch/Der-Palme-luft-ge-Krone-9783940857125

Der folgende Text über die Entdeckung des Generationswechsels ist diesem Buch entnommen:

Die erste Entdeckung – vielleicht die größte

Endlich gelingt die Ausfahrt. Das nächste Ziel ist Teneriffa. Zunächst ist das Wetter sehr stürmisch, doch ab dem 39. Breitengrad herrscht Windstille, und es wird sehr heiß.
„Am 13. Oktober und den folgenden Tagen hatten wir immer mit 30° 47′ nördlicher Breite fast fünf Tage vollkommene Windstille. Das Meer ebnete sich zu einem glatten Spiegel, schlaff hingen die Segel von den Rah, und keine Bewegung war zu spüren.“ (34)
Die Matrosen haben wenig zu tun und hängen untätig an Deck herum, auch Chamisso und Eschscholtz, begierig auf neue Entdeckungen in fernen Landen, sind frustriert über diese Verzögerung der Reise. Zur Untätigkeit gezwungen, leiden sie besonders unter der Hitze.
Zu der Langeweile kommt die bedrängende Enge an Bord, insbesondere in dem kleinen „Aufenthaltsraum“, in dem nicht nur gegessen und geschlafen, sondern zum Beispiel auch geschrieben werden muss. Für Adelbert bedeutete dies eine große Einschränkung. Nur wenn die Offiziere den Platz freigeben, kann er den Tisch für eigene Arbeiten nutzen.
Nun zeigt sich auch zum ersten Mal deutlich, welch schwierigen Menschen sie sich mit Wormskjold an Bord geholt haben. Besonders der Maler, Ludwig Choris, der neben ihm in der Hängematte schlafen muss, hat unter seinen Launen und Maßregelungen zu leiden. Dabei ist besonders unangenehm, dass sich Wormskjold regelmäßig betrinkt und dann unverschämt und ausfallend werden kann.
Beim gemeinsamen Essen der Offiziere und der Gelehrten in der engen Kajüte fragt Chamisso den Kapitän: „Wird die Windstille noch lange anhalten? Wie sollen wir so je auf die Kanaren kommen?“
„Ja, verehrter Chamisso, damit müssen Sie sich leider abfinden. Wir sind in den Rossbreiten, und da kann es auch einmal ein paar Wochen windstill bleiben. Diese Zonen etwa zwischen dem 35. und 25. Grad nördlicher Breite sind extrem niederschlagsarm und außerdem auch weitgehend windstill.
„Oh Gott – und wie kommt diese Gegend zu ihrem eigenartigen Namen?“
„Bei Seeleuten sind diese Zonen schon lange gefürchtet, denn wenn die Windstille lange anhält, kann das Trinkwasser knapp werden. Da etwa mitgeführte Pferde und andere Tiere besonders viel Wasser benötigen, kam es häufig dazu, dass man diese Tiere töten musste – daher der Name.“
„Beruhigend zu wissen. Nun, Friedrich, lass uns das Beste daraus machen. Nutzen wir die Zeit für ein paar meeresbiologische Untersuchungen.“
„Ja, eine gute Idee, Adelbert, denn überall um das Schiff herum sind erstaunlich viele quallenartige Tiere zu sehen. Die sollten wir uns einmal genauer anschauen.“

