Archiv der Kategorie: Biologische Vielfalt

Die Vielfalt der Ökosysteme, die Artenvielfalt und die Vielfalt der genetischen Informationen, die in den Arten enthalten sind, werden unter dem Begriff der biologischen Vielfalt oder Biodiversität zusammengefasst. Vielfalt ist ein entscheidendes Merkmal des Lebens und des Bioplaneten Erde. Man kann einen dramatischen Rückgang der Biodiversität beobachten, der auf Aktivitäten des Menschen zurückzuführen ist. Diese Entwicklung wird als eine ernsthafte Gefahr für die Biosphäre angesehen. Um jedoch einen sinnvollen Schutz der Artenvielfalt zu bewirken, ist eine genaue Kenntnis der ökosystemaren Wechselwirkungen wichtig.
Biologische Vielfalt muss auch ein wichtiges Unterrichtsziel sein.

Inseln als Lebensraum

Wilfried Probst

Vortrag in der Akademie Sankelmark, 22.07.2003

 

Einführung

Inseln isolieren: das Wort „Isolation“ lässt sich auf das lateinische „insula“ zurückführen, heisst also eigentlich „Verinselung“.

Das mag eine „splended isolation“ sein, von der viele Bewohner der Britischen Inseln bis heute träumen oder auch eine trostlose Isolation, eine Vereinzelung, die von größeren, erstrebenswerten Gemeinschaften abschneidet, Kontakte unterbricht oder gar nicht erst aufkommen lässt. Auch solche Isolation hat es im politischen Raum immer wieder gegeben. Berlin war eine Insel des Westens im sowjetischen Einflussbereich; der Irak war (und ist) isoliert, Nord-Korea ebenso.

In den Träumen und Zielvorstellungen der Menschen spielen Inseln eine recht unterschiedliche Rolle. In der griechischen Antike träumte man von den „Inseln der Glückseeligen“, auf denen die Hesperiden die goldenen Äpfel bewachten. Atlantis ist eine Trauminsel, die bis heute durch unsere Vorstellungen geistert.  Arno Schmidt greift das Aufklärungsthema der „Gelehrtenrepublik auf und verlegt sie auf eine futuristische Insel.

Auf Inseln wird der Mensch isoliert und einzeln stehend besonders gefordert. Und er kann diese Herausforderung meistern, wie Daniel Defoe’s Robinson Crusoe zeigt. Er kann aber auch beinahe daran zugrunde gehen, wie dies William Golding in seinem Roman „Herr der Fliegen“ drastisch schildert. Ferne Inseln waren der Stützpunkt von Piraten. Sie können bis heute geheimnisvolle Schätze bergen, wie Stevensons Schatzinsel. Die ausgedachte Karte war der Ausgangspunkt für diesen erfolgreichen Abenteuerroman.

Inseln haben also für uns Menschen gewaltigen Symbolcharakter. Das arabische Schriftzeichen wird Ihnen vielleicht nichts sagen. Es bedeutet „die Insel“ und es heißt „al djasira“ – eine Insel der unverfälschten Informationen im Meer der Falschmeldungen und der Informationsunterdrückung.

Sie haben sich in den vergangenen Tagen bereits mit den vielseitigen Aspekten von Inseln beschäftigt: von der geologischen Entstehung bis zur Inselliteratur. Heute soll es um die Inseln als Lebensraum, also um die „Inselbiologie“, gehen. Themen, die wir heute ansprechen, wird man im Lexikon vielleicht noch eher als unter „Inselbiologie“ unter „Inselökologie“ oder „Inselbiogeographie“ finden.

Unterscheiden sich Inseln von anderen Lebensräumen? Und wenn ja, wie sehen diese Unterschiede aus? Worin liegen sie begründet? Und welche Auswirkungen haben sie auf das Inselleben? Vielleicht auch auf das Leben als Ganzes, auf die ganze Biosphäre. Was bedeutet „Verinselung“?

 Teil 1 Inseln Isolieren

Inseln isolieren

Seit langem weiß man, dass Inseln weniger Arten beherbergen als vergleichbar große Festlandsgebiete. Natürlich hängt die biologische Vielfalt, also die Artenzahl einer Inseln von einer Fläche ab. Dies ist sogar eine verhältnismäßig einfache Beziehung, die sich aus empirischen Daten ergibt und die als Artenzahl gegen den Logarithmus der Inselfläche aufgetragen meist eine mehr oder weniger deutliche Gerade ergibt (Abb.: Artenzahl Arealkurve der Vogelarten auf den Salomonen nach Diamond und May 1976). In arithmetischer Darstellung ergibt sich immer eine mehr oder weniger gekrümmte Kurve, deren Steigung mit zunehmender Fläche nahezu gegen Null gehen kann. Natürlich gibt es viele weitere Parameter, die für die Artenvielfalt einer Insel verantwortlich sind, z.B. die Vielfalt der Habitate (aber die ist in der Regel wiederum flächenabhängig), die  Entfernung von einem  großen Festland oder von anderen Inseln, das Alter, die geographische Breite usw.

„Insel“ bedeutet in diesem Zusammenhang übrigens nicht unbedingt eine allseits  von Wasser umgebene Landfläche – so werden Inseln in Lexika im allgemeinen definiert. Auch Seen sind Inseln in einem Meer von Land, Bergspitzen in einer Ebene, Lichtungen in einem Wald, Oasen in einer Wüste. Ebenso gibt es Inseln, die sich in geologischen Merkmalen, Bodentypus oder Vegetation von ihrer Umgebung unterscheiden. Auch Verkehrsinseln sind Inseln in einer biologisch feindlichen Straßenumgebung. Für diese Formen von Inseln ergeben sich sehr ähnliche Kurven, wenn Artenzahl und Arealgröße gegeneinander aufgetragen werden. So schreiben schon MacArthur und Edward O. Wilson 1971, dass „die inselartige Beschaffenheit ein überall anzutreffendes Merkmal der Biogeographie ist“.

Daraus wird deutlich, dass Fragen der Inselökologie oder Inselbiogeographie weit über die Bedeutung für eigentliche Inseln hinausgehen, wenn man die Verteilung und das Muster von Arten und Artengemeinschaften untersuchen will. Denn es gibt kaum natürliche Lebensgemeinschaften, die nicht zumindest einige Elemente von Inselhaftigkeit besitzen. Schon die Unterteilung der Biosphäre in verschiedene Ökosysteme zeigt ja mit dem Begriff „Ökosystem“, dass man sich die Biosphäre zusammengesetzt vorstellt aus Teilsystemen, die voneinander mehr oder weniger isoliert, und damit verinselt, sind.

Einwanderung – Auswanderung

Nach der Theorie der Habitatdiversität, die v.a. auf Lack (1934, 1942, 1969) zurück geht, ist die Artenzahl einer Insel in erster Linie von der Zahl der unterschiedlichen Lebensräume abhängig. Da diese Zahl der Lebensräume in der Regel mit der Fläche korreliert, kommt es zu den vorher erwähnten Artenzahl-Arealkurven. Zwingend ist dies jedoch nicht, habitatarme größere Inseln können artenärmer sein als habitatreiche kleinere. Da sich Lack nur mit Vogelarten beschäftigte, ist auch verständlich, dass er sich mit Zuwanderungsbarrieren weniger befasste. Nach seiner Vorstellung beruht die Abwesenheit bestimmter Populationen auf einer Insel nicht auf mangelnder Besiedelung, sondern immer auf dem Fehlen geeigneter Lebensräume.

