Archiv der Kategorie: Unterricht Biologie

Als Mitherausgeber der Biologie-didaktischen Zeitschrift „Unterricht Biologie“ des Erhard Friedrich Verlags in Seelze (Velber) werde ich hier zukünfige von mir als Herausgeber betreute Hefte vorstellen, in der Hoffnung, auf diesem Wege zur Mitarbeit anregen zu können. Von Fall zu Fall soll auch über bereits erschienene Hefte informiert werden.
URL zu Unterricht Biologie:
http://www.friedrich-verlag.de/go/Sekundarstufe/Naturwissenschaften/Biologie/Zeitschrift%3A+Unterricht+Biologie

Miteinander

LINK-NAME LINK-NAME

Vorbemerkung

Individuelle Fitness und natürliche Selektion sind zentrale Begriffe der Darwinschen Evolutionstheorie. In diesem Zusammenhang spielte der Begriff des „struggle for life“, des „Kampfes ums Dasein“, eine wichtige Rolle. Daraus wurde im Sozialdarwinismus nicht nur der „Sieg des Stärkeren“ sondern auch das „Recht des Stärkeren“ auf diesen Sieg als natürliches Recht abgeleitet. Dies wurde auch – nicht im Sinne Darwins, aber doch mit Bezug auf seine Theorie – auf die menschliche Gesellschaft übertragen und hatte starke Auswirkungen auf das Erziehungssystem, das lange Zeit auf die Förderung der Einzelleistung und die Qualifikation des Individuums abgestellt wurde.

Schon früh wurde diesen Folgerungen widersprochen, zum Beispiel von dem im englischen Exil lebenden russischen Anarchisten Pjotr Alexejewitsch Kropotkin (1842-1921) in seiner leider in Vergessenheit geratenen Schrift „Mutual Aid“. Auch die Erkenntnisse anderer Naturwissenschaftler zur großen Bedeutung der Kooperation bzw. des Mutualismus für die Evolution der Lebewesen gerieten in der ersten Hälfte des 20. Jahrhunderts in Vergessenheit. Eine Wiederbelebung erfuhren mutualistische Theorien erst wieder durch die bahnbrechenden Arbeiten Lynn Margulis` .

In der Wirtschaft hat Teamwork schon länger eine große Bedeutung. Gefördert durch die Digitalisierung und die elektronischen Medien hat sich in den letzten Jahrzehnten die Forderung nach gemeinschaftlichem Lernen in den Erziehungswissenschaften neu formiert unter den Begriffen „Kooperatives Lernen“ und „Kollaboratives Lernen“. Auch hier beruft man sich nicht nur auf Erkenntnisse der Pädagogik und der Sozielwissenschaften sondern auch auf die Biologie. Aus den Erkenntnissen über die Rolle der Kooperation bei der Evolution der Lebewesen leitet man ab, dass es eine genetische Disposition der Menschen für Kooperation und gemeinschaftliches Lernen geben muss (vgl. z. B. E.O. Wilson 2012).

Vor 20 Jahren, im Dezember 2010, erschien das von mir herausgegebene Unterricht Biologie Heft 280 „Miteinander“. Ich finde, angesichts dieser Entwicklungen ist es immer noch aktuell. Deshalb soll hier  der Basisartikel im ungekürzten Entwurf mit einigen kleinen Korrekturen veröffentlicht werden:

Leben heißt Zusammenleben

„Don’t compete,combine!“  Kropotkin 1902

„Du sollst das Stroh zu Gold mir spinnen, ich brauche davon große Mengen“, fordert der Prinz die Müllerstochter auf und im Märchen bedient sich das arme Mädchen der besonderen Kenntnisse von Rumpelstilzchen. Auch wenn es wohl nie gelingen wird aus Gras Gold zu produzieren, so sind andere Transsubstantiationen doch fast genau so wunderbar: z.B. die Umwandlung von Gras in Milch, die von den Kühen in großem Maßstab für uns Menschen geleistet wird. Allerdings nicht von den Kühen alleine. Nur die Mikroben, in erster Linie die Bakterien, die in ihrem Pansen leben, schaffen es, den Hauptbestandteil des Grases, die Zellulose, aufzuschließen und damit der Verdauung und letzten Endes der Umwandlung in Milch zugänglich zu machen,

Herbivoren, Konsumenten erster Ordnung, sind wichtige Bestandteile von Ökosy­stemen, sie haben entscheidenden Anteil an der Regulation von Stoff- und Ener­giefluss, und sie alle sind dabei auf Verdauungshelfer in ihrem Darm angewiesen. Außerdem sind viele Herbivoren, wie die Vorfahren unserer Hausrinder, die Auer­ochsen, soziale Tiere, die in großen Herdenverbänden zusammenleben, in denen es Rangordnung und Kommunikation, gemeinschaftliche Aufzucht der Jungtiere und gegenseitige Hilfe gibt. Kein Wunder, dass gerade solche sozial lebenden Tiere vom Menschen domestiziert und genutzt wurden, eine neue Form der Wechselbeziehun­gen zweier Arten- durchaus nicht nur zum Vorteil des Menschen, mindestens, wenn man den genetischen Erfolg und die heutige Verbreitung der Haustierarten betrachtet. Bei der Verarbeitung der Milch schließlich bedient sich der Mensch wiederum mikro­bieller Lebewesen, die man schon beinahe als „Hausmikroben“ bezeichnen könnte.

Schließlich gibt es einen  weiteren Aspekt des neuen Miteinander von Menschen und Haustieren: Durch die Domestikation kamen neue infektiöse Keime in die menschlichen Populationen wie Pocken, Masern oder Influenza. Die Viehzüchter wurden dagegen allmählich immun, menschliche Populationen ohne Haustiere blieben sehr anfällig . Dies ist mit ein Grund für den raschen Niedergang indigener Kulturen nach der Kolonisation durch Europäer bzw. Asiaten (vgl. Diamond 1997)..

So gibt dieses Beispiel „Milch“ einen Eindruck von der Vielschichtigkeit des Miteinander des Lebens und der Lebewesen auf unserem Planeten.

Einmal zeichnet sich Leben durch Individualität und damit durch Grenzen und Grenzziehungen aus, zum anderen sind alle diese Grenzen – angefangen von den intrazellulären Membranen – „semipermeabel“. Wechselwirkungen über Barrieren hinweg sind ein Charakteristikum aller Lebensvorgänge und auch aller Lebewesen, insbesondere auch Wechselwirkungen mit anderen Lebewesen.

Bei der weiteren Darstellung dieser Wechselbe­ziehungen wollen wir sie zunächst in intraspezifische und interspezifische Beziehun­gen unterteilen, auch wenn dies ge­rade bei den Gruppen schwierig ist, bei denen sich – wie bei den Prokaryoten – Arten nicht eindeutig definieren lassen. Ein weiterer Ab­schnitt wird sich mit den Wechsel­beziehungen innerhalb von Ökosystemen beschäf­tigen und schließlich soll die Rolle des Menschen als „hypersoziales Wesen“ in den Blick genommen werden.

Interspezifische Wechselbeziehungen

Forschungsarbeiten zum Thema „Symbiose“ bzw. „Kooperation“ haben lange Zeit eine relativ unterge­ordnete Rolle in der Biologie gespielt. Gerade im Hinblick auf die biologische Evolu­tion wurde dieses wichtige Prinzip bis heute nicht ins rechte Licht gerückt – mögli­cherweise als Folge des unglücklichen Begriffs vom „Kampf ums Da­sein“ und den mit diesem Schlagwort verbundenen populärwissenschaftlichen und biologistischen Interpretation der Evolutionstheorie (Sozialdarwinismus). Dabei gab es in der zweiten Hälfte des 19. Jahr­hunderts durchaus wichtige Ansätze und die Zukunft weisende Erkenntnisse (vgl. Sapp 1994). Anton de Bary, ursprünglich Pflanzenpathaloge und Mykologe, defi­nierte Symbiose als das Zusammenleben verschiedener Arten, wobei über den Nut­zen für die einzelnen Ar­ten noch nichts ausgesagt war. Er legte 1866 den Grundstein für die Erkenntnis, das Flechten einen Doppelorganismus aus Pilz und Alge darstellen. Der Begriff des Mutualismus wurde von dem Belgier Pierre-Joseph van Beneden 1873 geprägt (Vorlesung: Ein Wort zum Sozialleben Niederer Tiere). Albert Bernhard Frank – nach ihm sind die N2-assimilierenden Actinobakterien in den Erlenknöllchen „Frankia“ benannt – prägte 1877 den Begriff  „Symbiotismus“ für alle Formen des engen Zusammenlebens verschiedener Arten ohne Berücksichtigung , wem dieses Zusammmenleben Vorteile oder Nachteile bringt. 1885 entdeckte er die Mykorrhiza. Der Berliner Karl Brandt und der Edinburgher Pattrick Geddes  beschäftigten sich besonders mit „grünen“ niederen Tieren wie Hydra, Spongilla und Stentor. Geddes veröffentlichte 1881 einen Aufsatz über „Symbiosis of Algae and Animals“. Auch die Endosymbionten-Theorie der Eucyten wurde schon im letzten Jahrhundert geboren. A. F. W. Schimper äußerte 1883 als Erster die Vermutung, dass Plastiden Algen-Endosymbionten in Zellen sein könnten. Zu Beginn des 20. Jahrhunderts wurden diese Idee von den russischen Biologen Konstatine Sergejewitsch Mereschkowskii und Andrei Sergejewitsch Famintsyn aufgegriffen. Der von Famintsyn versuchte experimentelle Beweis – die isolierte in vitro Kultur von Plastiden und Mitochondrien – misslang allerdings. Die Theorie geriet zunächst in Vergessenheit. Erst in den letzten zwei Jahr­zehnten des 20. Jahrhunderts wurde sie vollständig anerkannt (vgl. z.B. Margulis 1981, Schwemmler/ Schenk 1980). Es gilt heute als gesichert, dass es bei verschiedenen Algen zu mehrfachen Endosymbiosen (sekundären und tertiären Endosymbiosen) gekommen ist. Diese kamen dadurch zustande, dass eukaryotische fotosynthetisch aktive Algen durch Phagocytose aufgenommen und dann nicht vollständig verdaut wurden. Heute noch kann man diese Mehrfachendosymbiosen an der Zahl der die Chloroplasten umgebenden Membranen erkennen. Teilweise finden sich auch noch Kernreste in den Chromatophoren.

Die Beziehungen verschiedener Arten kann man – entsprechend der Einteilung in Kasten 1 – in Konkurrenz, Karpose (= Parabiose), Symbiose und Antibiose einteilen. Der Nutzen oder Schaden, den die Wechselbeziehung den Partnern gibt, kann durch Plus- und Minuszeichen bzw. durch eine Null bei Indifferenz ausgedrückt werden. Konkurrenz erhält dann zwei Minuszeichen, Karpose ein Plus und eine Null, Symbiose zwei Pluszeichen und Antibiose ein Plus- und ein Minuszeichen. Im Gegensatz zu dieser Einteilung fasste de Bary (1879) den Begriff der Symbiose weiter. Er verstand darunter einen Überbegriff für Parasitismus, Symbiose und Karopse, schloss allerdings Vereinigungen kurzer Dauer (z.B. das Zusammenwirken von bestäubenden Insekten und Blütenpflanzen) aus. Diese Symbiosedefinition hat sich vor allem im angelsächsischen Sprachraum bis heute erhalten. In der folgenden Darstellung halten wir uns jedoch an den hier gebräuchlicheren Einteilungsvorschlag im Kasten.

Tab. 1 Formen des Zusammenlebens zwischen verschiedenen Arten

Konkurrenzausschlussprinzip

Nach Hardin (1960) kann die Konkurrenzsituation zwischen zwei Arten kein Dauerzustand sein: Entweder wird eine Art verdrängt oder sie wandelt sich in ihren Ansprüchen und es kommt zu einem räumlichen (Allopatrie) oder ökologischen (Sympatrie) Nebeneinander. Dieses Konkurrenzausschlussprinzip ist eng gekoppelt mit der Definition der ökologischen Nische. Eine solche kann definitionsgemäß ebenfalls nur von einer Art gebildet werden. In Wirklichkeit sind die Verhältnisse allerdings etwas komplizierter. Dies hängt vor allem damit zusammen, dass es unter natürlichen Bedingungen keine Konstanz der Umweltfaktoren gibt. Im Laborversuch konnte Park 1954 und 1962 zeigen, dass zwei Mehlkäferarten mit nahezu identischen Umweltansprüchen sich unter Laborbedingungen gegenseitig verdrängen und dass es auf die Umweltbedingungen ankommt, ob die eine Art die andere oder die andere die eine verdrängt. Wenn aber unter natürlichen Bedingungen z.B. das Klima dauernd schwankt, so können auch zwei oder mehr Arten mit nahezu gleichen Ansprüchen in einem Lebensraum erhalten bleiben.

Symbiosen im engeren Sinne

Unter Symbiose in diesem Sinne versteht man sowohl langdauernde, eventuell sogar lebenslange enge Gemeinschaften, wie sie zum Beispiel zwischen den genannten Darmbakterien und den Rindern , zwischen Korallen und einzelligen Zooxanthellen oder auch zwischen Einsiedlerkrebs und Aktinie beschrieben werden als auch Gemeinschaften, die nur von kurzer Dauer sind. Hierzu gehören z.B. die Beziehungen zwischen blütenbestäubenden Insekten und Blüten (vgl. UB 236 Pflanzen und die sie bestäubenden Insekte). Andere Beziehungen – auch als „Allianz“ bezeichnet – kennzeichnen vorübergehende lockere Gemeinschaften wie die zwischen Madenhackern und Herbivoren oder zwischen großen Rifffischen und Putzerfischen.

Einige Beispiele:

Sehr charakteristisch sind Stoffwechselsymbiosen zwischen Tieren und Prokaryoten und Pilzen. Dies hängt damit zusammen, dass bei Pilzen und insbesondere auch bei Prokaryoten eine Vielzahl von Stoffwechselwegen entwickelt sind, die bei Eukaryoten fehlen. Durch die Symbiose können sich die Eukaryoten so Nahrungs- und Energiequellen erschließen, die anderenfalls verschlossen geblieben wären. Gleichzeitig profitieren die endosymbiotischen Mikroben von den Stoffwechselendprodukten ihrer Symbiosepartner und von den relativ geschützten Lebensräumen, die ihnen von diesen geboten werden.

Eine besonders enge Symbiose dieser Art besteht zwischen Blattläusen und den endocytosymbiotischen Bakterien der Gattung Buchnera, die in besonders großen Darmzellen (Bakteriocyten) leben. Die Endosymbionten werden von Generation zu Generation über die Eier weitergegeben. Buchnera ist eng verwandt mit Escherichia coli aber im Gegensatz zu diesem weit verbreiteten Darmbakterium ist ihr Genom wesentlich kleiner. Dafür sind in einer Zelle über 100 Kopien enthalten. Eine vollständige Genomanalyse von Buchnera ergab, dass keine Gene für Zellober­flächen-Lipopolysaccharide und Phospholipide vorhanden sind. Ebenso fehlen die meisten Regulatorgene und Gene, die der Verteidigung der Zellen nach außen die­nen. Das enge Zusammenleben mit den Wirten wird dadurch deutlich, dass von Buchnera alle für seinen Wirt essentiellen Aminosäuren produziert werden. Dafür sind mindestens 55 Gene verantwortlich. Umgekehrt werden von dem Bakterium keine für den Wirt nicht essentiellen Aminosäuren produziert. Diese Komplementari­tät zeigt, dass die Symbiose schon sehr lange erfolgreich arbeitet. So bilden Blatt­läuse keine stickstoffhaltigen Exkrete, vielmehr produzieren sie Glutamin und dieses wird von den Bakterien als Ausgangsstoff für die Produktion von essentiellen Ami­nosäuren verwendet. Da Buchnera sogar seine Außenmembran vom Wirt erhält, kann man sagen, dass bei dieser Symbiose ein Stadium erreicht ist, das Buchnera schon fast als ein Zellorganell erscheinen lässt.