Wormskjold nutzt die Flaute zu einigen Messungen und Beobachtungen, wozu er sich mit einem kleinen Boot aussetzen lässt. Chamisso und Eschscholtz werden jedoch von diesen Aktivitäten ausgeschlossen. Wormskjold ist sehr darauf bedacht, nichts von seinen Ergebnissen und Beobachtungen weiterzugeben.
So schreibt Choris in seinem Tagebuch, dass er ihm einen gefangenen Tintenfisch gezeigt hätte, den er möglicherweise für eine neue Art hält, ihn aber verpflichtet habe, davon den anderen nichts zu erzählen.
Chamisso schreibt dazu später in seiner Reisebeschreibung: „Er hatte eine eifersüchtelnde Nebenbuhlerschaft, die leider unter den Gelehrten nicht unerhört ist, dem Verhältnis, das ich ihm angeboten hatte, das ich mit Eschscholtz eingegangen war, vorgezogen.“ (35)
Dagegen kooperieren Chamisso und Eschscholtz sehr gut. Sie bauen sich ein Sonnensegel an Deck und einen kleinen Kescher aus Segeltuch. Lupen und Zeichengeräte sowie ein Beobachtungstisch werden ebenfalls an Deck geschafft. So können die Forschungen beginnen.
Eschscholtz und Chamisso angeln einige Algen und Medusen aus dem Meer, aber besonders auffällig sind Quallen ähnliche, durchsichtige Tiere, die sie bei genauer Betrachtung den Manteltieren, und zwar der Untergruppe der Salpen zuordnen können. Was dabei besonders auffällt ist, dass diese Tierchen immer in zwei unterschiedlichen Formen vorkommen: einmal als Einzeltiere, zum anderen als Tierkolonie.
Die genaue Beobachtung und Präparation zeigt, dass die Einzeltiere viele aneinandergekettete Embryonen enthalten, während in den Tieren einer Kolonie jeweils immer nur ein Embryo zu finden ist. Schließlich können die beiden durch Beobachtungen sicher nachweisen, dass es sich bei den beiden verschiedenen Formen um ein und dieselbe Art handelt. Aus den Einzeltieren gehen nämlich immer Tierkolonien hervor, und die einzelnen Tiere einer Tierkolonie bringen immer wieder Einzeltiere hervor. Es findet also ein obligatorischer Wechsel zwischen zwei un¬terschiedlichen Generationen statt. Dabei – so beschreibt dies später Chamisso in seinem Aufsatz über die Salpen – gleichen jeweils die Enkel ihren Großeltern.
Chamisso und Eschscholtz ist die Entdeckung des Generationswechsels gelungen. Diese Entdeckung wird Cha¬misso kurz nach seiner Rückkehr in einem wissenschaftlichen Aufsatz beschreiben. Dafür wird ihm die junge Berliner Universität die Doktorwürde verleihen – ganz ohne Prüfung und Disputation, also gewissermaßen „honoris causa“. Chamisso wird übrigens auch später nie eine akademische Prüfung ablegen.
Chamisso und Eschscholtz ist wohl bewusst, dass sie eine wichtige Entdeckung gemacht haben. Die wirkliche Bedeutung des „Generationswechsels“ für das Leben und die Entwicklung der Lebewesen auf der Erde können die beiden natürlich nicht abschätzen. Aber später erkennt Chamisso recht klar die biologische Bedeutung des Generationswechsels. Er schreibt in seiner Reise um die Welt ganz treffend: „Es ist, als gebäre die Raupe den Schmetterling und der Schmetterling hinwiederum die Raupe.“ (34)

Der Generationswechsel von Cyclosalpa pinnata (mit Origalabbildungen von Chamisso, kopiert ausSchneebeli-Graf, Ruth (Hrsg.): Adelbert von Chamisso: ... Und lassen gelten, was ich beobachtet habe. Dietrich Reimer, Berlin 1983

Der Generationswechsel von Cyclosalpa pinnata (mit Origalabbildungen von Chamisso, kopiert aus Schneebeli-Graf, Ruth (Hrsg.): Adelbert von Chamisso: … Und lassen gelten, was ich beobachtet habe. Dietrich Reimer, Berlin 1983)

 

Unter folgendem Link zeigt ein Taucher eine Salpe mit deutlich erkennbarer Kette von Tochtersalpen der nächsten Generation. Allerdings ist die gezeigte Art deutlich größer als Chamissos und Eschscholtz‘ Cyclosalpa pinnata:

https://www.gmx.net/magazine/wissen/natur-umwelt/taucher-filmt-faszinierenden-geisterfisch-forscher-raetsel-loesen-35258724

Zurück zur Basis?