Demgegenüber begründeten MacArthur und Edward O. Wilson 1967 die Gleichgewichtstheorie der Inselbesiedelung. Danach stellt sich – qualitativ leicht zu beschreiben – auf jeder Insel ein Gleichgewicht zwischen Einwanderungsrate und Aussterberate der Arten ein. Je mehr Arten auf einer Insel vorhanden sind, desto geringer ist die Einwanderungsrate. Entweder, da keine Arten zur Einwanderung mehr zur Verfügung stehen, oder, da es keinen Platz mehr für die neu zugekommenen Arten gibt, da also keine „Nische“ mehr für sie frei ist. Umgekehrt ist die Aussterberate umso größer, je mehr Arten auf der Insel sind. Im einfachsten Fall könnte es sich hier um eine lineare Beziehung handeln. Dann ließe sich dies in einem Raten-Artenzahldiagramm mit Geraden darstellen. Der Schnittpunkt wäre der Gleichgewichtspunkt, in dem sich der Artenreichtum im Gleichgewicht befindet. Wahrscheinlicher ist allerdings, dass es sich bei der Beziehung von Aussterberate bzw. Einwanderungsrate zu Artenzahl nicht um eine lineare Beziehung handelt, sondern eher um zwei konkave Kurven wie in der Abb. dargestellt. In jedem Fall stellt ich – steht nur genügend Zeit zur Verfügung, ein Gleichgewicht ein, eine bestimmte Artenzahl. Die Zusammensetzung der Arten, das Artenspektrum, kann sich oder muss sich allerdings weiter ändern, da ja immer Arten aussterben und Arten Einwandern, in einer Rate, die dem Gleichgewicht entspricht.

Dabei hängt der Kurvenverlauf sehr stark von der Beschaffenheit der Insel und ihrer Lage zu einem benachbarten Festland ab. Bei nahe zum Festland gelegenen Inseln ist die Einwanderungsrate zunächst sehr groß, bei weit entfernten klein. Auch die Größe der Insel spielt eine Rolle. Je größer, desto mehr Einwanderer können „aufgefangen“ werden. Dabei spielt auch die Gestalt der Insel eine Rolle.

Umgekehrt ist die Aussterberate bei großen Inseln geringer als bei kleinen, da sie viel mehr Habitate enthalten und deshalb auch Platz für mehr ökologische Nischen sprich Arten bieten.

Man kann eine Schar unterschiedlicher Kurven für Einwanderungsrate und Aussterberate in Abhängigkeit von der Artenzahl auftragen und erhält dann – je nach Kombination –  unterschiedliche Gleichgewichtswerte  (Abb.).

Obwohl dieses Modell zunächst sehr plausibel klingt, so zeigte sich doch bei der empirischen Überprüfung, dass es ausgesprochen schwierig ist, dieses Modell durch eindeutige Daten zu belegen. So lässt sich die Größenabhängigkeit der Artenzahl im Gleichgewicht auch alleine durch Habitatdiversität erklären. Und auch der Einfluss der Abgelegenheit kann vollkommen unabhängig von der Gleichgewichtstheorie betrachtet werden. Viele Arten sind nämlich in ihrer Ausbreitung so limitiert, dass sie entfernte Inseln nicht nur erschwert erreichen, sondern auch erst sehr viel später. Und dies kann dann dazu führen, dass solche isolierten Inseln weniger „gesättigt“ sind, dass sich also das von MacArthur und Wilson postulierte Gleichgewicht noch gar nicht eingestellt hat. In jedem Fall sollte man die Theorie der Habitatvielfalt, also die Aussage, dass die Vielfalt der Lebensräume für die Artenzahl auf einer Insel verantwortlich ist (Lack), und die Aussage, dass dafür das sich einstellende Gleichgewicht aus Einwanderungsrate und Aussterberate verantwortlich sind (MacArthur und Wilson) nicht als antagonistische Theorien, sondern als sich gegenseitig zu ergänzende Theorien ansehen.

Zyklen

Die beiden oben erwähnten Modelle zur Inselbesiedelung gehen von einem Endgleichgewichtszustand, auch wenn es sich bei dem Einwanderungs- Aussterbe-Modell eher um ein „Fließgleichgewicht“ handelt. Die Entwicklung strebt einem ausgeglichenen Endzustand zu. Einen solchen Zustand nennt man in der Biologie  einen Klimaxzustand. An diesem „biologischen Gleichgewicht“ verändert sich dann nichts mehr, es sei denn, es kommt durch Eingriffe von außen oder durch Katastrophen dazu, dass alles wieder von vorne anfängt. Nach der Klimaxvorstellung sind das aber Ausnahmen.

Dem steht die dynamische Auffassung von Biozönosen gegenüber, die am besten durch die Mosaik-Zyklus-Theorie beschrieben wird. Am deutlichsten wird dies bei der Untersuchung von (Ur-)Waldökosystemen. So gibt es nach Ellenberg (1978) z.B. keinen Endzustand eines natürlichen Urwalds. Vielmehr entwickeln sich nach dem Zusammenbrechen der alten Bäume Lichtungen und dort entstehen unter heftiger Konkurrenz zunächst Gesellschaften von Pionierbaumarten, die ihrerseits nach einiger Zeit wieder zusammenbrechen. Auch dann kommt es wieder zu heftiger Konkurrenz und schließlich kehren die ursprünglichen Baumarten zurück. In einem roßen Waldökosystem  laufen diese Prozesse ständig auf kleinen Flächen („patches“)  nebeneinander ab, so dass immer viele verschiedenen Entwicklungsstadien mosaikartig nebeneinander liegen. Ein besonders schönes Beispiel für diese, sich im Kreis entwickelnde Dynamik zeigt die Abfolge der Waldstadien in einer flachen Senke, die zu einem Bibersee aufgestaut wurde. Es kommt z.B. durch Blaugrüne Bakterien zu einer ganz erheblichen Stickstoffanreicherung in diesem See. Der See verlandet. Auf dem mineralstoffreichen Humosen Boden entwickelt sich zunächst eine üppige Staudenvegetation stickstoffliebender Pflanzen, dann siedeln sich erste Weichhölzer an und ganz zum Schluss kommt es zu einer Wiederbesiedelung durch die ursprünglichen Waldbaumarten.

In Wäldern können solche Zyklen Jahrhunderte, vielleicht sogar Jahrtausende dauern, in anderen Vegetationsformen noch Jahrzehnte.

Natürlich gelten diese Überlegungen auch für Inseln, auch hier sind Veränderungen und kleine Katastrophen eher die Regel as die Ausnahme. Dies müssen keine  ständigen Vulkanausbrüche sein (wie etwa auf Hawai), auch epedemieartig auftretende Krankheiten an dominierenden Baumarten etwa können ganz neue Zyklen einleiten.

„Ein sehr großer Teil der auf der Roten Liste stehenden Pflanzen- und Tierarten unserer Heimat sind an derartige Sukzessionsstadien gebunden“ (Remmert 1984).

Naturschutzmaßnehmen, die einen bestimmten Entwicklungszustand erhalten wollen, sind deshalb oft sehr aufwendig und wenig sinnvoll.