Noch komplizierter ist die Doppelendocytobiose in Darmzellen von Motten-Schildläu­sen. Wie durch Genanalysen nachgewiesen, enthalten die Bakterien in den Darmzellen ein weiteres endosymbiontisches Bakterium (von Dohlen, 2001: 433-436).

Viele ähnliche Beziehungen kommen bei Holz bzw.  Zellulose fressenden Insekten wie Tabakskäfer, Borkenkäfer und Termiten vor. Auch blutsaugende Egel, Zecken und Läuse bessern die Inhaltsstoffe ihrer relativ einseitigen Nahrung durch symbiontische Darmbakterien auf. Sie können in besonderen Darmzellen (Bacteriocyten, auch Mycetome genannt), in Darmaussackungen oder auch frei im Darmlumen vorkommen.

Ein anderer Stoffwechsel-Symbiosetyp besteht zwischen Höheren Pflanzen und Prokaryoten, die das Luftstickstoffmolekül (N2) assimilieren können. Besonders bekannt sind diese Stickstoffendosymbionten der Gattung Rhizobium von den Hülsenfrüchtlern (Wurzelknöllchen). Bei anderen Höheren Pflanzen wie Erlen oder Sanddorn kommen stickstoffbindende endosymbiontische Aktinobakterien der Gattung Frankia vor. Schließlich können auch Blaugrüne Bakterien symbiontisch mit Höheren Pflanzen zusammenleben z.B. das Blaugrüne Bakterium Anabena azollae in besonderen Taschen des Schwimmfarns Azolla und andere Blaugrüne Bakterien in korallenartigen in den Luftraum ragenden Wurzeln von Cycadeen.

Noch nicht sehr lange bekannt sind die symbiotischen Beziehungen zwischen Sphagnen und methanotrophen Bakterien. Die Bakterien, die in den Wasserspeicherzellen der Sphagnen leben, nutzen die Oxidation des in tieferen Torfschichten gebildete Methan zur Energiegewinnung und sind gleichzeitig dazu in der Lage, Luftstickstoff zu assimilieren. Sie profitieren von der Sauerstoffproduktion und den teilweise abgegebenen Kohlenhydraten der Photosynthese betreibenden Sphagnum –Chlorocyten.

Blaugrüne Bakterien kommen auch als Symbiosepartner bei Flechten vor. Noch wichtiger sind bei dieser Symbiose aber eukaryotische Algen und zwar aus der Gruppe der Grünalgen, die mit Pilzarten eine sehr enge Gemeinschaft eingegangen sind. Hier ist durch die Symbiose eine völlig neue morphologische, ökologische und physiologische Einheit entstanden: Flechten sehen anders aus als die beiden Partner alleine, sie können völlig andere Lebensräume, auch extreme Standorte in der Arktis in Hochgebirgen oder in Wüsten, besiedeln und es gibt zahlreiche typische Flechteninhaltsstoffe wie z.B. Depside, Butenoide oder Azofarbstoffe, die jeweils vom einen der beiden Partner nicht gebildet werden können.

Außer in Flechten spielen Algen als Synbionten auch in vielen niederen Tieren eine bedeutende Rolle, so in den Polypen der Korallen, in marinen Würmern und Schnecken, in verschiedenen Muscheln und Schwämmen (vgl. UB 225 Algen, UB 254 Riffe). In al­len diesen Fällen werden die heterotrophen Tiere durch die Algensymbionten teil­weise autotroph. Bei einigen Strudelwürmern (z.B. Convoluta roskovensis) kann dies bis zum Verlust des eigenen Darmkanals gehen. Keeble (1910) hat hierfür die treffende Bezeichnung „Plant animals“ – Pflanzentiere – geprägt.

Eine weitere typische Symbiose zwischen Prokaryoten und Tieren stellen die verschiedenen Leuchtsymbiosen dar. Meerestiere wie Manteltiere, Tintenfische und Knochenfische nehmen die im Seewasser weit verbreiteten Leuchtbakterien in besonderen Organen als Symbionten auf und betreiben mit der Bakterienkolonie besondere Leuchtorgane.

Auch zwischen vielzelligen Tieren und Pflanzen gibt es zahlreiche symbiotische Gemeinschaften. Besonders bemerkenswert sind in diesem Zusammenhang die sogenannten Ameisenpflanzen oder Myrmecophyten. Sie stellen Hohlräume in Blättern, Stielen oder Wurzeln berei, die vor allem von Ameisen aber auch von anderen Kleintieren bewohnt werden. Besonders zahlreich kennt man solche Ameisenpflanzen aus Südostasien. Mehr als 150 Arten aus 27 Pflanzenfamilien wurden beschrieben.

Der baumförmige Schmetterlingsblütler Humboldtia laurifolia aus Sri Lanka hat hohle Internodien mit einem sich selbst öffnenden Eingang.  Zusätzlich zu diesen „Wohn­höhlen“ (Domatium) bietet der Baum eine Reihe von extrafloralen Nektarien, die den Bewohnern gleichzeitig Futter liefern. Die Hohlräume werden vor allem von Amei­senarten besucht und besiedelt, besonders häufig von Technomyrmex albipes. Aber die Besiedelung kann auch durch verschiedene Ameisenarten erfolgen sogar in un­mittelbarer Nachbarschaft. In einer gründlichen Untersuchung (Krombein et al. 1999) wurden weitere zehn Ameisenarten, verschiedene andere Insekten sowie Pseu­doskorpione und Ringelwürmer als regelmäßige Bewohner der „Wohnhöhlen“ nach­gewiesen. Bei einigen dieser Arten handelt es sich um eine sehr enge Gemeinschaft mit Humboldtia. Eine Vernichtung dieser Baum-Art würde auch zum Verschwinden der symbiontischen Bewohner führen.

Für die Pflanzen bringen die besiedelnden Ameisen vor allem einen Schutz gegen Fressfeinde. Die Wirksamkeit dieses Pflanzenschutzes wurde für das Symbiosepaar Crematogaster-Ameise und Ameisenpflanze Macaranga (Wolfsmilchgewächse) ge­nauer untersucht. In diesem Falle werden von der Ameisenpflanze auch noch fett- und eiweißreiche Futterkörperchen für die Ameisen bereit gestellt. Die Ameisen re­vanchieren sich dafür, indem sie ständig die Oberfläche ihres Wirtsbaumes absu­chen und diesen dabei von allem Fremdmaterial reinigen. Sie entfernen Insekteneier ebenso wie Raupen, Käfer und andere pflanzenfressende Gliedertiere. Auch pilzliche Krankheitserreger werden von den Ameisen beseitigt. Man konnte nachweisen, dass Macaranga mehr als 80 Prozent seiner Blattfläche verliert, wenn man die symbionti­schen Ameisenkolonien entfernt (Linsenmaier, Heil 2001). Es konnte nachgewiesen werden, dass das Pflanzen­hormon Jasmonsäure bei Macaranga  die Blattnektarproduktion steuert  (Boland et al.2001): Kommt es zu einer starken Schädigung durch Insektenfraß, wird die Hormonaus­schüttung erhöht und dies wiederum führt zu einer stärkeren Nektarproduktion. Da­durch lockt die Pflanze Ameisen, Wespen und andere Nektarkonsumenten an, die ihr helfen, sich gegen die Fraßfeinde zu verteidigen. Damit ist eine Form der Wechselwirkung zwischen Höheren Pflanzen angesprochen, deren Erforschung erst in jüngerer Zeit begonnen hat. Das Methyljasmonat ist einer von vielen Stoffen, der der Kommunikation zwischen Pflanzen dient. Pflanzen, die von Herbivoren z.B. Raupen befallen werden, produzieren in erhöhtem Maße Signalstoffe wie Jasmonat und diese bewirken bei anderen Pflanzen – auch bei anderen Pflanzenarten – eine verstärkte Produktion von für die Pflanzenfresser schädlichen Stoffen. Die Beziehung zwischen Blütenbestäubern und bestäubten Pflanzen ist in der Regel weniger eng. Es gibt jedoch auch hier Beispiele einer engen Gemeinschaft zweier Arten, die für beide lebensnotwendig ist. Dies gilt etwa für die komplizierten Wechselwirkung von Feige und Feigen-Gallwespe oder von Yucca und Yucca-Motte (Abb.   ). Im natürlichen Lebensraum der Yucca-Arten im westlichen Nordamerika lebt ein kleiner Nachtfalter von etwa 13 mm Körperlänge, die Yucca-Motte (Pronuba yuccasella). Die Begattungsflüge der Yucca-Motten finden in der Dunkelheit statt. Das befruchtete Weibchen beginnt noch in der Nacht, die weißen duftenden Yuccablüten aufzusuchen und dort Pollen zu sammeln. Mit besonderen Fortsätzen der Kiefertaster wird der Pollen zu einem Klumpen geformt, der oft mehrere Millimeter Durchmesser haben kann und zwischen Kopf und Ansatz der Vorderbeine eingeklemmt und mit den Tentakeln seitlich festgehalten wird. Mit diesem Pollenpaket fliegt das Weibchen zu einer anderen Blüten derselben Art. Auf den dicken wachsachtigen Staubfäden sitzend, stößt es dann seine Legescheide durch die weiche Wand des Fruchtknotens in desse Höhlung hinein und legt an den Samenanlagen ein Ei ab. Sodann wandert das Tier entlang dem Stempel bis zur Narbe, stopft etwas von dem mitgebrachten Pollen in eine der drei Narbenfurchen oder in den dort offenen Griffelkanal, legt wieder ein Ei in den Fruchtknoten und so fort, bis sich eine Anzahl von Eiern im Inneren des Fruchtknotens befindet. Bald darauf wachsen die Pollenschläche von der Narbe durch den Griffelkanal zu den Samenanlagen und die Eizellen werden befruchtet. Während die Samenanlagen zum Samen heranwachsen, schlüpfen auch die jungen Räupchen aus den Eiern und sie beginnen, die heranwachsenden Samenanlagen aufzufressen. Nach einem Monat sind die Raupen ausgewachsen und verlassen den Fruchtknoten. Sie verpuppen sich in der Nähe der Yuccapflanze im Erdboden. Da die Raupen bis zum Verlassen des Fruchtknotens nur einen Teil der zahlreichen Samenanlagen verzehren, können sich viele noch zu reifen Samen entwickeln.

Antibiosen

Im Gegensatz zur Symbiose kennzeichnet die Antibiose eine Beziehung, die für ei­nen der beiden Partner vorteilhaft, für den anderen aber schädigend ist. Ganz ein­deutig gilt dies z.B. für die Beutegreifer-Beute-Beziehung . Nicht ganz so eindeutig ist dies für die für die Bezie­hung, die zwischen Pflanzen und Pflanzenfressern besteht, da die Konkurrenzkraft bestimmter Pflanzen durch regelmäßige Beweidung gestärkt wird. Auf solche Nahrungs­ketten soll jedoch hier nicht weiter eingegangen werden.

Demgegenüber bezeichnet man als Parasitismus, wenn ein Parasit einen Wirt aus­nützt ohne dessen unmittelbaren Tod zu bewirken. De Bary definierte den Parasitis­mus folgendermaßen: „… der vollständige Parasitismus, d.h. jene Einrichtung, bei welcher ein Tier oder eine Pflanze den ganzen Vegetationsprozess durchmacht auf oder in einem anderen, ei­ner ungleichnamigen Spezies angehörenden Organismus. Letzterer dient jenem, dem Parasiten, ausschließlich als Wohnort und liefert ihm sein gesamtes Nährstoff­material. Er ist in jeglichem Sinne des Wortes sein Wirt. Und jener lebt auf Kosten des Wirtes insofern sein Nährstoffmaterial die Lebendkörpersubstanz oder die zur eigenen Ernährung aufgenommene Nahrung dieses ist.“ Dabei weist schon De Bary darauf hin, dass es natürlich möglich sein wird, Parasiten auch außerhalb des Wirts künstlich am Leben zu erhalten, indem man ihnen eine geeignete Nährlösung bietet.

Eine für Parasiten besonders typische Erscheinung ist, dass sie oft auf mehrere Wirtsarten angewiesen sind, die sie im Laufe ihres Lebenszyklus sukzessive besie­deln. Häufig ist dieser Wirtswechsel auch noch mit einem Generationswechsel des Parasiten verbunden.

So gibt es vermutlich kaum eine höhere Pflanzenart, die nicht von einem oder meh­reren Rostpilzen parasitiert wird. Eine große Zahl von Rostpilzen parasitieren auf Nutzpflanzen und sie sind deshalb für den Menschen von besonderer Bedeutung. Si­cherlich ist dies ein Grund dafür, dass der Lebenszyklus vieler Rostpilze relativ gut erforscht ist (Gäumann 1959). Stellvertretend für die komplizierten Beziehungen der Rostpilze zu ihren Wirtspflanzen sei der Getreiderost (Puccinia graminis) erwähnt. Dieser Pflanzenparasit entwickelt sich einmal auf der Berberitze, zum anderen auf Getreidearten. Auf der Berberitze wächst das haploide Stadium des Basidiomyceten, auf der Getreidepflanze das Zweikernstadium. In überwinternden zweikernigen Dauersporen kommt es zur Kernverschmelzung und anschließend zur Meiose und zur Basidienbildung.

Nachdem der Entwicklungszyklus des gefährlichen Getriederostes aufgeklärt war, hat man in den 30er und 40er Jahren versucht, durch Ausrotten der Berberitze auch dem Rostpilz die Lebensgrundlagen zu entziehen. Dies gelang aber nicht, da in milden Wintern auch ungeschlechtlich produzierte Sporen überdauern und immer wieder zu einer Infektion der Getreidepflanzen führen können. Im übrigen werden solche Pflanzenparasiten immer durch große Monokulturen besonders gefährlich. Unter natürlichen Bedingungen können sich die Pflanzen gegen Parasiten sowohl tierlicher als auch pilzlicher Art recht gut verteidigen. Dabei kommt es teilweise auch zu einer Wechselwirkung zwischen recht verschiedenen Parasitenarten. So werden vom Verticillium-Pilz befallene Baumwollpflanzen weniger von parasitären Milben aufgesucht als nicht befallene und umgekehrt kann kein (kurzfristiger) Milbenbefall die Pflanzen resistenter gegen Pilzbefall machen (Martin 2002, S. 54/55).