Wilfried Probst

Manuskript für einen Vortrag, der am 19.11.2007 auf der MNU-Tagung in Bremerhaven gehalten werden sollte, aber wg. Erkrankung  des Referenten ausfallen musste

 

Zurück zur Basis – Können Basiskonzepte den Biologieunterricht verbessern?

 

Charakteristisches Merkmal des Menschen ist es, Traditionen zu bilden, Erlerntes weiterzugeben. Lernen durch Lehren ist ganz entscheidend für die Sonderstellung von Homos sapiens verantwortlich. Das meinte auch Newton mit seinem Ausspruch „Ich habe weiter gesehen, weil ich auf den Schultern von Giganten stand“.  „Lehrer“ bzw „Lehrerin““ ist deshalb der urmenschlichste Beruf.

Jeder der lehrt, macht sich auch Gedanken darüber, wie er das anstellen soll. Dazu muss er sich in den Lerner hineindenken. Dabei hilft ihm, eine zweite typisch menschliche Eigenschaft: die Fähigkeit, sich in andere hineinversetzen zu können, und damit die Fähigkeit , über das Lernen und Denken nachzudenken und über das Nachdenken über das Lernen und Denken nachzudenken usw. kurz, die Stufenleiter der Metawissenschaften zu erklimmen. Weiterlesen

Verformbare Schlüssel

„Auf jedem Topf passt ein Deckel“. Dieser vor allem für zwischenmenschliche Beziehungen angewandte Spruch gilt auch für bestimmte Bereiche der Biochemie und der Molekularbiologie. Geradezu als ein Dogma galt lange Zeit, dass die dreidimensionale Struktur eines Proteins seine Funktion bestimmt. Ein spezifisch geformtes Enzym passt zu seinem speziellen Substrat wie ein Schlüssel in ein Schloss.

Dieser Vorstellung von molekularem Schlüssel und Schloss liegt die Erkenntnis zu Grunde, dass die Primärstruktur eines Proteins, das heißt die Abfolge seiner Aminosäuren, bereits die Information über die Tertiärstruktur, also die räumliche Anordnung der Aminosäurekette in sich trägt. Doch diese Erkenntnis gerät zunehmend ins Wanken. So hat man zum Beispiel festgestellt dass etwa 40 % aller menschlichen Proteine zumindest einen ungeordneten Abschnitt enthalten, der aus 30 Aminosäuren besteht und dessen Lage im Raum nicht festgelegt ist. Darüber hinaus ist bei etwa einem Viertel der Proteine die gesamte Raumstruktur nicht von Anfang an festgelegt und dadurch sehr variabel. Diese Erkenntnisse wurden in der Proteinchemie lange Zeit vernachlässigt, da ungeordnete Proteinketten nicht kristallisieren und deshalb einer Röntgen-Strukturanalyse nicht zugänglich sind.

Doch nun hat die Erkenntnis über „ungeordnete Proteine“ so dramatisch zugenommen, dass sich immer mehr Chemiker und Biologen damit beschäftigen müssen. Eine steigende Anzahl von Befunden sprechen gegen die Annahme einer durchweg geltenden starren Struktur-Funktions-Beziehung. Erste Zweifel an der durchgängigen Gültigkeit des „Schlüssel-Schloss-Prinzips“ kamen auf, als im Jahre 1999 die Molekularstrukturforscher WRIGHT und DYSON in einem Review über NMR-spektroskopische Daten zur Proteinstruktur dargelegten, dass eine beachtliche   Zahl von Proteinen trotz ihres zumindest teilweise ungeordneten Zustandes funktionieren.