Wenn es darum geht, Biodiversität zu schützen und zu erhalten, können solche eher theoretischen Überlegungen wichtige Voraussetzungen für Planung und Eingriffsoptimierung sein.

Inselökologie und Naturschutz

1984 fand an der Akademie für Naturschutz und Landschaftspflege in Lauffen an der Salzach ein Seminar zum Thema „Inselökologie – Anwendung in der Planung des ländlichen Raumes“ statt. In diesem Seminar kommt der Tierökologe Dr. Hans-Joachim Mader zu der Schlussfolgerung: „Die Landschaften Mitteleuropas weisen eine wachsende Tendenz der Verinselung der einzelnen sie bildenden Landschaftsbestandeile auf. Die Isolationswirkung zwischen den teilweise nur noch als Fragmenten erhaltenen Resten ursprünglicher Landschaftselemente nimmt zu. Damit verliert die Landschaft auch funktional die Eigenschaft eines vielfach engmaschig verbundenen Netzes und entwickelt sich statt dessen zu einem komplex mosaikartigen Nebeneinander existierender Teilstücke.“ Ein Ergebnis dieses Seminars, das dann in der Folge starken Einfluss auf die Landschaftsplanung genommen hat, war, dass der Bedeutung von Hecken und Feldgehölzen als Barrierenabbauer und Vernetzer in diesen Inselarchipelen eine große Rolle zukommt. Weitere Schlagworte, die in der Landschaftsplanung seither eine wichtige Rolle spielen und die letztenendes auf die „Inselökologie“ zurückgehen, sind „Einrichtung von Trittsteinen“ und „Barrierenabbau“. Letzteres führte zu der sinnvollen Einrichtung von Biotopbrücken über Autobahnen (bisher leider nicht in Schleswig-Holstein!).

Einen weiteren Aspekt haben wir bei der Betrachtung der Artenvielfalt von Inseln bisher ganz unberücksichtigt gelassen: Arten sind keine unveränderlichen konstanten Einheiten. Sie verändern sich, sie können sich in neue Arten aufspalten. Damit können auf Inseln ganz neue Lebensgemeinschaften entstehen die nur sehr indirekt mit  Einwanderung und Aussterben begründet werden können. Mit diesem Aspekt wollen wir uns nach der Pause etwas intensiver beschäftigen.

Teil 2: Inseln – Quellen der Vielfalt

Inselendemiten

Ich hatte in diesem Frühjahr während  eines Aufenthalts in Honduras die Gelegenheit, die Karibikinsel Utila zu besuchen. Diese Insel – eine der sogenannten Bay-Islands – wurde lange von Seeräubern, später von freigelassenen Sklaven, bewohnt. Heute ist sie ein beliebtes Urlaubsziel vor allem für Taucher. Die Besonderheit dieser Insel ist eine schwarze Leguanart. Diese Leguan-Art mit dem wissenschaftlichen Namen Ctenosaura bakeri lebt nur auf dieser 12 km² großen Karibikinsel in küstennahen Mangrovewäldern. Das Senckenberg-Museum in Frankfurt und die Frankfurter Zoologische Gesellschaft haben sich dem Schutz dieser Echse angenommen, die angeblich nur noch in etwa 3.000 Exemplaren auf der Insel vorkommen soll. Durch ihre Initiative wurde auf Utila eine Schutzstation für Ctenosaurus bakeri eingerichtet, die gleichzeitig der gezielten Nachzucht der Leguane und der Unterrichtung einheimischer Schulklassen und Touristen in Fragen der Inselökologie und des Naturschutzes dient.

Solche Arten, die nur ein eng begrenztes Areal besiedeln, nennt man Endemiten. Endemiten sind typisch für Inseln. Endemiten der Kanarischen Inseln z.B. sind die Dickblattgewächse der Gattung Aeonium, die dort und nur dort mit über 40 Arten vorkommen, von denen viele auch noch auf einzelne Inseln beschränkt sind. Ein Kanarenendemit ist auch die rötlich blühende und als Liane wachsende Kanaren-Glockenblume (Canaria canariensis) oder der große Kanaren-Natternkopf Echium wildpretii. Bei manchen Arten – wie etwa beim Tëide-Finken –  kann man die Verwandtschaft zu weit verbreiteten Festlandsarten durchaus erkennen. Der Tëide-Fink sieht aus wie ein blaustichiges Foto eines Buchfinken (Abb.).

Besonders berühmt durch die Vielzahl ihrer Inselendemiten wurde das Galapagos-Archipel – nicht zuletzt, weil Charles Darwin diese einsame Inselgruppe auf seiner Weltreise 1834 besuchte und dort wichtige Impulse für die Entwicklung seiner Evolutionstheorie erhielt. Ihm folgten und folgen bis heute viele Biologen  und auch naturkundlich interessierte Touristen.

Galapagosendemiten, von denen immer wieder die Rede ist, sind z.B. die Erdfinken (Gattung Geospiza) , die auch „Darwinfinken“ genannt werden oder die Riesenschildkröten der Art Chelonoides elephantopus, die ebenfalls nur auf den Galapagos Inseln zu finden sind. Darwin berichtet in seinem Reisebericht „Reise eines Naturforschers um die Welt“ ausführlich von den „Elefantenschildkröten“

Unter anderem schreibt er:

Noch habe ich den allermerkwürdigsten Zug der Natur­geschichte dieses Archipels nicht erwähnt; er besteht dar­in, daß von den verschiedenen Inseln in beträchtlichem Maße jede von einer verschiedenen Gruppe von Ge­schöpfen bewohnt wird. Meine Aufmerksamkeit wurde zuerst dadurch auf diese Tatsache gelenkt, daß der Vize­Gouverneur Lawson erklärte, die Schildkröten von den verschiedenen Inseln seien untereinander verschieden, und er könne mit Sicherheit sagen, von welcher Insel irgendeine hergebracht sei. Eine Zeitlang schenkte ich dieser Angabe nicht hinreichende Aufmerksamkeit und ich hatte bereits zum Teil die Sammlungen von zwei der Inseln untereinander gemengt. Es wäre mir doch nicht im Traume eingefallen, daß ungefähr fünfzig oder sech­zig Meilen voneinander entfernt liegende Inseln, die meisten in Sichtweite voneinander, aus genau denselben Gesteinen bestehend, in einem ganz gleichartigen Klima gelegen und nahezu zu derselben Höhe sich erhebend, verschiedene Bewohner haben sollten; wir werden aber sofort sehen, daß dies der Fall ist. Es ist das Geschick der meisten Reisenden, sobald sie entdeckt haben, was an irgendeinem Ort das Interessanteste ist, eiligst fortge­trieben zu werden; ich muß aber gerade dafür dankbar sein, daß ich genügendes Material erhalten konnte, diese äußerst merkwürdige Tatsache in der Verbreitung der organischen Geschöpfe ermitteln zu können.