Besonders zahlreiche Parasiten mit komplizierten Lebenszyklen kennt man vom Stamm der Plattwürmer (Plathelmintes). Typisch für die Saugwürmer (Trematoda), einer Klasse der Plathelminthes, ist eine endoparasitische Lebensweise in Darm, Leber, Lunge, Bindegewebe und Blutgefäßsystemen von Wirbeltieren. Sie haben einen relativ komplizierten Generationswechsel, der gleichzeitig mit einem Wirts­wechsel verbunden ist: Aus den befruchteten Eiern der Tiere, die im Hauptwirt leben, schlüpfen in der Regel Wimpernlarven (Miracidien), die im ersten Zwischenwert zur Sporocyste werden. Aus der Sporocyste entstehen sogenannte Redien, die im zweiten Zwischenwirt zu Cercarien heranwachsen. Aus ihnen entwickeln sich, nach­dem sie von Wirtstieren aufgenommen wurden, die adulten Geschlechtstiere. Bekannt ist das Beispiel des Kleinen Leberegels aus den Gallengängen von Schafen mit den Zwischenwirten Heideschnecke bzw. Zebraschnecke und Ameise. Das besondere an dieser Art von Parasitismus ist, dass der Parasit in diesem Fall die Ameise veranlasst, sich an Pflanzenstängeln festzukrallen. Dadurch wird sie besonders leicht von Schafen gefressen, was der weiteren Verbreitung des Parasiten dient. So abenteuerlich diese komplizierte, angepasste Lebensweise erscheint, so hat sich in jüngerer Zeit gezeigt, dass sie doch nicht einmalig ist. Ähnliche Erschei­nungen kennt man von anderen parasitischen Trematoden: Microphallus piriformis lebt einmal in einer Strandschnecke (Littorina saxatilis), zum anderen in der He­ringsmöwe. Es wurde nachgewiesen, dass von Trematoden befallene Strandschnecken die Tendenz haben, aufwärts zu krie­chen, also in eine Position, in der sie leichter von Möwen gefressen werden können (MacCarthy 2000, 1161-1166). Befallene Schnecken verändern auch ihre Verhaltensweise bezüglich der Gezeiten. Im Gegensatz zu nichtbefallenen, kriechen sie gerade bei fallender Tide aufwärts. Nicht nur von Wirbellosen sondern sogar von Säugetieren kennt man eine solche parasitenbewirkte Verhaltensänderung: Ratten, die von dem Einzeller Toxoplasma gondii befallen sind, den sie vor allem aufsammeln, wenn sie Katzenkot fressen, werden neugieriger und weniger furchtsam. Das lässt sie zu einer leichteren Beute für Katzen werden und hilft so Toxoplasma, in seinen Hauptwirt zurückzukehren ( Berdoy 2000,1591-1594).

Karposen

Auf die große Zahl der Beziehungen, die für einen Partner mehr oder weniger vor­teilhaft, für den anderen jedoch nicht schädigend sind, sei hier nur knapp eingegan­gen. Hierher gehören die Wohngemeinschaften (z.B. Fuchs und Brandgans) oder auch der zeitweilige Aufenthalt in Körperhöhlen von anderen Tieren. Die Nadelfische aus der Familie der Carapidae kommen mit etwa 25 Arten in wärmeren und warmtemperierten Meeren vor. Sie wohnen alle in Actinien, Seesternen, Seegurken, Feuerwalzen oder in Muscheln. Genauer wurde Carapus acus, ein mediterraner Nadelfisch untersucht. Er verlässt seien Wohnort Seegurke nur nachts. Um in die Seegurke hinein zu gelangen, schwimmt er mehr oder weniger senkrecht stehend mit wedelndem Schwanz um sie herum. Immer wieder wird dann der Versuch unternommen, am Hinterende in den Wirt einzudringen. Dazu stellt sich der Nadelfisch mit seinem Kopf dicht vor die Kloakenöffnung, führt seine Schwanzspitze am Körper entlang nach vorn und wahrscheinlich in dem Augenblick, in dem das Atemwasser in die Seegurke strömt, sich schnell umwendend, stößt er sein Hinterende in die Kloake. Dann dringt der Fisch nach und nach immer tiefer ein. Der Fisch dringt zunächst in die Wasserlunge der Seegurke ein, durchbricht diese aber dann, um sich in der Leibesöhle aufzuhalten. Während viele Nadelfische die Holothurien und andere Wirte nicht weiter schädigen, konnte man für Carapus acus nachweisen, dass er sich von den Geschlechtsdrüsen der Seegurke ernährt. Andere Arten kommen im Muscheln vor. Wenn die Fische in der Muschel sterben, werden sie als Fremdkörper mit einem Perlmuttüberzug versehen (z.B. Carapus homei aus der Karibik).

Auch die actinienbewohnenden Clownfische oder die als Muschelwächter bezeichneten Kurzschwanzkrebse, die in der Mantelhöhle von Muscheln zu finden sind, wären hier zu nennen. Die Aktinien könnten allerdings auch von den Futterresten der Clownfische profitieren, weshalb diese Partnerschaft oft auch als echte Symbiose bezeichnet wird.

Eine besonders große Rolle spielt die sogenannte Epökie (Aufsitzertum) – Lebewesen siedeln auf anderen. Besonders eindrücklich wird dieses Prinzip in den üppigsten Lebensräu­men, wie Regenwäldern oder Korallenriffen, demonstriert. Aber auch bei uns gibt es viele „Epiphyten“ (Moose und Flechten auf Baumrinde) und „Epizoen“ (z.B. Seepoc­ken auf Muschelschalen oder Krebspanzern, Glockentierchenkolonien auf Wasser­flöhen und Ruderfußkrebsen.)  Eine besondere Form der Wechselwirkung ist die der Transportgemeinschaft (Phoresie). Dungmilben und Fadenwürmer heften sich an Mistkäfer an, andere Milben werden von Weberknechten transportiert. Schiffshalter lassen sich von großen Fischen mitnehmen.

Intraspezifische Kooperation

„Wo ich auch immer das Tierleben in reicher Fülle auf engem Raum beobachtete, sah ich gegenseitige Hilfe und gegenseitige Unterstützung sich in einem Maße betätigen, dass ich in ihnen einen Faktor von größter Wichtigkeit für die Erhaltung des Lebens und jeder Spezies sowie ihrer Fortentwicklung zu ahnen begann.“ (Kropotkin 1902).

Artgenossen sind evolutionsbilogisch betrachtet von Natur aus Konkurrenten. Trotzdem kann man bei den Interaktionen zwischen Individuen einer Art, im allgemeinen auch als „Sozialverhalten“ bezeichnet, eine Vielzahl von Verhaltensweisen erkennen, die eindeutig koopertiv sind. Die ultimaten Ursachen solcher Verhaltensweisen sind z.B. die Fortpflanzung, die Brutpflege, die Fürsorge für die Jungtiere, der Schutz vor dem Gefressenwerden, der gemeinsame Beutefang oder die Sicherung von Weidegründen usw. Proximate Ursachen können in Erbkoordinationen oder in Lernvorgängen liegen.

Konkurrenz und Kooperation

Zu den Interaktionen zwischen Artgenossen gehören nicht nur kooperative Verhaltensweisen sondern auch Aggression und Konkurrenz, Rangord­nung oder sogar Täuschung. Die Anpassungsselektion im Sinne Darwins ist, wenn auch nicht die einzige, so doch eine wichtige Grundlage der Evolution. Sie beruht auf dieser in­nerartlichen Konkurrenz und eventuell auf zwischenartlicher Kooperation. Die Individuen einer Art, die am meisten lebensfähige und überlebensfähige Nachkommen zeugen, geben damit ihre Gene und so auch viele ihrer Merkmale weiter. Der Kampf um einen Paarungspartner oder um eine Nah­rungsressource ist häufig ritualisiert, d.h. für die Gegner besteht keine ernsthafte Verletzungsgefahr. Dies muss allerdings nicht so sein, wie man es z.B. von Kampfhähnen und Kampffischen weiß. Aber es ist einsehbar, dass bei Arten, bei denen die kämpfenden Rivalen sich verletzen , eine frühzei­tige Beendigung des Kampfes die Fitness fördert, da sie auch den Sieger vor unnöti­gen Verletzungen schützt.

 Unterschiedliches Balzverhalten ist eng gekoppelt mit un­terschiedlichen Paarungssystemen. Während es bei vielen Tierarten keinerlei län­ger dauernde Paarbindungen gibt, kennt man andererseits monogame und polygame Beziehungen, wobei sowohl  Polygynie als auch- seltener – Polyandrie vorkommen. Für die Paarungssysteme entscheidend dürften die besonderen Bedürfnisse der Jungen sein. So müssen Vögel nicht nur ihre Eier langwierig ausbrüten, die Jungen müssen dann auch mit erheblichen Nahrungsmengen gefüttert werden. Für beides ist eine Kooperation der Eltern von großem Vorteil. Deshalb ist eine monogame Paarbindung bei Vögeln häufig vorteilhaft – mindestens während der Brutzeiten und der Aufzucht der Jungen. Andererseits muss dies nicht unbedingt mit der rein mono­gamen Weitergabe der Gene, also mit der ausschließlichen Kopulation mit einem Geschlechtspartner, gekoppelt sein (vgl. Campell S. 1303, UB 185 Soziobiologie).

Häufig kommen in Tiersozietäten bestimmte Rangordnungen vor, die durch aggres­sive Auseinandersetzungen immer wieder gefestigt oder auch neu strukturiert wer­den. Für den reibungslosen Ablauf der innerartlichen Kooperation in einem Tierver­band sind solche Rangordnungen u.U. von Vorteil, insbesondere wenn es um kom­pliziertes Zusammenarbeiten geht,  wie etwa beim gemeinsamen Jagen. Bei Wölfen und anderen Hundeverwandten konnte nachgewiesen werden, dass die Rangordnung der weiblichen Tiere eines Rudels auch der Geburtenkontrolle dient: Wenn die Nahrung knapp ist, lassen die ranghöchsten Weibchen kaum Paarungen anderer, rangniedrigerer Weibchen zu. Sie sorgen damit dafür, dass nur ihre Gene weitergegeben werden. Ist reichlich Nahrung vorhanden, so lockern sie diese Re­striktionen.

Schließlich ist das Revierverhalten ein wichtiger Bestandteil tierlichen Sozialverhal­tens. Territorien oder Reviere dienen in der Regel der Sicherung der Nahrung, der Paarung und der Jungenaufzucht. Bei Vögeln werden solche Reviere häufig von Brutpaaren während der Brutzeit besetzt. Bei vielen Singvögeln müssen die Reviere relativ groß sein, weil sie auch der Nahrungsbeschaffung dienen. Bei Meeresvögeln können sie viel kleiner sein, da die Nahrung außerhalb des Reviers gesucht wird. Territorien werden häufig besonders markiert (Kot, Urin, Drüsensekrete). Auch aku­stische Markierungen wie lautes Brüllen der Seelöwen oder Gesänge der Singvögel dienen der Reviermarkierung. Territorialverhalten kann eine Population stabilisieren, da die Verteidigung des Territoriums verhindert, dass bei üppigem Nahrungsangebot eine Überpopulation entsteht, die dann u.U. wieder einen Zusammenbruch der Ge­samtpopulation zur Folge hätte.

Altruismus

Altruismus oder uneigennützige Hilfeleistungen zwischen Individuen einer Art sind bei Tieren weit verbreitet. Besonders verbreitet sind Formen der Brutpflege, bei denen nur die Mütter, zum Teil Mütter und Väter und selten auch nur die Väter beteiligt sein können. Dabei geht es nicht nur darum, die Jungen zu füttern, zu wärmen und für ihr Wohlbefinden zu sorgen, son­dern auch um die Verteidigung gegen Beutegreifer. Dies kann bis zur Aufoperfung des eigenen Lebens gehen. Die Soziobiologie versucht solche altruistischen Verhal­tensweisen über die Fitness zu erklären. Bei der Brutpflege und bei der altruistischen Hilfe für Verwandte argumentiert die Soziobiologie mit dem Verwandtschaftskoeffizi­enten. Der Anteil der Gene, der bei zwei Individuen aufgrund gemeinsamer Abstam­mungen identisch ist. Der Verwandtschaftskoeffizient von Geschwistern beispiels­weise beträgt 0,5, da 50 % der Gene von Geschwistern übereinstimmen. Für Cou­sins ersten Grades beträgt dieser Verwandtschaftskoeffizient 0,125. Es ist nach der soziobiologischen Theorie zu erwarten, dass sich Verwandte umso eher gegenseitig helfen, je höher dieser Koeffizient ist. Dies führt dann zu der sogenannten Familien- oder Verwandtschaftsselektion. (kin selection, Smith, Hamilton). Wenn man also sein Leben für zwei Kinder oder für acht Cousins opfert, so hat man genetisch bzw. evolutionsbiologisch gesehen, nichts verloren. Bei manchen altruistischen Verhaltensweisen ist eine Erklärung über den Verwandtschaftskoeffizienten allerdings nicht so eindeutig möglich. So warnen sich Murmeltiere gegenseitig durch Pfiffe vor Beute­greifern wie etwa Steinadlern. Wenn ein Adler oder ein anderer Fressfeind sich einer Murmeltierkolonie nähert, stößt eines der Murmeltiere einen schrillen Pfiff aus. Da­durch werden auch die anderen auf den Räuber aufmerksam und fliehen in ihre Baue. Das Pfeifverhalten allerdings wird für den Warner zu einem erhöhten Risiko. Nur wenn man davon ausgeht, dass die Murmeltiere einer Kolonie mehr oder weniger nahe verwandt sind, lässt sich dies ebenfalls über den Verwandtschaftskoeffizi­enten erklären. Eine andere Erklärungsmöglichkeit: Wenn alle Murmeltiere einer Kolonie zu diesem Verhalten bereit sind und es immer wieder ein anderes Tier trifft und dadurch der Nutzen und der Schaden ausgegli­chen wird kann dieses Verhalten ebenfalls einen Fitnessgewinn bringen („Reziproker Altruismus“).

Tiergesellschaften

Die Vergesellschaftung von Individuen einer Art kann sehr unterschiedliche Organi­sationsmerkmale aufweisen. Unkoordinierte Verbände sind z.B. Schlafgemeinschaf­ten, Überwinterungsgemeinschaften, Futtergemeinschaften. Ein gemeinsamer Ort und ein gemeinsames Ziel führen die Tiere zusammen. Man kennt solche Ansamm­lungen von vielen Insekten, aber auch bei Spinnentieren, Krebsen, Mollusken und bei allen Klassen der Wirbeltiere kommen sie vor. Solche Vergesellschaftungen sind in der Regel zeitlich begrenzt, die einzelnen Individuen können sich leicht wieder von der Gruppe lösen, und die Koordination zwischen den einzelnen Individuen ist ge­ring. Schon etwas anders sieht es bei koordinierten Verbänden aus, wie sie etwa bei ziehenden Vogelschwärmen, wandernden Libellen, Heuschrecken und Schmetterlin­gen oder Fischschwärmen vorliegen. Hier findet oft eine erstaunliche Koordination der Flug- oder Schwimmbewegungen statt. Der soziale Gesichtspunkt ist deutlich, gemeinsamer Aufbruch zur Wanderung, gemeinsame Bestimmung des Zieles oder Lösung des Orientierungsproblemes. Gefahr von außen, etwa ein herabstürzender Raubvogel auf einen Starenschwarm, führt zu koordinierten Reaktionen. Der Schwarm kondensiert sich, bildet einen Stoßpulk, der gemeinsam zum Angriff über­gehen kann. Anders reagiert ein Elritzenschwarm, bei dem ein Mitglied vom Hecht ergriffen wurde. Der ganze ergreift panikartig die Flucht, was damit zusammenhängt, dass von der Bißwunde der verletzten Elritze ein hochwirksamer Schreckstoff freigesetzt wird. Die so gewarnten Elritzen meiden den Ort, an dem ihr Genosse gefressen wurde, wochenlang. Hier handelt es sich also um ein soziales Warnsignal, das in Haut­zellen gespeichert wird und dass ohne jeden biologischen Nutzen für das individuelle Leben ist, das aber für den Gesamtverband große Vorteile bringt.