Daraus ergibt sich eine grundlegende Frage: Wie ist es möglich, trotz flexibler Struktur einen Erkennungsprozess zu erreichen? Wie kann ein verformbarer Schlüssel in ein festes Schloss passen? Eine mögliche Antwort wurde 2007 von Kenji SUGASE gefunden. Der Schlüssel gewinnt seine Form erst in Kontakt mit dem Schloss. SUGASE fand dieses Prinzip an einem genregulatorischen Protein heraus, das bei vielen Regulationsprozessen einschließlich des Lernens und des Gedächtnisses eine wichtige Rolle spielt. Dieser als CREB bezeichnete Regulator benötigt, wenn er erst einmal an die DNA gebunden hat, ein zweites als CBP bezeichnetes Protein, bevor er ein Gen ein- oder ausschalten kann. Durch zeitlich hochauflösende NMR-Spektroskopie konnte nachweisen, dass das gesamte Regulatorprotein durch das Zusammenwirken mit CBP erst in die Form schnappt, die für die Funktion notwendig ist. Ein solcher Vorgang des Umklappens einer Proteinstruktur in eine andere wurde schon viel früher bei der Wirkung pathogener Prionen auf normale Prionen aufgedeckt. Damals hielt man diese Entdeckung für eine Ausnahme, etwas ganz besonderes. Nun scheint sich die Erkenntnis durchzusetzen, dass ein solcher und Umklapp- oder Formungsprozess bei globulären Proteinen etwas ganz normales ist.

Das Struktur-Funktions-Paradigma wurde auch durch weitere Entdeckungen  erschüttert: Das Signalprotein Sic 1 ist ein wichtiger Regulator des Zellzyklus. Es verhindert die Replikation der DNA so lange, bis die Zelle zur Teilung bereit ist. Dann wird es abgebaut und gibt den Weg zur Replikation frei. Das Protein bildet eine größere Zahl unterschiedlicher Konformationen, die in einem ständigen dynamischen,Gleichgewicht miteinander stehen. An sechs verschiedenen Positionen seiner Kette kann es Phosphatgruppen anlagern. Wenn alle Stellen phosphoryliert sind, kann es mit einer beliebigen dieser sechs phosphorylierten Positionen an ein Enzym binden, das seinen Abbau bewirkt.

Ein solches Wirkprinzip ist besonders vorteilhaft für so genannte Drehscheibenproteine (hub-proteins). Der Tumor-Supressor p53 ist ein gutes Beispiel dafür. Dieser Supressor ist sehr häufig in menschlichen Krebszellen aktiv. Die Erklärung für seine sehr unterschiedliche Wirkung scheint in seinen vielen verschiedenen möglichen Strukturen begründet zu sein. Seine Kerndomäne ist globulär, seine seitlichen Flügel sind mehr oder weniger ungeordnet und können an hunderte verschiedene Signalmoleküle binden.

Kritiker der Theorie von der ungeordneten Proteinstruktur weisen vor allem auf folgendes Problem hin: Ungeordnete Proteinstrukturen (Aminosäurefäden) können in der Zelle nicht stabil sein, da sie Proteasen breite Angriffsflächen bieten. Dem entgegnen die Theoriebefürworter, dass die meisten Protease nicht frei im Zellplasma vorliegen sondern in besondere Kompartiment, z. B. Lysosomen, eingeschlossen sind.

So entsteht allmählich eine neue Vorstellung von den Zusammenhängen zwischen Protein-Primär-, Sekundär- und Tertiärstruktur und Proteinfunktion. Vermutlich gibt es sowohl ganz rigide Schloss-Schlüssel-Mechanismen wie auch ganz variable Spaghetti-Proteine und alle Übergänge dazwischen. Auch an diesem Beispiel zeigt sich, dass der Lebensprozess ein gewisses Maß an Unordnung nicht nur erträgt, sondern benötigt, um seine vielfältigen Funktionen ausführen zu können.

Möglicherweise wird man eines Tages genau vorhersagen können, welche Aminosäuresequenz für eine ganz fest gefügte Tertiärstruktur und welche für eine variable verantwortlich ist, und für welche Regulations- und Steuerungsprozesse die eine, für welche die andere von Vorteil ist bzw. benötigt wird.

Literatur

Chouard, T.: Breaking the protein rules. Nature 471: 151-153, 10.3.2011