Irenäus von Eibl-Eibesfeldt schreibt in seinem Klassiker „Galapagos“ über diese Echsen:

Diese Elefantenschildkröten sind Überreste einer einst weit über die Erde verbreiteten Tiergruppe. Die Ordnung der Schildkröten hat sich seit dem Erdmittelalter nur wenig geän­dert. Triassochelys dux aus dem Keuper von Halberstadt hat bereits den typischen Knochenpanzer, der den Körper wie eine Kapsel umschließt. Gewaltige Landschildkröten waren vor 60 Millionen Jahren in Europa, Amerika und Indien beheima­tet. Nach einigen Überresten zu schließen, wogen manche Ex­emplare über eine Tonne. Mit dem Auftreten der wendigen Säuger, die wohl vor allem den Jungen und Eiern nachstellten­  – wie das heute auf Galaipagos die eingeschleppten Säuger tun -, verschwanden die Riesenschildkröten in den meisten Erd­gebieten. Sie hielten sich nur auf einigen ursprünglich von Säu­gern freien Inseln, nämlich auf den Maskarenen im Indischen Ozean und auf den Galapagos-Inseln. Mensch und Haustiere haben diese Bestände dezimiert. Die Maskarenen-Schildkröte konnte sich nur auf Aldabra halten

Die Fauna und Flora von Inseln ist umso eigenständiger – endemischer -, je weiter die Inseln vom nächsten Festland entfernt sind. Im übrigen gilt dies nicht nur für Inseln, sondern auch für inselartige Biotope anderer Art, z.B. für Seen. Besonders berühmt sind die endemischen Buntbarsche alter afrikanischer Seen wie etwa des Malawi-Sees oder des Tanganjika-Sees. Im Tanganjika-See wurden 214 Buntbarsch-Arten nachgewiesen, von denen 80 % nur in diesem See vorkommen. Dabei zeigen gerade die afrikanischen Seen sehr gut, dass die Zahl der Endemiten etwas zu tun hat mit dem Alter der „Insel“. Der Tanganjika-See wird auf ein Alter von 12 Millionen Jahren geschätzt. Der viel jüngere Rudolph-See dürfte erst seit 5 .000 Jahren vom Flusssystem des oberen Nils getrennt sein. In dieser Zeit konnten sich in diesem See immerhin fünf endemische Cichliden-Arten entwickeln.

Vielfalt und Evolution

Charles Darwins Weltbild wurde durch die Galapagoserfahrungen nachhaltig erschüttert. Er begann an der „Konstanz der Arten“ zu zweifeln und über die Gründe nachzudenken, die zu einer Evolution der Lebewesen beitragen könnten. Das Ergebnis war schließlich sein Epochewerk über „Die Entstehung der Arten durch natürliche Zuchtwahl…“ das er allerdings erst 1859, 23 Jahre nach der  Rückkehr von seiner Weltreise, veröffentlichte.

Inseln haben also bei der Entwicklung der Evolutionstheorie eine entscheidende Rolle gespielt und mit dieser Rolle wollen wir uns nun noch ein bisschen beschäftigen.

Das größte Wunder unseres Planeten ist die ungeheute Vielfalt der Lebensformen. So zahlreich sind die Arten, dass wir die meisten von ihnen noch gar nicht identifiziert haben. Die Biosphäre bedeckt die Erde mit einem Teppich aus kunstvoll miteinander gekoppelten Lebensformen. Sogar die scheinbar öde arktische Tundra beherbergt viele Tier- und Pflanzenarten einschließlich der mannigfaltigen Gruppe symbiontischer Flechten, die untereinander und mit ihrer Umwelt ein kompliziertes Netz von Wechselbeziehungen aufrecht erhalten.“

Dies sind die ersten Sätze aus dem Vorwort des von Edward O. Wilson herausgegebenen Buches „Ende der biologischen Vielfalt?“. Wie eigentlich ist diese riesige Vielfalt auf der Erde entstanden? Wie hat sich die Biosphäre entwickelt? Eine Erklärung liefert die auf Charles Darwin zurückgehende Evolutionstheorie, die unter Einbeziehung von genetischen Grundlagen zur sogenannten synthetischen Theorie weiter entwickelt wurde. Danach kann man mindestens fünf Prozesse unterscheiden, die für die Veränderung der Arten und damit für die Evolution verantwortlich sind:

1. Mutation und Rekombination

Als Mutation bezeichnet man spontan oder aufgrund bestimmter physikalischer oder chemischer Einwirkung auftretende Veränderungen im Genom. Die Wahrscheinlichkeit für solche Veränderungen ist zwar insgesamt relativ niedrig (da es zahlreiche Reparationsprozesse gibt, die für eine Stabilität der Nucleinsäuren sorgen), da Genome jedoch aus einer sehr großen Zahl von Genen bestehen, ist der Gesamtanteil der Gameten mit mutierten Genotypen hoch. Die genetische Vielfalt durch Mutationen darf nicht unterschätzt werden. Allerdings ist es so, dass die meisten Mutanten eher ungünstig sind und nur relativ wenige günstige Mutationen vorkommen, die dafür sorgen, dass Merkmale entstehen, die ihren Trägern Vorteile bringen. Mutationsraten wirken auf zweierlei Weise auf die Evolution: Sie schaffen einmal neues genetisches Material, das dann den Einwirkungen anderer Evolutionsfaktoren unterliegt und sie verändern zum anderen die Häufigkeit bestimmter Allele im Genpool der Population.

Die Wirksamkeit günstiger Mutationen wird erst durch die Rekombination genetischen Materials, also durch sexuelle Vorgänge im weitesten Sinne, wirklich wirkungsvoll in einer Population umgesetzt. Gerade die jüngsten Erkenntnisse der Genetik sprechen dafür, dass die meisten Gene unseres Genoms schon sehr alt sind und dass Vielfalt und Neuerung vor allem durch neue Kombinationen, Verdoppelungen, Umstellungen usw. zustande kommen.

2. Anpassungsselektion

Die Anpassungsselektion ist der Evolutionsfaktor, der von Darwin als der Motor für die Entstehung der Arten angesehen wurde. Anpassungsselektion heißt, dass bestimmte Individuen einer Population aufgrund ihrer besseren Tauglichkeit mehr Nachkommen haben als andere. Diese unterschiedliche Tauglichkeit oder Eignung der Phänotypen kann sich z.B. auswirken beim Nahrungserwerb, bei der Flucht vor Räubern, bei der Resistenz gegen Parasiten und Krankheitserregern, bei der Resistenz gegen verschiedene Umweltfaktoren, beim Wettbewerb um einen Geschlechtspartner und beim Brutpflegeverhalten. Anpassungsselektion sorgt dafür, dass eine Art sich an ihre Umwelt anpasst oder – anders ausgedrückt – dass sie in ihre Nische passt. Ändert sich die Umwelt, sorgt Anpassungsselektion in einem gewissen Umfang für eine Anpassung an die neuen Verhältnisse. Ist die Änderung zu drastisch, wird dies allerdings normalerweise nicht möglich und die Art wird verdrängt oder stirbt aus. Bei lange anhaltenden gleichen Umweltbedingungen können sich Arten in derselben Form über viele Jahrmillionen erhalten (stabilisierende Evolution). Solche Arten können so alt werden und von verwandten Arten so weit entfernt sein, weil diese alle ausgestorben sind, dass man von lebenden Fossilien spricht. Ein Beispiel dafür wären etwa der Ginkgo-Baum oder die Brückenechse, die nur noch auf einigen kleinen Inseln vor Nord-Neuseeland lebt.