Andere Schutzgemeinschaften finden sich z.B. bei verschiedenen Insekten. So kön­nen sich Feuerwanzen zu größeren Verteidigungsgemeinschaften zusammenschlie­ßen. Sie besitzen Verteidigungsdrüsen und damit verbunden eine Warnfärbung. Die Warnwirkung wird durch die Gruppierung erhöht.

Soziale Verbände höherer Organisation sind charakteristisch für die Insektenstaaten. Hier ist die soziale Bindung obligatorisch. Der Verband bildet eine geschlossene Gemeinschaft und es kommt zu einer Differenzierung der Individuen. Sämtliche Ent­wicklungsstadien von Eiern, Larven über Puppen bis zu den geschlechtsreifen Ima­gines sind Bestandteil dieses Verbandes. Alle Tätigkeiten, die für den Fortbestand für die Gemeinschaft wesentlich sind, werden im Kollektiv und arbeitsteilig ausgeführt.  Häufig kommt es zu einer Kastenbildung, d.h. die ausgewachsenen  Tiere haben – entsprechend ihren unterschiedlichen Aufgaben  einen unterschiedlichen Körperbau. Typisch für das Funktionieren solcher Tierstaaten ist eine meist angeborene, sehr differenzierte Fähigkeit zur Kommunikation. Teilweise werden solche Staten als „Überorganismen“ bezeichnet.

Termiten z.B. sind besonders hoch organisierte staatenbildende Insekten mit mindestens drei Kasten: Königin und König als Geschlechtstiere leben immer zusammen, außerdem werden Arbeiter und Soldaten oft noch in verschiedenen Ausprägungen ausgebildet. Soldaten und Geschlechtstiere können sich nicht selbständig ernähren und sind auf die Fütterung durch die Arbeiter angewiesen. Insgesamt beruht das Zusammenspiel innerhalb des Termitenstaates auf komplizierter Kommunikation, teilweise auf der Basis von Pheromonen. Außerdem leben Termiten auch noch mit anderen Lebewesen in Symbiose. Als Pflanzenfresser können sie mit Hilfe von endosymbiontischen Bakterien und Einzellern Zellulose zersetzen. Andere Arten können sogar den Ligninstoff mit Hilfe von Pilzendosymbionten aufschließen. Außerdem werden von Termiten Pilzgärten angelegt, und zwar auf einem Gemisch aus Kot und zerkauter Nahrung und Holz. Die Pilzgeflechte dienen vor allem den Larven als Nahrung.

Die Zusammenarbeit im Termitenstaat sorgt für gleichbleibende Innentemperaturen, günstige Feuchtigkeitsbedingungen und sichere Aufzucht der Nachkommen (vgl. UB 169, S. 45).

Im Prinzip ähnlich, aber meist nicht ganz so kompliziert, sind die Verhältnisse bei Ameisen und bei anderen Hautflüglern. Bemerkenswert ist die besonders kompli­zierte Form der Kommunikation der Honigbienen (vgl. Hedewig 2000 in UB 260).

Symbiose in Ökosystemen

Für das Wirkungsgefüge eines Ökosystems bilden symbiotische Beziehungen eine entscheidende Rolle, obwohl sie bisher in der ökologischen Literatur noch relativ we­nig berücksichtigt wurden. Ganz allgemein kann man sagen, dass Ökosysteme dazu tendieren, im Laufe ihrer Entwicklung an Komplexität zuzunehmen. So sind die älte­sten Ökosysteme gleichzeitig die komplexesten und die Wechselbeziehungen sol­cher Systeme sind besonders kompliziert. Hier soll etwas ausführlicher auf die Be­deutung der Symbiosen für den Stoffkreislauf in Ökosystemen eingegangen werden. Da die Chloroplasten aller Höheren Pflanzen und Algen aus endosymbiontischen Prokaryoten hervorgegangen sind, wird der größte Teil der Primärproduktion in der Biosphäre durch eine Symbiose geleistet. Abgesehen davon spielen Flechten als Primärproduzenten auf etwa einem Achtel der Landfläche (1,2 x 107 km2) eine ent­scheidende Rolle. Bedeutend ist weiterhin der Beitrag der Korallenriffe zur Primär­produktion.

Die enge Partnerschaft von Pilzen und Landpflanzen besteht vermutlich seit der Eroberung des Landes im ausgehenden Silur. Für Primärproduktion und Stoffkreislauf in der Biosphäre ist diese Symbiose von Höhe­ren Pflanzen und Pilzen (Mykorrhiza) besonders wichtig. Man nimmt an, dass My­korrhizapilze 10 bis 20% der fotosynthetischen Primärproduktion von Pflanzen aufnehmen, das sind bis zu 2 x1013 kg pro Jahr. Besondere Bedeutung haben Mykorrhiza-Pilze für de Phosphor- und Stickstoff-Kreislauf in Ökosystemen . (vgl. Agerer, UB         ), Sie stellen eine Kurzschluss artige Verbindung zwischen orga­nischen Abfallstoffen und Primärproduzenten her. Dadurch kann der Export dieser Ele­mente aus Ökosystemen deutlich verringert werden. Wie Perakis und Hedin (2002, S. 416-418) nachweisen konnten, ist der Austrag an anorganischem Stickstoff in na­turnahen, vom Menschen wenig beeinflussten Regenwäldern des gemäßigten Süd­amerika viel geringer als in entsprechenden, stark vom Menschen beeinflussten Wäldern Nordamerikas (Abb.     ) . Dies könnte darauf hindeuten, dass es in diesen Wäldern kaum zu einer totalen Remineralisierung von Stickstoffverbindungen kommt. Ähnli­ches dürfte für Phosphorverbindungen gelten.

 Die Verbreitung von Mykorrhizapilzen ist viel größer, als man dies ursprünglich angenommen hatte. So gilt als sicher, dass in tropischen Wäldern etwa 90 % aller Gehölze Mykorrhizen ausbilden. Da viele Pilze mit mehreren Baumarten Partnerschaften eingehen, ist nicht nur ein Stofftransport von einem Baum zum anderen sondern auch von einer Baumart zur anderen möglich. Besonders spektakulär ist in diesem Zusammenhang, dass durch Pilzwurzeln vermittelt auch Pflanzen existieren können, die kein Chlorophyll mehr bilden und dann als reine Parasiten auf den Pilzen leben. So findet man das bleiche Wintergrüngewächs Fichtenspargel unter Fichten und Buchen. Vermittelt durch einen Mykorrhizapilz lebt der Fichtenspargel von der Primärproduktion der Buchen bzw. Fichten.

Schließlich können Pilze auch tierische Eiweißquellen für Höhere Pflanzen erschlie­ßen, die sonst nur den Extremspezialisten – den sogenannten Carnivoren oder In­sektivoren – vorbehalten bleiben. So konnte nachgewiesen werden, dass Laccaria bicolor (Zweifarbiger Lacktrichterling) Springschwänze (z.B. der Art Folsomia can­dida) „fressen“ kann. Der Pilz immobilisiert die Springschwänze zunächst. Dann dringt das Mycel in deren Körper ein und fängt an, sie zu „verdauen“. Da Laccaria gleichzeitig mit Waldbäumen eine Mykorrhiza eingeht, werden tierliche Stickstoffver­bindungen über den Pilz an die Bäume weitergegeben. Durch 15N-Isotopenmarkie­rung konnte nachgewiesen werden, dass bis zu 25 Prozent des pflanzlichen Stick­stoffs aus Springschwänzen stammen, die von Laccaria gefressen wurden. Als Ge­genleistung versorgt der Baum den Pilzpartner mit Kohlenhydraten, auch mit sol­chen, die dann zu proteolytischen Enzymen umgebaut werden können (Klironomos, Hart 2001,p.651,652).

Untersuchungen an isolierten Rasenstücken ergaben, dass durch den von Mykorrhi­zapilzen vermittelten Stoffaustausch die Konkurrenz zwischen den Pflanzenarten vermindert wird. Dies führt dazu, dass die Zugangsmöglichkeiten zu Mineralstoffen ausgeglichen werden und dass die Koexistenz verschiedener Arten leichter ist. Eine Zunahme der Artenvielfalt ist die Folge (A.E. Douglas Symbiotic interactions 1994).

Auch im Zusammenhang mit Primärsukzessionen (Neubesiedelung von vorher ve­getations- bzw. organismenfreien Substraten etwa nach Vulkanausbrüchen oder beim Gletscherrückzug) können Symbiosen eine wichtige Rolle spielen. Dies gilt etwa für die Neubesiedelung von Gletschern freigegebener Felsflächen durch Flechten und anschließend durch Pflanzen, die in Symbiose mit Luftsticksoff – fixie­renden Bakterien leben. Genauere Untersuchungen in Glacer Bay/ Alaska, wo ein Gletscher sich in überlieferten Zeiträumen um etwa 100 km zurückgezogen hat, zeigt eine ständige Zunahme von Stickstoff in den Böden. Als Erstbesiedler an Höheren Pflanzen spielt die Silberwurz (Dryas) eine entscheidende Rolle. Sie enthält stick­stofffixierende Bakterien der Gattung Frankia. In der Folgezeit besiedeln Erlen, Wei­den und Pappeln die Gletscherrückzugsgebiete. Die endosymbiontischen Actinomy­ceten der Gattung Frankia können in Erlenbeständen bis zu 180 kg Stickstoff/ ha und Jahr fixieren (Abb. Grafik zur Stickstoffzunahme in Gletscherböden von Glacer Bay). In bestimmten limnischen Lebensräumen, z.B. in ostasiatischen Reisfeldern, dürfte die Stickstofffixierung durch mit dem Schwimmfarn Azolla zusammenlebenden Blau­grünen Bakterien der Gattung Anabena eine wichtige Rolle spielen (50 bis 150 kg Stickstoff/ ha und Jahr). In tropisch-subtropischen marinen Lebensräumen des pazi­fischen Raumes spielt die Diatomee Rhizosolenia mit endosymbiontischen Blaugrü­nen Bakterien eine ähnlich bedeutende Rolle beim Zugang des Ökosystems zur Luftstickstoffquelle.

Erst in jüngster Zeit beginnt man, die komplizierten Wechselwirkungen zu studieren, die zwischen den Mikroorganismen und dem höheren Leben der Ozeane bestehen. Die Bedeutung der Prokaryoten und insbesondere der ursprünglichen „Domäne“ der Archaea ist mengen- und massenmäßig in den Ozeanen viel bedeutender als lange Zeit angenommen. So ist reiches Archaea-Vorkommenie keineswegs auf die Umgebung der schwefelspucken­den Tiefseeschlote begrenzt. Vielmehr dürften sie 40 % der Tiefseeorganismen ins­gesamt ausmachen und die Tiefsee ist bei weitem der größte Lebensraum der Erde. Aber auch in oberflächennahen Wasserschichten der Ozeane spielen Archaebakte­rien eine große Rolle. Die zur Fotosynthese fähigen a-Proteobacteria machen vemutlich wenigstens 10 % aller Bakterien in den Ozeanen aus (Copley 2002)  und sie sind damit für  ca. 5 % der Fotosynthese bedingten Primärproduktion verantwortlich. Dabei läuft ihre Fotosynthese allerdings etwas anders ab. Sie produzieren nämlich keinen Sauer­stoff, sondern verwerten den bei der Fotosynthese freigesetzten Sauerstoff sofort wieder für eigene Synthesen. Außerdem nutzen sie Lichtenergie, um organische Verbindungen abzubauen (Fotoheterotrophie). Diese Fähigkeit, von der man bis vor kurzem nichts wusste, hat bedeutende Auswirkungen für den Kohlenstoffkreislauf und die mögliche Bedeutung der Ozeane als Kohlenstoffsenke. Ein großer Teil des Kohlen­stoffdioxids, das in den Ozeanen durch die Fotosynthese fixiert wird, bleibt – wenn die Planktonorganismen absterben – in gelöstem oder suspendiertem organischem Ma­terial zurück. Dieses organische Material dürfte in größerer Menge als bisher ange­nommen von Proteobakterien genutzt werden. So tragen diese Prokaryoten dazu bei, dass der Kohlenstoff stärker als bisher angenommen in den oberen Wasser­schichten bleibt – eine schlechte Nachricht für diejenigen, die bisher hofften, dass übermäßiger Anstieg des Kohlenstoffdioxidgehaltes der Atmosphäre durch die Ozeane ausgeglichen werden kann. Wie neue Arbeiten zeigen, gibt es noch eine große Zahl anderer Prokaryoten mit außergewöhnlichen Stoffwechsel- und Fotosyn­thesewegen, die bisher noch nicht erforscht sind und die eine Vielzahl neuer Bezie­hungen und Stoffflussschleifen erwarten lassen, die das Zusammenspiel in dem von Planktonorganismen bestimmten Ökosystem der freien Ozeane viel komplizierter erscheinen lassen wird, als dies bisher angenommen wurde. So dürfte die von Halobakterien als Fotergie bekannte Erscheinung, bei der Sonnenlicht über Rhodopsin und verwandte Pigmente als Energiequelle für eine Membran-Protonenpumpe genutzt wird, in oberflächennahen marinen Habitaten weit verbreitet sein. Auch die Bedeutung Stickstoff-(N2)-fixierender Prokaryoten in marinen Ökosystemen ist vermutlich unterschätzt worden. So dürfte insbesondere die Zahl der entocytosymbiotischen Stickstofffixierer in den einzelligen Planktonalgen eine viel größere Rolle spielen als bisher angenommen (Zehr 1998). Auch Viren sind häufig in marinen Ökosystemen. Sie können bei Algenblüten regulierend wir­ken. Wenn die virusbefallenen Zellen solcher großen Algenblütengebiete plötzlich sterben, setzen sie eine große Menge organischer Materie frei. Auf diese Art und Weise können Viren möglicherweise zur plötzlichen massenhaften Freisetzung von Dimethylsulfid (DMS) beitragen. Wie zum ersten Mal von Lovelock nachgewiesen, fördert DMS in der Atmosphäre die Wolkenbildung und erhöht damit die Menge der an der Atmosphäre reflektierten Sonnenstrahlen. Dies kann eine deutliche Abkühlung des Erdklimas bedeuten. Es ist durchaus naheliegend, anzunehmen, dass die große Stabilität der Biosphäre solchen mikrobiellen Wechselwirkungen zu verdanken ist. Im Kleinen kennt man solche eng  kooperierende Mikrobensysteme, in denen sich die einzelnen Bestandteile gegenseitig stabilisieren, z.B. von denen von Kefir oder Kombucha.

Eine besondere Form der Wechselwirkung ist der durch Viren vermittelte horizontale Gentransfer. Auch diese Form der Wechselwirkung wurde vermutlich in der Vergangenheit eher unterschätzt.

Menschliche Macht, Mitgefühl und Zukunftsfähigkeit

Je höher entwickelt das Nervensystem und das Lern- und Erinnerungsvermögen ei­ner Tierart, desto flexibler und anpassungsfähig kann auch das Sozialverhalten wer­den. Junge werden „geprägt“, Kinder lernen von ihren Eltern, schließlich können sich sogar Traditionen herausbilden. An der Spitze dieser Entwicklung stehen zweifellos die Primaten und schließlich die Menschen.