 3. Zufallsselektion

Auch der Zufall – von Evolutionsbiologen auch Gendrift genannt – dürfte bei der Evolution eine entscheidende Rolle spielen. Wie groß der Anteil der Anpassungsselektion im Verhältnis zur Zufallsselektion ist, hängt sicher von den besonderen Bedingungen ab und ist von Fall zu Fall unterschiedlich zu beurteilen. Bis heute ist dies ein Streiitpunkt der Evolutionsforscher. Zufälle dürften auf alle Fälle eine größere Rolle spielen bei kleinen Populationen als bei großen, bei der Neubesiedelung von bisher nicht besiedelten Arealen und bei katastrophenbedingten Veränderungen.

4.Migration

Schließlich wird als weiterer Evolutionsfaktor der Genfluss oder die Migration unterschieden. Bedeutende Änderungen der Genfrequenzen können nämlich durch Abwanderung oder Zuwanderung von Individuen zu einer Population erreicht werden. Dabei unterscheidet man zwischen infraspezifischem Genfluss (dem häufigeren Fall) getrennter Populationen derselben Art und interspezifischem Genfluss (auch Bastardierung genannt). Der zweite Fall ist seltener, dürfte aber vor allem bei Pflanzen eine gewisse Rolle spielen.

5. Isolation

Während alle diese genannten Evolutionsfaktoren zunächst nur zu einer Veränderung innerhalb einer Population führen, ist die Isolation, die Verinselung, der Faktor, der zur Auftrennung der Arten und damit letzten Endes zur biologischen Vielfalt führt.

 

Evolutionäre Prozesse können auf Inseln wichtiger sein als Einwanderung und Auswanderung. Im Laufe der Erdgeschichte kann die Inselbildung ganz entscheidend zur biologischen Vielfalt beigetragen haben. Denn auch wenn Inseln nach langer Zeit wieder zu Festländern werden, so sind die auf ihnen durch Isolation entstandenen Arten in der Regel so stabil, dass es nicht mehr zu einer Verschmelzung kommen kann.

Ein besonders gutes und gut untersuchtes Beispiel für „Inselevolution“ sind die Fruchtfliegen des Hawai-Archipels. Geologen haben das Alter dieser Vulkaninseln bestimmt. Die älteste mit 5,1 Mill.J. ist Kauai, die jüngste mit ca.0,4 Mill.J. die große Insel Hawai mit noch mehreren aktiven Vulkanen. Auf diesen Inseln leben heute etwa 500 (!!) endemische Fruchtfliegenarten, die alle zur Gattung Drosophila gehören. Sie stammen alle von einem Vorfahr ab, der vor über 5 Mill.J. nach Kauai gelangte. In der Darstellung wird die Entstehungsgeschichte weniger Arten herausgegriffen. Die durchgezogenen Linien deuten die Migration an, die gestrichelten Linien die Anpassungsselektion auf der neuen Insel.

Wie kann man sich nun die Aufspaltung einer Stammart in viele Arten vorstellen? Dies soll an einem einfachen Modell aus drei benachbarten Inseln erläutert werden:

(1)  Eine Insel wird durch eine kleine Kolonie der Art A besiedelt. Der Genpool dieser Teilpopulation ist vom Zufall bestimmt („Zufallsselektion“)

(2)  Vom Genpool der Ausgangspopulation isoliert evolviert diese Inselpopulation in Anpassung an ihre neue Umwelt zu Art B.

(3)  Durch Stürme oder andere Umweltereignisse gelangt Art B auf eine weitere Insel

(4)   Auf dieser zweiten Insel entwickelt sich B zu C.

(5)  Individuen von C besiedeln erneut die erste Insel, können sich jedoch aufgrund genetischer Barrieren mit B nicht mehr vermischen

(6)  C besiedelt auch die dritte Insel

(7)  C bildet auf der dritten Insel Art D

(8)  Art D wird auf die beiden Inseln iherer Vorfahren verdriftet

(9)  Auf der ersten Insel bildet D die neue Art E

(10)              Usw. usw.

 

So können isolierte Habitate durch dieses Wechselspiel ,kleiner Populationen zu einer starken Artaufspaltung führen, die von Evolutionsbiologen „adaptive Radiation“ genannt wird.

Wie schon angedeutet, kann fehlende Konkurrenz auch zum Überdauern sehr altertümlicher Lebensformen führen. So sind Inseln nicht selten zu letzten Refugien von sehr ursprünglichen, heute isoliert stehenden Arten geworden. Viele solcher „lebenden Fossilien“ sind  vom Menschen in historischer Zeit ausgerottet worden, wie etwa die Dronten auf Mauritius und La Réunion ( ca. 1800) und  die Moas auf Neuseeland (ca. 1650).

Ein solcher noch überlebender Reliktendemit der Insel Neukaledonien östlich von Australien, die Bedecktsamige Samenpflanze Amborella trichopoda, hat in den letzten Jahren eine gewisse Berühmtheit erlangt. Auf Grund von DNA-Analysen hat man einen Stammbaum der Bedecktsamer entwickelt. Bei diesem Stammbaum steht  diese Art ganz isoliert an der Basis des Systems. Sie ist damit  die nächste noch lebende Verwandte der Ursprungsart, die vielleicht vor 150 Millionen Jahre lebte und aus der sich die ganze Vielfalt der „Blütenpflanzen“ von den Wasserlinsen bis zu den Eukalyptusbäumen, rund ¼ Million beschriebener Arten, entwickelte.

Trennung und Verbindung – zur Organisation der Biosphäre

Verinselung ist eine wesentliche Voraussetzung für Biodiversität., allerdings nur, wenn die Isolation nicht vollständig ist, wenn es ein Wechselspiel zwischen Auftrennung und Verbindung geben kann.

Ein solches Wechselspiel hat im größten Maßstab und in erdgeschichtlichen Zeiträumen stattgefunden. Im Laufe der Erdgeschichte hat sich die Verteilung der Festländer und der Ozeane ständig verändert. Als Ursache dieser „Kontinentaldrift“ wurden zyklische Vorgänge in den äußeren Schichten unseres Planeten erkannt, die man mit dem Schlagwort „Plattentektonik“ kennzeichnet. Eine Bilderfolge der letzten 200 Millionen Jahre Erdgeschichte im 50 Millionen-Jahr-Rhythmus mag dies verdeutlichen. In dieser Zeit sind die Dinosaurier aufgeblüht und wieder untergegangen, die Vögel und die Säugetiere haben sich gewaltig entwickelt, ebenso die „Blütenpflanzen“. Die heutige Verteilung der Arten und die Biodiversität so wie sie sich heute darstellt, wurde ganz entscheidend durch diese plattentektonishen Vorgänge bestimmt, die durch Trennung und Verbindung von Festländern und Meeresräumen gekennzeichnet sind.

Aber auch im kleinen und kleinsten Maßstab spielen solche Vorgänge der Isolation und der Verbindung eine wichtige Rolle. Von dem Zusammenspiel der Ökosysteme war schon die Rede, auch von der Wechselwirkung von Populationen einer Art. Innerhalb der Populationen sind es die Individuen, die voneinander klar getrennt und genetisch und morphologisch und physiologisch einzigartig doch zur Eigenart und zum Genpool der Gesamtpopulation beitragen. Und die Individuen, die Einzelorganismen? Auch sie sind zusammengesetzt aus mehr oder weniger autonomen Teilen. Wie könnte man Organe transplantieren, wenn es diese Autonomie nicht gäbe?

Selbst die kleinste Einheit des Lebens, die Zelle, stellt sich im elektronenmikroskopischen Bild als ein Kosmos aus vielen Einzelteilen, als eine Landschaft mit Inseln und Seen, man könnte auch sagen als ein dreidimensionales Labyrinth dar. Biologen sprechen von „Kompartimentierung“. Jedes Kompartiment ist eigentlich eine Insel, aber eine Insel, zu der es Fährverbindungen gibt.

 

Sind Tannen ein Thema? – Nacktsamer im Biologieunterricht (zu UB 300)

Wilfried  Probst   Vortrag auf der MNU-Tagung Bremerhaven am 20.11.2006

Sind Tannen ein Thema?

Nacktsamer im Biologieunterricht

 

 

Auf einer Fachtagung der Zeitschrift Unterricht Biologie im Mai d. J. wurde über interessante und weniger interessante Titel von Unterricht Biologie-Heften gesprochen. Ein Unterricht Biologie-Heft mit dem Titel ‚Nadelgehölze & Co.’ vom Dezember 2004 wurde als ‚weniger interessant’ eingestuft. Als Herausgeber dieses Heftes bin ich natürlich anderer Meinung und als ich von Frau Bartel gefragt wurde, ob ich zu diesem Thema auf der diesjährigen MNU-Tagung in Bremerhaven einen Vortrag halten will, habe ich freudig zugestimmt. Denn das ist ja eine Gelegenheit für ein entsprechendes Plädoyer.   Als gut wurden auf genannter Tagung z.B. folgende Heftthemen bewertet: Herz und Kreislauf Die Zelle Gene Wirbeltiere Evolutionshefte („alles was mit Evolution zusammenhängt ist gut!“) Struktur und Funktion Stationen Lernen Standards und Kompetenzen Wissenschaft entdecken und begreifen   Natürlich ist es ein wichtiges Ziel des Biologieunterrichts, in all seinen Inhalten den Bezug zum Menschen und zur menschlichen Gesellschaft herzustellen. Humanbiologische Themen sind deshalb wichtig, das will ich nicht bestreiten. Aber Biologie heißt eben nicht „Medizin“ oder „Anthropologie“ oder „Gesundheitslehre“, sondern es geht in diesem Fach auch gerade darum, nichtmenschliches Leben kennen und verstehen zu lernen, u.a. auch deshalb, um danach menschliches Leben umso besser verstehen zu können. Auch allgemeinbiologische Themen, die heute häufig als Basiskonzepte apostrophiert werden, wie Evolution, Struktur und Funktion oder Ökologie sind selbstverständlich wichtig für die Entwicklung eines vernünftigen Curriculums, sie bedürfen aber immer konkreter Beispiele. Dies gilt genauso für „Methodenthemen“ wie „Standards und Kompetenzen“ oder „Wissenschaft entdecken“ oder „Forschendes Lernen“.   Vielleicht liegt es näher, geeignete Beispiele aus dem Bereich der dem Menschen vertrauteren weil verwandten Wirbeltiere zu suchen als die Nacktsamer zum Unterrichtsgegenstand zu machen. Wenn man `mal abwechseln will sind Nadelgehölze  – besonders in der Vorweihnachtszeit – das will ich zeigen – aber auch recht ergiebig.

Nadelgehölze sind gute Beispiele

denn:

  • Nadelgehölze halten Rekorde
  • Nadelgehölze sind die Reptilien unter den Pflanzen
  • Nadelgehölze sind Dokumente der Erdgeschichte
  • Nadelgehölze beeinflussen das Erdklima
  • Nadelgehölze haben wirtschaftliche Bedeutung
  • Nadelgehölze haben kulturgeschichtliche Bedeutung

Zur Kulturgeschichte

Als immergrünes Symbol ewigen Lebens schmücken Koniferen bis heute unsere Friedhöfe, seit einiger Zeit auch die Vorgärten, aber das liegt wohl weniger an der Symbolkraft als daran, dass sie weniger Arbeit machen und langsamer wachsen. In der christlichen Tradition steht der immergrüne Weihnachtsbaum für Wiedergeburt und Unsterblichkeit. Seit vor gut 200 Jahren durch Aufforstung Fichten auch im Flachland Deutschlands häufig wurden, verbreitete sich der Weihnachtsbaum in den Bürgerwohnungen und heute hat er sich über die ganze Welt ausgebreitet. Aber der Brauch hat vorchristliche Wurzeln: Schon die Römer schmückten ihre Häuser zum Jahreswechsel mit immergrünen Zweigen und die antiken Nekropolen wurden schon vor mehr als 2000 Jahren von Zypressen umrahmt. Oh Tannenbaum, oh Tannenbaum kann man deshalb mit Recht als interkonfessionelles oder interkulturelles Weihnachtslied bezeichnen – auch wenn die Tannen oft Fichten sind.  In der Umgangssprache werden diese zwei Gattungen der Familie der Kieferngewächse meist nicht unterschieden, auf Skandinavisch heißen sie auch beide „Gran“. Trotzdem wäre es ein die Allgemeinbildung förderndes Unterrichtsziel, einmal auf die Unterschiede hinzuweisen – vielleicht am Beispiel der üblicher Weise als Weihnachtsbäume angebotenen Arten (was allerdings auch von Jahr zu Jahr gewissen Modeströmungen unterliegt). Eine Hilfe bei der Bestimmung bietet der Beihefter in UB 300. Die wichtigsten Unterschiede zwischen den Gattungen Picea (Fichte) und Abies (Tanne):

  1. Bei der Fichte fallen die herabhängenden Zapfen als Ganzes ab, bei der  Tanne die Schuppen einzeln von der aufrechten Zapfenachse
  2. Die Fichtennadeln haben braune Stielchen, die Tannennadeln grüne basale Scheibchen

Neben dem Buchs sind Nadelgehölze, v.a. Eiben, auch wichtige Elementen der Barockgärten, da sie extreme Beschneidung gut vertragen. Andere wachsen schon so, als wären sie beschnitten, z.B. Zuckerhutfichten oder Zwergfichten,  die man durch vegetative Vermehrung aus Hexenbesen kultiviert hat. Aus Gärtnereikatalogen lassen sich Bestimmungskärtchen für Zierkoniferen basteln,, die man alle bei einem Friedhofsbesuch finden kann. Auf eine interessante geschichtliche Spur führt der Name des Küstenmammutbaumes Sequoia sempervirens, amerikanisch „Redwood“. Diese Art, die mit 135 m auch den Höhenrekord eines Baumes und den Rekord des größten Lebewesens hält, wurde von Lampert 1824 als Taxodium sempervirens beschrieben und 1847 vom Wiener Botaniker und Coniferenspezialisten Endlicher in die eigene Gattung Sequoia gestellt, benannt zu Ehren des Cherokee-Indianers Sequoi Yah, der ganz selbständig eine Schrift für die Sprache der Cherokee entwickelte und 1838 eine Zeitung auf Englisch und Cherokee herausgab – im gleichen Jahr, als dieser Stamm auf Befehl des Präsidenten Martin van Buren aus seiner Heimat vertrieben und zu einem winterlichen Gewaltmarsch über 1500km nach Westen gezwungen wurde, dem Marsch der Tränen, auf dem 4000 von 10 000 der  Vertriebenen umkamen.