Sicherlich wirkt sich dies auch auf das Kooperationsverhalten aus. So konnte durch Computersimulationen nachgewiesen werden, dass kooperatives Verhalten den kooperierenden Individuen Selektionsvorteile bringt, wenn die Individuen innerhalb einer Population erkennen können, ob andere Individuen kooperationsbereit sind oder nicht. Dies setzt ein hochdifferenziertes Wahrnehmungsvermögen voraus.  (Sigmund, Nowak 2001, 403,404).

Auch die sogenannte Altruistische Bestrafung (Altruistic punishment, Fehr, Gächter, 2002, 137-140) stellt eine Verhaltensweise dar, die Altruismus fördert: Sie beschreibt ein typisch menschliches Verhalten gegenüber Individuen, die agressiv ihre eigenen Interessen verfolgen. Solche Individuen werden bestraft, auch wenn der Strafende davon keinen direkten eigenen Vorteil hat.  Diese Verhaltensweise setzt voraus, dass man sich relativ gut in andere Individuen hineinversetzen kann – eine Fähigkeit  die Menschen in höherem Maße haben als andere Arten.

Wahrnehmungsfähigkeit und Gehirn gestatten es den Menschen, sich ein Bild ihrer Umwelt zu machen, das planvolles und gezieltes Handeln erlaubt. Die abstrakte Sprache macht es möglich, sich intensiv und detailliert mit anderen Menschen auszutauschen, Erkenntnisse, Einsichten, Erfahrungen und Ideen weiterzugeben. Die Schrift und seit Kurzem die elektronischen Medien erlau­ben eine Konservierung von Information und in Zukunft vielleicht auch eine enge Ko­operation von Gehirnen und Systemen der elektronischen Datenverarbeitung. So wird von manchen Informatikern eine Symbiose zwischen menschlichem Gehirn und Maschine angedacht: „Schließlich werden wir darangehen die externen Hilfsmodule mit dem Gehirn zu verbinden – beispielsweise durch Millionen mikroskopischer Elek­troden; man könnte sie in das große Faserbündel namens Corpus callosum implan­tieren, das als gewaltiger Datenbus die beiden Gehirnhälften miteinander verbindet.“ (Minsky 1994).

Mit Hilfe seines Gehirns kann der Mensch Szenarien in Gedanken durchspielen, die Folgen bestimmter Handlungen vorhersehen. Dadurch, dass Beziehungen und Wechselwirkungen in die Zukunft projiziert werden, kann man ihre Folgen abschät­zen. Diese Modellbildungsfähigkeiten sind ein enormer Machtfaktor. Menschen nei­gen allerdings dazu, diese Macht zu überschätzen und damit gleichzeitig die Verant­wortung zu unterschätzen, die aus der Erkenntnisfähigkeit erwächst. Denn die Mo­delle, die eben doch nur Modelle und damit unvollkommene Bilder der Wirklichkeit sind, werden oft als ganz real genommen und man verlässt sich voll auf ihre Aussagen. So werden mit der Zunahme menschlicher Macht und Manipulationsmöglichkeiten die als Folgen menschlicher Eingriffe auftretenden Katastrophen immer größer und gefährlicher.

Vielleicht hilft ein Nebeneffekt unseres Weltbildapparates dabei, das richtige Maß zu finden: Er gestattet es den Menschen nämlich auch, sich in andere Indivi­duen hineinzuversetzen, die Welt „mit ihren Augen“ zu sehen. Diese Fähigkeit ist Voraussetzung für Mitgefühl, Mitleid und die Möglichkeit, sich mit Anderen zusammen zu freuen und damit die Voraussetzung für Wertempfin­den, Ethik und Moral.

Dabei betrifft Mitfühlen und Mitleiden  nicht nur Mitglieder der eigenen Art, sondern auch andere  Mitgeschöpfe. In ihrem Versuch „Leben“ zu beschreiben und verständlich zu machen weisen Lynn Margulis und Dorian Sagan  besonders auf dieses menschliche Bewusstsein hin, das im Grunde ein Bewusstsein der Biosphäre oder des gesamten Lebens der Erde dar­stellt, da es allmählich mit der Evolution gewachsen ist. „In diesem Sinne ist das in­tuitive Wissen und Werden, nach dem jedes Einzelbewusstsein eine Illusion ist und wir alle einem einzigen Urgrund, nämlich Brahman angehören, vielleicht völlig richtig: Nicht nur unsere chemische Zusammensetzung ist ein gemeinsames Erbe, sondern auch unser Bewusstsein und die Notwendigkeit in einem Kosmos zu überleben, der aus der gleichen Materie besteht wie wir, der aber unserem Leben und unseren Be­langen gleichgültig gegenübersteht.“ (Margulis, Sagan 1997).

Literatur

Agerer, R.: Mykorrhiza. UB 183/17:49-51, 1993

Ahmadjian, V., Paracer, S.: Symbiosis: An introduction to biological associations. Univ.Press New England, Hanover (USA) 1986

Barlow, C. (Hrsg.): Evolution extended. Biological debates on the meening of life. MIT Cambridge (USA), London, 1994

Berdoy,M, Webster, J.P., Macdonald, D.W.: Fatal attraction in rats infected with Toxoplasma gondii: Proceedings of the Royal Society of London B267:1591-1594, 2000

De Bary, A.: Die Erscheinung der Symbiose. Vortrag gehalten auf der Versammlung Deutscher Naturforscher und Ärzte zu Cassel. Trübner, Strasburg 1879

Copley, J: All at sea. Nature 415, 7.2.2002: 572-574

Diamond, J.: Guns, Germs and Steel. Norton, London, New York 1997

Douglas, A.E.: Symbiotic interactions. Oxford Univ. Press, Oxford, New York… 1994

Campbell, N.A.: Biologie, Spektrum, Heidelberg, Berlin, Oxford 1997

Fehr, E., Gächter, S.: Alturistik punishment in humans. Nature 415, 10.1.2002: 137-140

Keeble, F.: Plant animals. A study in symbiosis. Cambridge Univ.Press, Cambridge 1910

Keeling, P.J.: Parasits go to the free monty. Nature 414, 22.11.2001: 401/ 402

Klironomus, J.N., Hart, M.M.: Animal nitrogene sweap für plant carbon. Nature 410. 5.4.2001: 651/ 652

Krombein, K. V. et al.:Biodiversity of domatia occupants (ants, wasps, bees and others) of the Sri Lankan myrmecophyte Humboldtia laurifolia VAHL (Fabaceae).Smithonian Contributions to Zoology 603, Washington (USA) 1999

Kropotkin, P.: Gegenseitige Hilfe in der Tier- und Menschenwelt. Trotzdem-Verlag, Glasenau 19932 (Übersetzung der englischen Originalausgabe von 1902: Mutual aid)

Margaris, N.S., Arianoustou-Faraggitaki, M., Oechel, W.C. (Hrsg.): Beeing alive on land. Junk Publishers, The Hague, Boston, Lancaster 1984

Margulis, L. (Hrsg.): Symbiosis in cell evolution 1981; 2nd ed.: Endosymbiosis in cell evolution. Freeman, San Fransisco (USA) 1993

Margulis, L., Fester, R. (Hrsg.): Symbiosis as a source of evolutionary innovation: Speciation and morphogenisis. MIT Cambridge(USA) 1989

Margulis, L., Sagan, D.: Leben. Vom Ursprung zur Vielfalt. Spektrum, Heidelberg, Berlin 1999

Masuch, G.: Biologie der Flechten. Quelle & Meyer, Heidelberg, Wiesbaden 1993

Martin, K.: Ökologie der Biozönosen. Springer, Berlin, Heidelberg, New York 2002

Max-Planck-Gesellschaft, Presseinformation: Blattnektar – pflanzliche „Heuer“ für Schutzinsekten, 2001  http://www.mpg.de/pri01/pri0108.htm

McCarthy, H.O., Fitzpatrick, S., Irwin, S. W. B.: A transmissible trematode affects the direction and rhythm of movement in a marine gastropode. Animal Behavior, London 59: 1161-1166, 2000

Minsky, M.: Werden Roboter die Erde beherrschen? In: Spektrum der Wissenschaften, Spezial 3: Leben und Kosmos, S.80-87, Heidelberg 1994

Perakis, S.S., Hedin, L.O.: Fluxes and ftes of nitrogen in soil of an unpolluted old-growth temperate forest, southern Chile. Ecology 82(8):2245-2260, 2001

Probst, W. (Hrsg.) :Algen. UB 225/21, 1997

Probst, W. (Hrsg.) Pflanzen und Insekten. UB 236/22, 1998

Probst, W. (Hrsg.): Riffe. UB 254/24, 2000

Puff, C.: Flora der Pläotropen: Schwerpunkt SEA: (Südostasiatische) Ameisen- und Kannenpflanzen, 2002  http://mailbox.univie.ac.at/Cristian.Puff/AS_ Ameisen&Kann.htm

Queller, D.C.: Pax argentinica. Nature 405, 1.6.2000: 519/520

Reisser, W.: Algae in symbiosis: Plants, animals, fungi, viruses. Interactions  explored. Inter Press, Bristol 1992

Sapp, J.: Evolution by association. The history of symbiosis. Oxford University Press, Oxford 1994

Sauer-Sachtleben, M.: Kooperation mit der Evolution. Das kreative Zusammenspiel von Mensch und Kosmos. Dietrichs, München 1999

Schwemmler, W., Schenk, H. E. A. (Hrsg.):Endocytobiology, Vol 1: Endosymbiosis and cell biology. Walter de Gruyter, Berlin 1980

Shigenobu, S. et al.: Genome sequence of the endocellular bacterial symbiont of aphids Buchnera sp. APS. Nature 407, 7.9.2000: 81-86

Sigmund, K., Nowak, M.A.: Tides of tolerance. Nature 414, 22.11.2001: 403/404

Sommer, U.: Competition and coexistens. Nature 402, 25.11.1999: 366/367

Von Dohlen et al.: Mealybug ß-proteobacterial endosymbionts contain Y-proteobacterial symbionts .Nature 412, 26.6.2001: 433-436

Von Lüpke, G.: Kooperation als Motor des Lebens. Natur und Kosmos, Dez.1999: 11-14

Whitfield, J.: Eat me! Nature 406, 24.8.2000: 840

Wilson, E. O.: The social conquest of earth. Liveright, New York 2012

Phylogenie und Ontogenie der Wasserleitungsbahnen bei Pflanzen

LINK-NAME LINK-NAME

Zusatzinformationen zum Basisartikel von UB 475 „Wasserhaushalt der Pflanzen“

Titelbild: Sonnenblume, Netztracheide längs, gekreuzte Polfilter (Foto W. Probst)

Die ursprünglichen Wasserleitungszellen der Pflanzen waren lang gestreckt, verhältnismäßig dünn und mit sehr schräg stehenden Querwänden versehen. Die stammesgeschichtliche Entwicklung brachte vor allem eine Erweiterung des Zellvolumens, oft bei gleichzeitiger Verkürzung der Zellen. Entscheidend für die phylogenetische Entwicklung der Xylemelemente war die Differenzierung der sekundären Wandstrukturen.

Während für die Wasserleitungselemente der Moose schon ein teilweiser Abbau der Querwände aber noch keine Lignineinlagerung und keine sekundären Wandversteifungen nachgewiesen sind, sind solche Tracheiden und Tracheen typisch für die Gefäßpflanzen (Tracheophyta).

Ring-  und Schraubentracheiden

Das Xylem der ausgestorbenen Urfarne (Psilophytopsida) bestand ausschließlich aus Tracheiden mit ring- oder schraubenförmigen Wandverdickungen. Da soche Wandversteifungen auch bei den heutigen Gefäßpflanzen in der Ontogenie meist zuerst angelegt werden, gelten sie als ursprünglich.

Treppentracheiden

Werden horizontal liegende Versteifungsringe durch vertikale Stege verbunden, so entstehen großlumigen Tüpfel. Bei der Treppentülpfelung liegen seitlich benachbarte Tüpfel stets auf gleicher Höhe. Je nach Anzahl der Vertikalbrücken unterscheidet man einreihige und mehreihige Treppentüpfel.

Netztracheiden

Netztüpfel kann man sich durch Anastomosen zwischen mehreren zum Teil gegenläufigen Schraubenversteifungen entstanden denken. Seitlich benachbarte Tüpfel scheinen hier in der Höhe gegeneinander versetzt. Eine unregelmäßige Anordnung der einzelnen Tüpfel gilt als ursprünglich, eine regelmäßige Anordnung in Längsreihen als abgeleitet.

Phylogenie und Ontogenie der Wasserleitunngsbahnen der Pflanzen

Behöfung der Tüpfel

Bereits Ringtracheiden zeigen eine Tendenz zur „Behöfung“: Die Verstärkungsleiste besteht aus einem Leistenfuß, dem der breitere Leistenkörper flanschartig aufgesetzt ist. Bei Treppen- und Netztüpfeln führt die überragende Sekundärwand dazu, dass ein Binnenraum über der Primärwand (Mittellamellen, Schließhaut) gebildet wird, der nur noch über relativ enge Poren mit dem Zellvolumen in Verbindung steht.

Mögliche pylogenetische Entwicklung von Hoftüpfeln aus Teppentracheiden
(Beide Abbildungen aus Probst, W. (1987): Biologie der Moos- und Farnpflanzen. 2. A., Heidelberg/Wiesbaden: Quelle und Meyer)

Tracheen und Tracheiden

Während man lang gestreckte Wasserleitungsgefäße mit Querwänden als Tracheiden bezeichnet, werden Gefäße mit aufgelösten Querwänden Tracheen genannt. Stammesgeschichte stellt man sich eine Entwicklung über Treppentracheiden vor, bei denen zunächst die Schließhaut, dann auch die Leitersprossen aufgelöst wurden.

Moore

LINK-NAME LINK-NAME

Der Schutz und die Wiederherstellung von Mooren gilt schon seit langem als wichtige Naturschutzaufgabe. Dabei ging es zunächst in erster Linie um die schützenswerten Lebensgemeinschaften mit ganz besonderen, in der übrigen Landschaft seltenen oder fehlenden Arten. Erst durch die hohe Aktualität der Klimakrise rückte die Bedeutung der Moore als Kohlenstoffspeicher in den Vordergrund. Aber auch ihre Bedeutung für den Wasserhaushalt und den Stickstoffkreislauf befördert aktuelle Moorschutzmaßnahmen.

Feuchtbiotope

Unter Feuchtbiotopen versteht man Lebensraumtypen, die über einen längeren Zeitraum des Jahres bis zur Landoberfläche mit Wasser gesättigt sind. Weiter gefasst werden auch Seen und Fließgewässer und von Salzwasser bestimmte Lebensräume wie das Wattenmeer mit einbezogen. Obwohl solche Feuchtgebiete nur etwa 6 % der Erdoberfläche einnehmen, erbringen sie rund ein Viertel der Nettoprimärproduktion. Sie haben eine besondere Bedeutung als Grundwasserfilter, für Überschwemmungsschutz, in vielen Fällen als Kohlenstoffsenke und als Rast- und Überwindungsplätze für Wasser- und Watvögel.

Man unterscheidet zum Beispiel Moore, Brüche, Auwälder, Riede und Sümpfe. Für die Einteilung ist wichtig, ob Torfbildung stattfindet oder nicht und wie die Wasserversorgung des Gebietes erfolgt. Auch das Vorhandensein oder Fehlen von Bäumen und anderen Gehölzen spielt für die Unterscheidung eine wichtige Rolle.