 

Rekorde

Nadelgehölze halten Rekorde. Hierher gehören

  • mit der Borstenkiefer aus den trockenen Gebirgszügen Arizonas die Pflanzenart, die das höchste Alter erreicht.
  • mit den Redwoods, den Küstenmammutbäumen in Kalifornien und Oregon und den Mammutbäumen in der Sierra Nevada die höchsten Bäume oder
  • mit Picea obovata und Larix dahurica aus Ostsibirien die kälteresistentesten Bäume, die auch noch an den kältesten bewohnten Orten der Erde, in Oimekon und Werchojansk gedeihen.

 

Menschen lieben Rekorde, deshalb ist es immer interessant, in der Schule mit Rekord haltenden Lebewesen zu motivieren. Aber es geht natürlich nicht nur um den Rekord, denn mit ihm sind besondere ökologische, physiologische und strukturelle Leistungen verbunden. So wie einem Basketballspieler seine langen Beine und Arme nutzen, so nutzen einem großen Baum seine leistungsfähigen Wassertransportsysteme und das Alter der Bäume wird im wesentlichen durch die Widerstandskraft ihres Holzes determiniert. Die Kälteresistenz wird einmal durch die xeromorphen wassersparenden Nadelblätter, vor allem aber durch physiologische Anpassungen, insbesondere spezielle, die Bildung von Eiskristallen hemmende Proteine (Antifrostproteine) bewirkt.

Reptilien unter den Pflanzen

Nadelgehölze sind Nacktsamer, Gymnospermen. Sie nehmen im Pflanzenreich dieselbe Stellung ein, wie die Reptilien bei den Wirbeltieren.. Das soll nun näher begründet werden. Die ersten großen Pflanzen. die im Erdaltertum vor gut 400 Mill.Jahren, im ausgehenden Silur, im Devon und im Karbon die Festländer der Erde eroberten und auch damals schon große Wälder bildeten, waren überwiegend Sporenpflanzen: Urfarne, Farne, Schachtelhalme und Bärlappe. Zwar kam bei den Bärlappen auch schon so etwas ähnliches wie Samenbildung vor, aber parallel dazu entwickeln sich schon im ausgehenden Devon und zu Beginn des Karbons die ersten Nacktsamer aus den Verwandtschaftsgruppen, die man auch heute noch in dieser Kategorie einordnet. Der besondere Vorteil der Samenbildung ist ja eine weitergehende Emanzipation vom Wasser. Die freien Gametophyten, die kleinen Vorkeime der Farnpflanzen, sind auf hohe Feuchtigkeit angewiesen. Die Befruchtung erfolgt über Spermatozoiden im wässrigen Milieu. Bei den Samenpflanzen wird dieses alles ins Innere von festen Hüllen verlegt. Zwar kommt es da zunächst auch noch zur Ausbildung von Spermatozoiden, doch schlüpfen diese erst aus den Mikrosporen, die man nun Pollenkörner nennt, wenn diese auf den Samenanlagen gelandet sind. Die ganze Gametophytengeneration mit dem neuen Sporophytenembryo wird in eine neue Verbreitungseinheit, in den Samen, hineinverlegt. Wie dies stammesgeschichtlich schrittweise vonsttten gegangen ist, kann man sich auf grund von Fossilfunden recht gut vorstellen. Wenn diese Samen dann auch noch mit  Nährstoffvorräten versorgt werden, dann entstehen recht große Gebilde, wie z.B. bei den sogenannten „Palmfarnen“. Diese an Baumfarne und Palmen erinnernden Pflanzen entstanden im Karbon, sie hatten ihre stärkste Verbreitung im Erdmittelalter, in Trias, Jura und Kreide, zusammen mit den Dinosauriern. Es ist deshalb sehr passend, wenn im Arboretum Thiensen bei Ellerhoop eine große Dinosaurierplastik zwischen die ins Freiland ausgepflanzten Cycadeen gestellt wurde. Die heutige reliktartige Verbreitung der Cycadeen deutet übrigens auf die erdgeschichtliche Entwicklung der Kontinente hin. In der Zeit, als diese Pflanzenklasse besonders zahlreich vertreten war, war der große Südkontinent Gondwana eine einheitliche Festlandsmasse, die aus den heutigen Kontinenten Südamerika, Südafrika, Indien und Australien gehörten –  die Gebiete in denen man auch heute noch die meisten Cycadeen findet.

Der etwas irreführende deutsche Name „Palmfarn“ könnte als Aufhänger für einen Unterricht dienen, der am Beispiel dieser lebenden Fossilien den Übergang von  Sporen- zu Samenpflanzen behandelt. Warum der Vergleich mit den Reptilien? Während Moospflanzen und Farnpflanzen mit ihren relativ ungeschützten austrocknungsempfindlichen Gametophyten noch sehr wasserabhängig sind, ist die Samenbildung der entscheidende Schritt zur Emanzipation vom Wasser. Sie hat ihre genaue Entsprechung bei der Entwicklung der Wirbeltiere mit dem Übergang von den Amphibien zu den Reptilien, mit der Bildung der Eihäute (Amnion und Chorion) und trockenheitsresistenter Eier, die nicht mehr ins Wasser abgelegt werden müssen.

Dokumente der Erdgeschichte

Nadelgehölze sind damit Dokumente der Erdgeschichte. Formen, die im Erdaltertum und im Erdmittelalter entstanden sind und weit verbreitet waren, haben sich an einigen Standorten bis heute als „lebende Fossilien“ erhalten. Das gilt nicht nur für die  Palmblatt-Nacktsamer, auch für den Ginkgobaum,  und auch für Nadelgehölze im engeren Sinne, wie Urweltmammutbaum, Araukarie oder die erst vor einem guten Jahrzehnt entdeckte Wollemie Pine.

Nacktsamer und Bedecktsamer

Ich wollte das UB-Heft zunächst „Nacktsamer“ nennen. Das stieß aber auf Widerstand bei der Redaktion, da man meinte, der Begriff wäre irreführend und niemand könnte damit das verbinden, was gemeint wäre. Nun ist es aber so, dass diese Bezeichnung für die ganze Pflanzengruppe charakteristischer ist, als die Bezeichnung „Nadelgehölze“ oder „Koniferen“ (=“Zapfenträger“). Denn weder nadelförmige Blätter noch die Ausbildung von zapfenartigen Fruktifikationsorganen ist auf diese Gruppe beschränkt und außerdem gibt es eben, wie gesagt Verwandte, die ganz anders aussehen. Die genannten Palmfarne, die man besser palmblättrige oder wedelblättrige Nacktsamer nennen sollte, sind ein Beispiel. So bizarre Gestalten wie Welwitschia mirabilis aus der Namib Wüste, die schachtelhalmähnlichen Ephedra-Arten oder die wie normale Laubbäume aussehenden Gnetum-Arten wären andere Beispiele. Selbst bei den Nadelgehölzen im engeren Sinne gibt es Bäume, die wie normale Laubbäume aussehen, etwa die sogenannte Kauri-Fichte in Australien. Das entscheidende gemeinsame Merkmal dieser Gruppe ist also tatsächlich die Anordnung und der Aufbau der Samenanlagen und Samen. Diese Gebilde sitzen bei den Nacktsamern offen am Ende von kurzen Sprossen  wie bei der Eibe – oder auf Schuppen. Im Gegensatz dazu sind sie bei den Bedecktsamer in einen Fruchtknoten eingeschlossen, der aus einem oder mehreren Fruchtblättern gebildet wird. Diese heute viel artenreichere Gruppe entstand aber erst vor etwa 150 Mio. Jahren, nachdem es schon  rund 200 Mio. Jahre lang Samenpflanzen, nämlich Nacktsamer, gegeben hatte.   Die Samenanlagen und Samen sind sehr nährstoffreich. Manche schmecken auch den Menschen gut, wie Pinienkerne oder Zirbelnüsse. So war es sicher eine sinnvolle Erfindung der Evolution, diese Leckereien vor Fressern besonders zu schützen: die Bedecktsamer machen das durch das Einhüllen in die Fruchtblätter. Wie das am Anfang ausgesehen hat, das kann man heute z.B. noch bei den Magnolien sehen. Der eigentliche Vorteil dieser Umhüllung stellte sich – wie oft bei Evolutionsabläufen – aber erst danach heraus: Er lag in der großen morphologischen Plastizität der Fruchtblätter, die zu den ungeheuer vielen Fruchttypen mit den verschiedensten Verbreitungsmechanismen führte. So wie bei den Bedecktsamern der Fruchtknoten empfindlichen Samenanlagen vor dem Gefressenwerden schützt, so haben die Koniferen, die Zapfenträger, einen sehr kompakten Samenstand ausgebildet, bei dem die Samen zwischen den Schuppen des Zapfens ebenfalls sehr gut geschützt sind. Bei manchen Pyrophyten (Feuerpflanzen) sind diese Zapfen so fest geschlossen, dass sie nur durch einen Waldbrand geöffnet werden können – z.B. bei Pinus contorta.   Solche Nadelholzzapfen sind ästhetisch ansprechende Sammelobjekte. Die Samenschuppen sind in sehr regelmäßigen Spiralen angeordnet und zwar so, dass normalerweise nie zwei Schuppen übereinanderstehen, sie bilden keine Orthostichen, sondern Spirostichen, Spiralen. Der Winkel zwischen zwei Blattanlagen beträgt ca. 137° 30’. Dieser „Limitdivergenzwinkel“ teilt den Kreis im Goldenen Schnitt.   Nach botanischer Definition sind Blüten endständige Sporophyllstände. Samen enthalten Megasporangien, die Schuppen könnte man also als Megasporophylle auffassen. Dann wären Zapfen Blüten. Nun sitzen aber oft zwischen den Samenschuppen Deckschuppen – besonders auffällig z.B. bei der Douglasie. Die Erklärung hierfür liefern Fossilien aus dem späten Erdaltertum, z.B. die Gattung Lebachia: Samenschuppen sind aus Kurzsprossen entstanden, die Deckschuppen sind die dazugehörigen Tragblätter. Danach sind Koniferenzapfen Blütenstände, jede Schuppe mit den zwei Samenanlagen ist eine Einzelblüte.

Erdklima und Stoffkreislauf

Man sollte jedoch nicht meinen, Nadelgehölze wären in der Gegenwart versprengte und vereinzelte Relikte. Auch heute noch gibt es riesige Nadelwälder, die durchaus für den Stoffkreislauf der Biosphäre und damit auch für das Erdklima bedeutend sind. Ich meine die riesigen borealen Nadelwälder, die sich von Kanada und Alaska über Sibirien bis nach Skandinavien erstrecken, teilweise über mehr als 20 Breitengrade. Ihre Ausbreitung oder Zurückdrängung hat wegen der gespeicherten Kohlenstoffmengen erheblichen Einfluss auf das Erdklima. Die unüberlegte Ausbeutung der Redwood- und Mammutbaumwälder in der zweiten Hälfte des 19. Jahrhunderts war Ausgangspunkt für die Naturschutzbewegung in den Vereinigten Staaten und auf der ganzen Welt und der Anlass für die Gründung der ersten Nationalparks. Noch heute sind die letzten Nordamerikanischen Urwälder, vor allem in Kanada, von unüberlegter kommerzieller Nutzung bedroht und Naturschutzorganisationen wie Greenpeace kämpfen um ihren Erhalt.

Wirtschaft

Zweifelsohne haben Nadelgehölze eine große wirtschaftliche Bedeutung. Viele Arten wachsen schnell, schneller als die meisten Laubbäume und gerade für die Papierproduktion sind sie deshalb besonders wichtig. Auch das Harz von Nadelgehölzen war lange Zeit ein wichtiger Rohstoff und bis heute zeugen viele Ortsnamen und Familiennamen davon. Besonders viele mitteleuropäische Namen sind mit der Kiefer verbunden: Familiennamen wie Kiefer, Kienke, Künast, Kienast, oder Ortsnamen wie Kienitz, Kienbaum, – waren doch Kienspäne lange Zeit die wichtigste Beleuchtung für arme Leute. Auch der vormals wichtige Rohstoff Pech (Harz) wurde von Pechern v.a. aus Schwarz-Kiefer gewonnen. Die Waldkiefer ist der Baum des Jahres 2007. Wirtschaftliche Ausbeutung von Urwäldern betrifft nicht nur die tropischen Regenwälder sondern bis heute auch Wälder der gemäßigten Zonen, z.B. immer noch in Kanada. In Südchile wurde das Pendant zum Küstenmammutbaum, die Alerce (Fitzroya cupressoides), die ebenfalls riesengroß und uralt werden kann, durch Raubbau praktisch ausgerottet. Ihr äußerst widerstandsfähiges Holz wächst sehr langsam

Entdeckungen

Immer wieder gab es in der Neuzeit Entdeckungen von Nadelholzarten, die der Wissenschaft bis dahin verborgen geblieben waren. Die erste dieser spektakulären Neuentdeckungen war der Ginkgo-Baum, der schon 1690 von dem Japan-reisenden Arzt Engelbert Kämpfer zum ersten Mal beschrieben wurde. Dann folgten Küsten-Mammutbaum und Berg-Mammutbaum im 18. und 19. Jahrhundert und im 20. Jahrhundert der Urweltmammutbaum sowie 1994 in den Blue Mountains – knapp 200 km von der Metropole Sidney entfernt – Wollemia nobilis, die sogenannte .Wollemie-Pine, ein Araukariengewächs, das man zuerst fossil entdeckt hatte, ganz ähnlich wie den Urweltmammutbaum aus China. Jüngste Nadelbaumentdeckung des 21. Jahrhunderts ist die vietnamesische Goldzypresse (Xanthocyparis vietnamensis), die 2002 von englischen und vietnamesischen Botanikern in einem abgelegenen Berggebiet Vietnams nahe der chinesischen Grenze entdeckt wurde. Zu all diesen Entdeckungen gibt es interessante spannende Geschichten, die mittlerweile auch im Internet leicht zugänglich sind.   Damit bin ich am Ende meines Vortrags, der Ihnen nur einen kurzen Einblick in das Themenkaleidoskop der Nacktsamer geben konnte. Mehr findet sich in dem UB-Heft 300 und natürlich im Internet.