Abb. 1 Überblick über die verschiedenen Feuchtbiotope in Mitteleuropa

Moore als Kohlenstoffspeicher

Für die Kohlenstoffspeicherung von besonderer Bedeutung sind Moore. Sie entstehen auf wasserdurchtränkten Böden, in denen wegen des Sauerstoffmangels die anfallenden Pflanzenreste nur sehr langsam zersetzt werden. Da die Produktion von organischer Substanz rascher erfolgt als ihr Abbau, kommt es zur Ablagerung von Torf. Dabei ist „Moor“ ein geografischer bzw. botanischer, „Torf“ ein mineralogisch-petrografischer Begriff. Bodenkundlich ist Torf definiert durch seinen hohen Glühverlust (bei 550 °C):Torf: 100-75 %, anmooriger Boden: 74-15 %, Mineralboden: unter 15 %.

Wenn Torfschichten eine Mächtigkeit von über 30 cm haben werden diese Gebiete als Moore bezeichnet, unabhängig davon, ob dort noch eine neue Torfbildung stattfindet oder nicht. Bei einer geringeren Torfschicht oder einem geringeren Torfanteil im Boden spricht man von „Anmoor“. Der Überbegriff für beide ist „organische Böden“. Im Gegensatz dazu haben mineralische Böden einen geringeren organischen (Humus-)Anteil und einen höheren Anteil aus verwittertem Gestein.

Beim Abbau der organischen Substanz unterscheidet man:

Verwesung durch aerobe Mikroorganismen: Völliger Abbau zu Kohlenstoffdioxid und Wasser sowie anorganischen Mineralstoffen (Nitrate, Phosphate….).

Vermoderung: Unvollkommene Verwesung bei unzureichendem Sauerstoffzutritt.

Fäulnis: Vollzieht sich unter Sauerstoffabschluss; es bilden sich durch anaerobe Bakterien vor allem Methan und Schwefelwasserstoff, aber auch Ammoniak und Lachgas; Bildung von Faulschlamm, Mudde (Seesediment mit relativ hohem organischem Anteil).

Vertorfung beginnt bei behindertem Sauerstoffzutritt mit Vermoderung, später folgt unter Luftabschluss eine sehr langsame Fäulnis. Schnell zersetzen sich die Zellinhalte aus Proteinen, Zuckern und Stärke. Langsamer werden die Stoffe der Zellwände abgebaut, zuerst Pektine und Hemizellulosen, dann die Zellulose zuletzt der Holzstoff Lignin. Sehr schwer zersetzen sich außerdem Fette, Harze,Wachse, Kutin und Sporopollenin. Pollenkörner und Sporen bleiben in Torf deshalb sehr gut erhalten. Durch ihre Funde in gut datierbaren Torfschichten kann man deshalb auf die Vegetation früherer Zeiten schließen (Pollendiagramme).

Abb. 2 Torfbildung (nach Chris Paine: Carbon cycling)

Für die Eigenschaften des Torfes (Struktur, Anteil an Mineralstoffen, Huminstoffen, pH-Wert, Wassergehalt) ist die Pflanzengemeinschaft wichtig, aus deren Ablagerungen er entstanden ist. Immer handelt es sich dabei um Pflanzengemeinschaften feuchter Standorte.

Die Anhäufung von organischem Material in aktiven Mooren ist standortabhängig. Aus Messungen ergibt sich ein Torfwachstum von 1± 0,8mm im Jahr. Die großen Unterschiede kommen durch die unterschiedliche torfbildende Vegetation und die klimatischen Bedingungen zustande.

Abb. 3 Organische Böden aus verschiedenen Vegetationstypen (Niedermoor, in Anlehnung an Overbeck 1975 schon)

In jedem Fall wird der Atmosphäre solange Kohlenstoff entzogen, solange mehr Torf gebildet als abgebaut wird. Moore gelten daher als Kohlenstoffsenken. Für die langfristige Kohlenstoffakkumulation unterschiedlicher Torfarten hat man Werte zwischen 0,15 und 1,3  t C ha-1 a-1 ermittelt (Tepel 2007/08). Das unterscheidet Moore von Wäldern, deren Senkenwirkung mit dem Erreichen des Klimaxstadiums beendet ist, da sich dann Einlagerung und Abgabe die Waage halten. Aber auch  trockengelegte, kultivierte oder anderweitig genutzte Moore können von Kohlenstoffsenken zu Kohlenstoffquellen werden, da ihr Kohlenstoffspeicher durch aerobe oder anaerobe Zersetzungsvorgänge abgebaut wird. Bei aerobem Abbau wird Kohlenstoffdioxid, bei anaerobem Methan freigesetzt. In ausgetrockneten Mooren wird dies in den oberen Schichten jedoch schnell zu CO2 oxidiert (Abb. 4). Durch Vernässung kann die Torfbildung wieder in Gang gebracht und damit die Wirkung als Kohlenstoffsenke wiederhergestellt werden.

Abb.4  Moore als Kohlenstoffsenken und -quellen

Etwa 3 % der Landfläche der Erde sind von Mooren oder Anmooren bedeckt. Das entspricht einer Fläche von 4 Millionen km². Die größten Moorflächen finden sich in Kanada, Alaska, Nordeuropa und Sibirien, aber auch in tropischen Waldgebieten von Südostasien, im Amazonasbecken und im Kongo-Regenwald wurden große Torfflächen nachgewiesen (Page/Rieley/Wüst 2006, Dargie et al. 2017). In Mitteleuropa sind ursprünglich etwa 5 % der Landfläche von Mooren bedeckt. Sie sind alle nach der Eiszeit beginnend vor etwa 15.000 Jahren entstanden und zwar in den von Gletschern überformten Gebieten Norddeutschlands und am Alpenrand. Einige Moore gibt es auch in den Mittelgebirgsräumen, beispielsweise im Hohen Venn und im Schwarzwald.

Tab.1 Aufteilung der Landfläche auf der Erde (2019) (nach Jäger 2020)

 Fläche in106 km2Anteil an der Landfläche in %
gesamte Landfläche149 
landwirtschaftlich genutzte Fläche5134
Wälder3926
Gletscher, Wüsten u.Ä.4329
Busch128
Siedlungen1,51
Seen, Flüsse1,51
  in den genannten Flächen enthalten:  
Moore und Anmoore (organische Böden).ca.43
Tab.1 Aufteilung der Landfläche auf der Erde (2019) (nach Jäger 2020)

Global ist die Menge an organisch gebundenen Kohlenstoff in den Böden ungefähr dreimal so groß wie die Kohlenstoffmenge in allen Lebewesen zusammen und doppelt so groß wie der Kohlenstoffgehalt der Atmosphäre.

SystemKohlenstoffvorrat (in Gt)
Böden insgesamt1500
Moorbödenca.500
Landpflanzen560
Atmosphäre750
Ozeane38.000
Marines Plankton3
Tab. 2 Kohlenstoffvorräte in Gigatonnen für unterschiedliche Systemkompartimente des Kohlenstoffkreislaufs (nach Trepel 2007/08). Dank des mittlerweile (2022) auf 416 Vol ppm angestiegenen CO2-Gehalts der Atmosphär beträgt der Kohlenstoffvorrat derzeit ca. 850 Gt.

Nach einer Datenauswertung von Yu et al. von 2010 zeigt sich, dass die Kohlenstoffspeicherung nach der letzten Kaltzeit in den Mooren der Nordhemisphäre am höchsten war, wobei höchste Akkumulation im frühen Holozän lag. Deutlich weniger Kohlenstoff wurde in tropischen Moorgebieten vor allem vor 4000-8000 Jahren akkumuliert, während die Moore der Südhemisphäre – vor allem in Patagonien gelegen – vor allem während einer  Wärmeperiode vor 15-20.000 Jahren Torfschichten aufgebaut haben

RegionFläche (km2)C-Speicher(Gt)durchschnittliche C-Speicherung
(gCm-2a-1) seit der letzten Vereisung
Nordhemisphäre4 000 000547 (473-621)18,6
Tropen368 00050(44-55).12,8
Südhemisphäre45 00015 (13-18)22,0
Tab. 3 Überblick über die Moorflächen der Erde und ihre Kohlenstoffspeicherung (nach Yu et al. 2010)
 Fläche in haGespeicherte Kohlenstoff in G t
Organische Böden in der EU31 000 00017
Organische Böden in Deutschland1 823 922mindestens 1,3
Tab. 4 Organische Böden in Europa und ihre Kohlenstoffspeicherung (nach Jäger 2020)

Für die Klimaerwärmung spielt vor allem die Vernichtung von Kohlenstoffvorräten in den Moorböden weltweit eine wichtige Rolle. Torfbrände in Südostasien haben zum Beispiel in den letzten Jahrzehnten den stärksten Anstieg der CO2-Emissionen in der Atmosphäre bewirkt (Page et al 2002, Rieley et al. 2006). In Deutschland spielt vor allem die landwirtschaftliche Nutzung von Moorböden eine entscheidende Rolle für die Freisetzung von Kohlenstoffdioxid.

Bereiche in Mt CO2– Äquivalente pro Jahr
aus allen Bereichen in Deutschlandca. 900
aus Landwirtschaft (ohne die Herstellung synthetischer Düngemittel)103,5
aus organischen Böden, die als Acker und Grünland genutzt werden38
Tab. 5 Treibhausgasemissionen in Deutschland (nach Jäger 2020)

Moortypen und ihre Entstehung

Je nach Umweltbedingungen entstehen unterschiedliche Moortypen. Sie unterscheiden sich vor allem darin, woher das Wasser kommt, welche Salze im Wasser gelöst sind und welche Pflanzenarten deshalb dort gedeihen können. So werden die regenwasserabhängigen Hochmoore oder Regenmoore den Niedermooren gegenübergestellt, die ihren Wasservorrat aus dem Grundwasser oder aus Oberflächengewässern erhalten. Regenwasser ist sehr mineralstoffarm. Der Mineralstoffgehalt der Gewässer, die Niedermoore speisen, kann sehr unterschiedlich sein. Nach der Herkunft des Wassers kann man sehr verschiedene Niedermoortypen unterscheiden.

Niedermoore (Wasserversorgung durch Oberflächenabfluss und Grundwasser)

  • Verlandungsmoore
  • Versumpfungsmoore
  • Überrieselungsmoore, Durchströmungsmoore
  • Quellmoore
  • Flussüberflutungsmoore

Niedermoore können je nach Nährmineralien und Kalkgehalt zahlreiche seltene Pflanzenarten beherbergen, zum Beispiel Seggen-Arten und Orchideen.

Hochmoore (Wasserversorgung nur durch die Niederschläge)

  • allmählich aus mineralstoffarmem Niedermoor (über Verlandung oder Versumpfung)
  • direkt (Wurzelechtes Hochmoor) auf feuchtem, nährmineralarmen Böden
Abb. 5 Moortypen

Hochmoore

Aufbau und Hochmoortypen

Abb. 6 Aufbau eines mitteleuropäischen Hochmoors

Das Aussehen und der Aufbau der Regenmoore verändert sich von dem sehr atlantischen Klima des äußersten Westeuropas zum kontinentalen Klima Osteuropas. Die Deckenmoore Schottlands und Irlands haben sich aus ursprünglich bewaldeten Gebieten durch menschlichen Einfluss, insbesondere durch Beweidung, an waldfreien Standorten entwickeln können.

Abb. 7 Aussehen der Regenmoore in unterschiedlichen Klimabereichen Europas

Nach Norden schließt an die Zone der echten Hochmoore die Zone der Aapamoore an. Sie sind im kalt gemäßigten Klima zirkumpolar verbreitet und bestehen aus hangparallel verlaufenden Wällen und Senken. Die Wälle haben Hochmoorcharakter (ombrotroph), die Senken Niedermoorcharakter (minerotroph). Noch weiter nach Norden, nördlich der Baumgrenze, folgt die Zone der Palsenmoore, deren hügelartige Strukturen an mehrjähriges Bodeneis gebunden sind. Noch weiter nach Norden folgen auf durchgehend gefrorenen Permafrostböden Polygonmoore, deren polygonartige Strukturen durch Frosttrockniss entstanden sind, als nach einer längeren Feuchtperiode im Atlantikum (7270-3710 v. Chr.) das Klima kälter wurde. Dieser Moortyp ist typisch für Nordostsibirien und er ist besonders vom Klimawandel bedroht (POLYGON, Uni Greifswald 2011-2014).

Abb.8 Nördliche Moore

Torfmoose und Hochmoorwachstum

Voraussetzung für die Hochmoorbildung ist die Ansiedlung von Torfmoosen (Gattung Sphagnum).Torfmoose können aufgrund ihres anatomischen Baus das 20 bis 30 fache ihres Trockengewichtes an Wasser aufnehmen und speichern. Außerdem gestattet ihnen ein besonderer Ionenaustauschmechanismus selbst aus extrem nährmineralarmen Wasser die wenigen enthaltenen Kationen im Austausch gegen H+– Ionen herauszufangen. Dies bewirkt eine sehr starke Ansäuerung des Wassers (bis zu pH 3 (Dierßen u. Dierßen 2008) und damit eine weitgehende Ausschaltung von Konkurrenten. Als  Ionenaustauscher wirken dabei vor allem bestimmte Substanzen in der Zellwand. Ob die so herausgefangenen Ionen tatsächlich der Mineralstoffzufuhr der Sphagnum-Pflanze dienen, ist allerdings fraglich.. Möglicherweise ist entscheidend, dass auf diese Weise für die Sphagnumzellen giftige Calcium- und Aluminiumionen aus dem aufsteigenden Wasser entfernt werden.

Abb. 9 Morphologie der Torfmoose (Sphagum magellanicum)

Abb. 10 Räumliche Darstellung eines Sphagnum-Blättchens mit toten Hyalocyten ( Wasserspeicherzellen) und lebenden Chlorocyten

Die Torfmoospolster und – decken wachsen immer höher über den Grundwasserspiegel hinaus und in dem abgestorbenen Moostorf hält sich das Regenwasser wie in einem Schwamm. So können bis zu 5 m über das Relief emporgewölbte Torfschilde entstehen, aus denen am Rand ständig  saures, nährsalzarmes Wasser abfließt und sich über das Randgehänge in dem sogenannten Randsumpf („Lagg“) ansammelt. Dieser Randsumpf ist dadurch etwas mineralstoffreicher als die Moorhochfläche.

Dabei wächst die Torfmoosdecke nicht gleichmäßig in die Höhe. Man unterscheidet zwischen höheren Bulten und tieferen Schlenken. In den Schlenken ist der Zuwachs am stärksten, dadurch werden aus Schlenken mit der Zeit Bulte und umgekehrt.

Abb. 11 Bult-Schenken-Komplex (Abbildung aus Probst, W. 1978)

In vielen Veröffentlichungen wird angegeben, dass das Torfwachstum in Mitteleuropa etwa 10 cm pro 100 Jahre beträgt. Die größten Torfmächtigkeiten, die man erbohrt hat, liegen um 10 m. Dies würde einer Entstehung unmittelbar nach dem Ende der Eiszeit entsprechen. Allerdings sind die Wachstumsraten – wie schon oben ausgeführt – stark von den jeweiligen Umweltbedingungen abhängig. Außerdem kann man davon ausgehen, dass sich das Hochmoorwachstum mit zunehmender Höhe verlangsamt, da sich der schwerkraftbedingte Wasserabfluss verstärkt und außerdem Zersetzungsvorgänge in den tieferen Schichten und zunehmender Druck der darüberliegenden Schichten zu einem Zusammensacken führen.

In dem obersten halben Meter eines Hochmoores lässt sich ein Torfbildungshorizont (Akrotelm, von lat. telma = Moor) von einem Torfablagerungshorizont (Katotelm) unterscheiden. In einer obersten etwa 2-5 cm dicken Schicht des Akrotelms sind die Torfmoose photosynthetisch aktiv (euphotische Zone). An der Untergrenze dieser Schicht beträgt die Lichtintensität noch etwa 1 % des Oberflächenwertes. In der anschließenden aphotischen Zone, einer 10-50 cm dicken Schicht, sind die Torfmoose weitgehend abgestorben.  Sie ist noch von lebenden Wurzeln der Gefäßpflanzen durchzogen. Abgestorbene Pflanzenteile werden von Bakterien und vor allem von Pilzen aerob abgebaut. Der Stickstoffgehalt ist hier noch niedriger als in der Oberflächenschicht (C/N bis 75 gegenüber C/N  50 in der Wachstumszone der Torfmoose, Dierßen und Dierßen 2008).

Unterhalb der aphotischen, noch sauerstoffhaltigen Zone folgt das Katotelm, beginnend mit einer Verdichtungszone von  2-15 cm Mächtigkeit. Die Pflanzenreste sind hier schon stärker zersetzt und werden durch das aufliegende Gewicht verdichtet. Darunter folgt ein mehr oder weniger ausgedehntes Torflager. Wegen der starken Verdichtung ist es nur wenig wasserdurchlässig. Der im Wasser enthaltene Sauerstoff ist deshalb schnell verbraucht und die weiteren Zersetzungsvorgänge werden nun von Anaerobiern übernommen, wobei vor allem Methan gebildet wird .

Abb. 12 Hochmoorschichtung
Abb. 13 Sumpf-Torfmoos (Sphagnum palustre). Der Übergang von der euphotischen in die aphotische ist gut an der Farbänderung zu erkennen.

Aus der weiteren Schichtenfolge lässt sich die Entstehungsgeschichte des Moores ableiten. In der Abbildung ist die Schichtenfolge in einem Verlandungs-Hochmoor dargestellt.

Abb. 14 Schichtenfolge in einem Verlandungs-Hochmoor

Das Torfmoos-Mikrobiom und mögliche symbiotische Beziehungen

Die Erforschung des Mikrobioms der Sphagnumpflanzen ist noch in ihren Anfängen und erst durch neueste Möglichkeiten der Genomsequenzierung (next generation sequencing) wurden Fortschritte erzielt. Zunächst ging es um den Nachweis der verschiedenen beteiligten Mikrobionten. In den Sphagnumpflanzen befinden sie sich vor allem in den wasserspeichernden Hyalocyten, in den lebenden Chlorocyten konnten nur wenige Bakterien nachgewiesen werden. Man kann die Hyalocyten geradezu als kleine Kulturgefäße für Mikroben ansehen, von denen die Moose profitieren. Wie Untersuchungen an lebenden Sphagnumköpfchen zeigten, enthalten sie vor allem Proteobakterien und Acidobakterien. Cyanobakterien und Archäen spielen kaum eine Rolle (Kostka et al. 2016).

Untersuchungen zur Funktion des Mikrobioms ergaben eine besondere Bedeutung  methanotropher Proteobakterien, die gleichzeitig azidotroph sind, also N2 assimilieren. Dies könnte erklären, warum die Stickstoffspeicherung in Sphagnummooren in Gebieten mit sehr geringen Konzentrationen von Stickstoffverbindungen in der Luft deutlich höher ist als der daraus zu erwartende Stickstoffgehalt. Das „Futter“ für die methanotrophen Bakterien liefert das in tieferen Moorschichten von methanogenen Bakterien und Archäen produzierte Methan. Der Sauerstoff wird auch von den Photosynthese betreibenden Sphagnumköpfchen bereitgestellt. Möglicherweise könnten die Bakterien auch von den Torfmoos-Chlorocyten abgegebenen Kohlenhydraten profitieren. Durch Isotopmarkierung konnte nachgewiesen werden, dass sich der Luftstickstoff tatsächlich in Proteinverbindungen der Sphagnen wieder finden lässt (Vile et al. 2014). Dorthin könnte er durch direkte Abgabe von Stickstoffverbindungen (zum Beispiel Ammonium) durch die methanotrophen Bakterien oder über die Freisetzung von Stickstoffverbindungen aus abgestorbenen Bakterien gelangt sein. Auch Konsumenten der Bakterien könnten die Sphagnen über ihre Ausscheidungen düngen. Die Hinweise verdichten sich, dass es sich bei diesen Stoffwechselbeziehungen um eine echte Symbiose handelt, vergleichbar mit Knöllchenbakterien und Leguminosen.

Abb.15 Mögliche Stoffumsätze in der obersten Torfmoosschicht. Zwischen Sphagnen und methanotrophen Proteobakterien besteht eine symbiotische Beziehung.
Abb. 16 Beziehungen zwischen Sphagnum und methanotrophen Proteobakterien

Es wäre denkbar, dass ein erhöhter Eintrag von Stickstoffverbindungen aus der Luft zu einer Verringerung der N2 Assimilation führen würde. Dies könnte wiederum die Methanabgabe der Moore beeinflussen (erhöhen) (Vile et al. 2014).

Pflanzen und Tiere

Auf wachsenden Hochmoorflächen kommen nur wenige Gefäßpflanzenarten vor. Neben dem Scheidigen Wollgras (Eriophorum vaginatum, vgl. Titelbild) sind dies die Heidekrautgewächse Moosbeere (Vaccinium oxycoccus) und Rosmarinheide (Andromeda polyfolia) sowie der insektenfressende Rundblättrige Sonnentau (Drosera rotundifolia). An trockeneren Bereichen können sich als weitere Heidekrautgewächse Gewöhnliche Glockenheide (Erica vulgaris) und Besenheide (Calluna vulgaris) ansiedeln, im Randbereich auch Heidelbeeren (Vaccinium myrtyllus), Preiselbeeren (Vaccinium vitis-idaea) und Rauschbeeren (Vacciinium uliginosum), in von atlantischem Klima geprägten Bereichen Norddeutschlands auch der Gagelstrauch (Myrica gale) und die Krähenbeere (Empetrum nigrum), in Bereichen mit etwas kontinentalerem Klima Nordostdeutschlands der in Deutschland sehr selten gewordene Sumpf-Porst (Rhododendron tomentosum, Syn.:Ledum palustre). Weitere Hochmoorpflanzen sind In feuchteren Bereichen das Weiße Schnabelried (Rhynchospoa alba), Schmalblättriges Wollgras (Eriophorum angustifolium) und weitere Zypergrasgewächse.

Abb. 17 Beispiele für Gefäßpflanzen des Hochmoors

Auch die Fauna der Hochmoore besteht vorwiegend aus Spezialisten. Für Fische ist das Wasser zu sauer, wegen des Calciummangels fehlen Schnecken, Muscheln und Krebse. Typische Hochmoor-Insekten sind zum Beispiel die Hochmoor-Mosaikjungfer (Aeschna subarctica) und der Hochmoor-Perlmutterfalter (Boloria aquilonaris), dessen Raupe sich von Moosbeeren ernährt. Unter den Wirbeltieren sind vor allem der Moorfrosch und die Kreuzotter – oft in ihrer schwarzen Variante – zu nennen Regelmäßig in Hochmooren anzutreffende Vögel sind zum Beispiel Großer Brachvogel, Goldregenpfeifer, Kranich, Birkhuhn, Sumpfohreule, Krick – und Knäkente.

Tropische Moore

Torfbildung findet vor allem in kühleren Klimaregionen statt, wo der Abbau organischer Substanz insgesamt langsamer verläuft. Aber es gibt auch Torfgebiete unter tropischen Sumpfwäldern, zum Beispiel im Amazonasgebiet, im Kongobecken und in Indonesien. Voraussetzung sind hohe Niederschläge – deutlich über 2000mm im Jahr – welche die Evaporation übersteigen.

Die großen Torflagerstätten in der zentralen Senke des Kongobeckens, der sogenannten Cuvette Centrale, wurden erst vor wenigen Jahren entdeckt und vermessen. Die Torfschichten sind zwischen 2,4 und 5,9 m dick (Dargie et al. 2022). Die Wissenschaftler stellten fest, dass die Torflager immer unter bestimmten Waldgesellschaften auftreten, deren Ausdehnung sie mithilfe von Satellitenbildern auf 145.000 km² berechnen konnten. Das sind knapp 10 % des gesamten Kongobeckens. Nach Berechnungen der Forscher könnten in diesem Torflager 30,6 Milliarden t Kohlenstoff gespeichert sein.

Die Fläche der Moorgebiete in Südostasien wird auf 230.000 km² geschätzt (Page, Riley, Wüst 2006). Sie sind stark bedroht durch Brandrodung und Umwandlung in Agrarflächen. In unberührten Zustand haben diese Moore einen niedrigen pH-Wert (3-4) und niedrige Nährmineraliengehalte. Der Gehalt an organischem Kohlenstoff übertrifft 50 %, während der Stickstoffgehalt bei 2 % liegt. Im Gegensatz zu nördlichen Hochmooren ist der Ligningehalt des Torfes hoch und der Zellulosegehalt relativ niedrig. Dies hängt damit zusammen, dass die Vegetation dieser tropischen Moore vor allem aus Gehölzen besteht. Ihre Kohlenstoffspeicherung wird auf 50-70 Gigatonnen geschätzt, der jährliche Zuwachs ist unter günstigen Bedingungen drei bis viermal so hoch wie bei nördlichen Regenwassermooren.

Mensch und Moor

Brennstoff

. In Irland, Finnland und Schweden gibt es bis heute Stromkraftwerke, die mit Torf betrieben werden. Früher wurden die in Ziegelform gebrachten Torfbriketts an der Luft getrocknet, bevor sie als Brennmaterial genutzt werden konnten. In manchen Mooren wurden die Flächen kleinparzellig aufgeteilt, und die einzelnen Parzellen wurden von unterschiedlichen Landwirten zur Brennstoffgewinnung genutzt. Aus den kleinen Torfstichen solcher Moore ist – bei mäßiger Entwässerung – eine Regeneration möglich.

Abb. 18 Besitzverhältnisse im Jardelunder Moor bei Flensburg (Katasterplankarte 1:5000, Stand 1978)

Braunkohle und Steinkohle sind fossile Torfe.

Gartenbau

Heute dient der Torfabbau vor allem der Gewinnung von Pflanzensubstrat in der Gärtnerei, für Presstöpfe zur Sämlingsanzucht und für Wurzelballen der meisten im Handel angebotenen Pflanzen, sowie für die meisten käuflichen Blumenerden. Im Gegensatz zum Brennmaterial ist zu diesem Zweck Weißtorf besonders gut geeignet. Es handelt sich um ein sehr einheitliches Substrat mit ausgezeichneter Wasseraufnahmefähigkeit und der Fähigkeit zur Mineralstoffspeicherung. Sein niedriger pH-Wert kann durch Kalkung bis über den Neutralpunkt hinaus verändert werden. So können mit diesem Grundsubstrat sehr unterschiedliche Pflanzsubstrate hergestellt werden.

2018 wurden in Deutschland etwa 3,7 Millionen m³ Torf abgebaut – von 2002-2009 waren es nach Auskunft der Bundesregierung noch durchschnittlich 8,2 Millionen m³ pro Jahr – und rund 4,1 Millionen m³ importiert, vor allem aus dem Baltikum. Allerdings wurden in Deutschland seit den 1980er Jahren keine intakten Moore mehr für den Abbau freigegeben, sondern nur noch  Gebiete, die vorher landwirtschaftlich genutzt wurden. Die zu entnehmenden Torfmengen werden genau vorgegeben und es besteht eine Renaturierungspflicht für die Abbauer (Bundesinformationszentrum Landwirtschaft 2020).

Ein völliger Verzicht von Torf im Erwerbsgartenbau wäre prinzipiell möglich aber sehr aufwendig, denn alle Ersatzsubstrate haben keine so guten und einheitlichen Eigenschaften wie Hochmoortorf. Infrage kommen Grünkompost, Rindenhumus Holzfasern. Kokosfasern, Blähton oder Perlit (Amberger-Ochsenbauer, Meinken 2020).

Medizin

Für Medizin und Körperpflege spielen Moorbäder und Moor-(Fango) packungen (von lat. fango = Schlamm, Schlick) eine wichtige Rolle. Der dickflüssige Brei aus Schwarztorf wird mit Temperaturen von 38-40° verwendet. Neben der Wärme sollen vor allem die im Torf enthaltenen Huminsäuren nicht nur die Haut weich machen und die Durchblutung fördern, sondern auch eine günstige Wirkung auf das endokrine System ausüben.

Filtermaterial

In der Aquaristik und in der Teichwirtschaft wird Torf als Filtermaterial zur Herabsetzung des pH-Wertes und der Carbonathärte verwendet. Außerdem sollen die Fulvosäuren im Schwarztorf die Schleimhäute der Fische vor bakteriellen Infektionen schützen. Durch Torffilterung kann man das Aquarienwasser den Verhältnissen in tropischen Schwarzwasserflüssen annähern, aus denen viele Zierfische stammen. Als natürlicher Ionenaustauscher kommt Torf auch in der chemischen Industrie zum Einsatz. Aus Torf lässt sich auch Aktivkohle zur Filterung herstellen, die vor allem in Chemielabors zum Einsatz kommt.

Weitere Nutzungen

Torffasern eignet sich zur Herstellung von Isolationsmaterial, sie lassen sich zu leichten und warmen Textilien und Unterlagen verarbeiten. Bis heute dienen Torffasern als natürlicher Füllstoff für Matratzen, Bettdecken und Kissen.

Vor allem im Pferdeställen wurde Torf als Einstreu genutzt.

 Moorkultivierung

Die großen Moorflächen vor allem in Norddeutschland aber auch im süddeutschen Alpenvorland waren lange Zeit landwirtschaftlich nicht zu nutzen. Um die Ernährung der wachsenden Bevölkerung sicherzustellen, wurden deshalb immer wieder Versuche unternommen solche Moorflächen für die landwirtschaftliche Produktion nutzbar zu machen.

Die sogenannte Fehnkultur (von niederländisch Veen = Moor) wurde in den Niederlanden entwickelt aber schon im 17. Jahrhundert auch in Nordwestdeutschland angewandt. Dabei wurden zunächst tiefe Entwässerungskanäle angelegt, durch die der gestochene Torf mit Schiffen abtransportiert werden konnte. Auf dem Rückweg wurde von den Schiffen dann Schlick mitgebracht und vor allem mit dem Weißtorf vermischt. Beidseitig der Kanäle entstanden nach und nach typische Fehnsiedlungen.

 Vor allem Im Laufe des 18. und 19. Jahrhunderts wurden in Deutschland verschiedene weitere Arten der Moorkultivierug entwickelt. Dabei spielten Entwässerung, Abtorfen, Brennen, Tiefpflügen zur Vermischung mit dem mineralischen Untergrund und Kalkdüngung eine wichtige Rolle. Oft wurde die schwierige Bearbeitung der Torfböden durch neue Siedler geleistet, die aus ihrer Heimat durch Not oder Verfolgung vertrieben worden waren.

Alle Kultivierungsmaßnahmen führten dazu, dass die Torfneubildung und -ablagerung gestoppt wurde und dadurch aus der Kohlenstoffsenke durch anaeroben Abbau der Torfschichten eine Kohlenstoffquelle wurde.

Paludikultur

Eine neue Form der Moornutzung ist die „Paludikultur„. Kulturpflanzen sind hier die Torfmoose, die großflächig unter Hochmoorbedingungen kultiviert werden. Die Torfmoosernte soll den Torfabbau ersetzen. Dadurch wird die Kohlenstofffreisetzung der üblichen Moorkultivierung verhindert und eine ökonomisch tragbare Alternative aufgezeigt. Nasskulturen können außer auf Hochmoorstandorten auch auf Nieder- und Zwischenmooren und anderen kohlenstoffspeichernden Feuchtgebieten entwickelt werden. Die produzierte Biomasse aus Schilf, Binsen, Sauergräsern und anderen Feuchtpflanzen könnte als Material für unterschiedliche Baustoffe verwendet werden (Wichtmann, Schröder, Joosten, 2016).

Möglichkeiten des Moorschutzes

Nach Dierßen und Dierßen (2008) gibt es im Prinzip drei Möglichkeiten des Schutzes:

  1. Bewahren eines derzeitigen Zustandes bzw. zulassen einer natürlichen Sukzession ohne Eingriffe
  2. Pflegen eines aktuellen wünschenswerten Zustandes
  3. Entwickeln eines Zustandes, der den jetzigen Zustand verbessert, durch geplante Pflege und Steuerungseingriffe (Restitution)

Die erste Vorgehensweise bietet sich an, wenn der derzeitigen Zustand sehr gut ist und sich durch Eingriffe kaum verbessern lässt oder wenn man erwarten kann, dass eine natürliche Sukzession zu einem wünschenswerten Zustand führt. Ein intaktes Hochmoor mit funktionierendem Bult-Schlenken-Komplex sollte vor Eingriffen abgeschirmt werden. Aber auch ein teilweise abgetorftes Hochmoor, bei dem sich in Torfstichen gute Sukzessionen mit Torfmoosen entwickeln, kann man am besten sich selber überlassen.

In vielen Fällen kann man erkennen, dass ein derzeitiger guter Zustand dabei ist, sich zu verschlechtern. So können noch vorhandene Bult-Schlenken-Komplexe bei zunehmender Austrocknung immer stärker von Besenheide besiedelt werden und ihr Wachstum einstellen. In diesem Fall könnten Maßnahmen gegen die Entwässerung und Austrocknung den besseren Zustand erhalten. Auch das starke Aufkommen von Baumwuchs, vor allem von Birken, ebenfalls im Zusammenhang mit Austrocknung aber auch mit Nährmineraleintrag, kann durch Entfernen des Birkenaufwuchses gebremst werden. In jedem Fall ist bei allen Maßnahmen eine gründliche Analyse der Wirkungszusammenhänge Voraussetzung für einen Erfolg.

Besonders schwierig ist die Restitution, im Hinblick auf Hochmoore also die Entwicklung relativ nährmineralreicher und von menschlichen Aktivitäten stark beeinflusster Flächen zurück zu nährmineralarmen, vom Regenwasser abhängigen Torfmoosflächen. Dies liegt vor allem daran, dass sich in der von Landwirtschaft, Siedlungen und Verkehr geprägten mitteleuropäischen Kulturlandschaft Düngemitteleintrag und Entwässerung kaum vermeiden lassen.

Abb. 19 Wiedervernässte Fläche im Wurzacher Ried

Moore im Biologieunterricht

Mögliche Unterrichtsthemen

Vom Gletschersee zum Hochmoor – ein Beispiel für nacheiszeitliche Landschaftsentwicklung

Für einige mitteleuropäische Moore ist die Entwicklung vom Eisstausee am Ende der letzten Kaltzeit bis zum Hochmoor gut dokumentiert. Diese zeitliche Entwicklung lässt sich bei einer Reise in den Untergrund nachvollziehen.

Abb. 20 Mit den verschiedenen Sedimentschichten eines Moores kann man in die Vergangenheit reisen

Speicher, Senken, Quellen? – Wie Moore sich auf die Treibhausgase der Atmosphäre auswirken  

Der aus wenig zersetzen pflanzlichen Abfallstoffen bestehende Torf ist ein Kohlenstoffspeicher. Aber ob solche in Mooren gebundene Torfschichten Senken oder Quellen für Treibhausgase sind, hängt von den aktuellen Bedingungen ab. Für den Schutz und die Restitution von Mooren sind die Kenntnisse dieser Zusammenhänge eine wichtige Voraussetzung.

Vom Moos zur Landschaft – Morphologie und Physiologie der Torfmoose als Voraussetzung für die Hochmoorbildung erkennen

Die mikroskopische Untersuchung von Torfmoosen lässt erkennen, welche morphologischen Voraussetzungen ihrer ausgezeichneten Wasserspeicherfähigkeit zugrunde liegen. Wasserspeicherung, kapillare Wasserleitung und durch Torfmoose bedingte Veränderung des Elektrolytgehalts lassen sich experimentell untersuchen. Aus den Ergebnissen erklärt sich die Bedeutung der Torfmoose für die Hochmoorbildung.

Abb. 21 Mikroskopische Untersuchungen an Torfmoosen lassen die morphologischen Grundlagen ihrer Wasserspeicherfähigkeit erkennen (aus Probst 1987)
Abb. 22 Wasserspeicherfähigkeit von Torfmoosen (aus Probst 1987)

Die Ionenaustauschfähigkeit von Torfmoosen kann man nachweisen, indem man die Moose Wasser mit Elektrolytgehalt aussetzt. Das zu prüfende Moospolster – etwa zwei Hand voll – wird in einem Küchensieb mehrfach mit destilliertem Wasser ausgespült und ausgedrückt, dann werden vier gewichtsgleiche Teil des Polsters zu etwa 100 g, feucht, in 3 Bechergläser mit je 200 ml unterschiedlicher Salzlösungen und einem Becherglas mit 200ml destilliertem Wasser verteilt (wie in Abb. 21 dargestellt). In jedem Ansatz wird nach 10, 20 und 40 Minuten der pH-Wert bestimmt. Die Blindprobe mit destilliertem Wasser zeigt keine Veränderung des pH-Wertes, die Probe mit der 0,01 N Calciumschloridlösung zeigt die stärkste Ansäuerung, da die Ansäuerung in gewissen Grenzen der Menge der angebotenen Kationen proportional ist und dass durch zweiwertige Calciumionen mehr H+-Ionen freigesetzt werden können als durch einwertige Kaliumionen.

Abb. 23 Versuch zur Ionenaustauschfähigkeit von Torfmoosen (aus Probst 1987)

Torfmooskultur – eine Alternative zum Torfabbau?

Zur Jahrtausendwende wurden jährlich 25 Millionen m³ Torf im Gartenbau genutzt; die auf einer Fläche von 800 km² gewonnen wurden. Wäre die gezielte Kultur und Ernte von Torfmoosen eine umweltfreundliche Alternative? Wenn man annimmt, dass damit 2500 kg Torfmoos -Trockenmasse pro Hektar und Jahr gewonnen werden könnten, würde hierzu eine Fläche von 15.000 km² benötigt, die so nicht zur Verfügung steht. Könnte die Paludikultur trotzdem ein sinnvoller und klimaschonender Zweig der Landwirtschaft werden?

Moosbeeren und Sonnentau – Nischenbildung am Extremstandort Hochmoor

Für Gefäßpflanzen sind Hochmoore ein sehr extremer Standort. Nur wenigen Arten ist es gelungen, eine ökologische Nische aufzubauen, die zu diesen Biotop passt. Der insektenfressende Rundblätterige Sonnentau und die Gewöhnliche Moosbeere, ein immergrüner, niederliegend fadenförmige wachsender Zwergstrauch, sind Beispiele für unterschiedliche Nischenbildung am selben Standort.

Schmetterlinge im Hochmoor: Hochmoor-Perlmutterfalter, Hochmoor-Gelbling und Hochmoor-Bläuling

Die drei Schmetterlingsarten sind eng an Hochmoore gebunden. Wie andere Arten gelten sie als Eiszeitrelikte, die nach der Erwärmung in den Hochmooren eine letzte Zuflucht gefunden haben. Die Raupe des Hochmoor-Perlmutterfalters ernährt sich nur von den Blättern der Moosbeere, während die beiden anderen Arten auch Heidelbeeren, Preiselbeeren und Rauschbeeren als Futterpflanzen annehmen. Die Falter sind auf nektarreiche Blüten der umgebenden Vegetation angewiesen. Die Ursachen für die Gefährdung dieser Arten werden analysiert.

https://niedersachsen.nabu.de/tiere-und-pflanzen/insekten/schmetterlinge/hochmoorperlmutterfalter/index.html

Moore als Archive der Natur- und Kulturgeschichte

Moore besitzen besondere konservierende Eigenschaften, die vor allem dem Sauerstoffmangel und dem niedrigen pH-Wert zu verdanken sind. So können in Mooren eingelagerte Werkzeuge, Waffen oder Schmuck ebenso Jahrtausende überdauer, wie Siedlungsstrukturen und Reste von Pflanzen und Tieren (und Menschen!). Dies gilt auch für Mikrostrukturen wie Pollen und Sporen, mit deren Hilfe man die nacheiszeitliche Vegetationsgeschichte rekonstruieren konnte (Pollenanalyse).

https://www.researchgate.net/profile/Andreas-Bauerochse/publication/282755633_Moore_als_Archive_der_Natur-_und_Kulturgeschichte_-_das_Arbeitsgebiet_der_Moorarchaologie/links/574426d108ae9ace841b496e/Moore-als-Archive-der-Natur-und-Kulturgeschichte-das-Arbeitsgebiet-der-Moorarchaeologie.pdf?origin=publication_detail

Kompetenzen

Tab. 6 Kompetenzen, die mit dem Unterrichtsthema Moore angestrebt werden können

Quellen

Amberger-Ochsenbauer, S., Meinken, E. (2020): Torf und alternative Substratsausgangsstoffe. Herausgeber: Bundesanstalt für Landwirtschaft und Ernährung. https://www.ble-medienservice.de/0129/torf-und-alternative-substratausgangsstoffe

Bundesamt für Umwelt, Wald und Landschaft – Schweiz – (2002): Moore und Moorschutz in der Schweiz. Bern http://www.wsl.ch/info/mitarbeitende/scheideg/20141103_Bericht_Studierende.pdf

Bundesinformationszentrum Landwirtschaft (2020): Torf: unersetzlich oder verzichtbar? https://www.landwirtschaft.de/diskussion-und-dialog/umwelt/torf-unersetzlich-oder-verzichtbar

Bundestag (2016): Kein Verbot von torfhaltigen Substraten. https://www.bundestag.de/webarchiv/presse/hib/201601/401876-401876

Dargie, G.C. et al. (2017): Age, extent and carbon storageof the central Congo Basin peatland complex. Nature 542, 7639, pp 1476-1487

Dierßen, K./Dierßen, B. (2008): Moore. Ökosysteme Mitteleuropas in geobotanischer Sicht. Stuttgart:Ulmer

Eigner, J. (2003): Möglichkeiten und Grenzen der Renaturierung von Hochmooren. Laufener Seminarbeiträge, 1/03, S. 23 -36, Laufen/Salzach: Bayer: Akad. f. Naturschutz u. Landschaftspflege

Ellenberg, H./Leuschner, L. (6. A., 2010): Vegetation Mitteleuropas mit den Alpen. Stuttgart: Ulmer (UTB)

Frey, W./Lösch, R. (3.A., 2010): Geobotanik. Pflanze und Vegetation in Raum und Zeit. Heidelberg: Spektrum

Garcin, Y., Schefuß, E., Dargie, G.C. et al. (2022): Hydroclimatic vulnerability of peat carbon in the central Congo Basin. Nature. https://doi.org/10.1038/s41586-022-05389-3

Gewin, V. (2020): Bringing back the bogs. Nature 578, pp. 204-208

Göttlich, K. (Hrsg.,1990) Moor- und Torfkunde. Stuttgart: Schweizerbart’sche Verlagsbuchhandlung.

Hakobyan, A., Liesack, W. (2020): Unexpectedmetabolitic versality among type II methanotrophs in the alphaproteobacteria. Biol.Chem.401(12). pp1469-1477

Hölzel, N. T. et al. (2019): Leitfaden zur Torfmoosvermehrung für Renaturierungszwecke. Deutsche Bundesstiftung Umwelt, Osnabrück.

Jäger, C. (2020): Klimaschutz braucht Moorschutz. München: Oekom

Joosten,mH:;tanneberger, F., Moen, A. (eds., 2017): Mires and peatlands of Europe.Status, distribution and conservation.Stutttgart: Schweizerbart

Kremer, B. P./Oftring,B. (2013): Im Moor und auf der Heide. Bern CH: Haupt

Kosta ,J.E. et al. (2016): The Sphagnum microbiom: new insights from an ancient plant lineage. New Phytologist 211(1), pp 57-64. doi: 10.1111/nph.13993.

LLUR (2015): Moore in Schleswig-Holstein Geschichte – Bedeutung – Schutz. Landesamt für Landwirtschaft, Umwelt und ländliche Räume des Landes Schleswig-Holstein (LLUR). 162 S

Ministerium für ländlichen Raum und Verbraucherschutz Baden-Württemberg (2017): Moorschutzprogramm Baden-Württemberg, 2. A. https://mlr.baden-wuerttemberg.de/fileadmin/redaktion/m-um/intern/Dateien/Dokumente/2_Presse_und_Service/Publikationen/Umwelt/Naturschutz/Moorschutzprogramm_BW.pdf

Mooratlas (2023), Eimermacher/stockmarpluswalter (M), CC.BY 4.0.

Overbeck, F. (1975): Botanisch-ökologische Moorkunde. Neumünster: Wachholtz

Page, S.E., Rieley, J.O.,Wüst, R. (2006): Lowland tropical peatland of Southeast Asia. In: Martini,I.P., MatinezCortizas, A., Chesworth. E. editors: Peatland: Evolution and records of environmental and climate changes. Chapter 7, pp 145-170

POLYGON, Universiät Greifswald 2011-2014 https://botanik.uni-greifswald.de/moorkunde-und-palaeooekologie/forschung/projekte/polygon/

Probst, W. (1978): Zur Vegetation des Jardelunder Moores. Die Heimat 85 (Heft 10/11), S. 2 72-296

Probst, W. (1987): Biologie der Moos- und Farnpflanzen, 2. A.. Heidelberg/Wiesbaden: Quelle und Meyer

Proff, I., Furtak, S. (2022): Nasse Lawirtschaft. In: Spektrum Kompakt Feuchtgebiete, S.41-54, Heidelberg: Spekrum

Ricker, K.-M. (2021): Moore für das Klima. Die Bedeutung der Moore für den Klima- und Naturschutz kennenlernen. Biologie 5 – 10, S. 20-23, Hannover: Friedrich

Sachunterricht Grundschule Nr.68/2015: Lebensraum Moor – Heft und Materialpaket. Seelze: Friedrich-Verlag

Springer, P. (2013): Torfflächen nachhaltig nutzen – Zukunft: Peatfarming. GartenbauProfi, 8/13. S-48-50.

Springer, P. (2017): Sphagnum als Torfersatz. GartenbauProfi, 8/13. S-48-49

Steiner, G.M. (2005): Moortypen. Stapfia 0085, S. 5-26

Succow, M. (2001): Moorkunde, 2. A., Stuttgart: Schweizerbart’sche Verlagsbuchhandlung

Succow, M., Jeschke, L. (2022): Deutschlands Moore: Ihr Schicksal in unserer Kulturlandschaft. Rangsdorf: Natur& Text

Succow, M./Joosten, H. (2001): Landschaftsökologische Moorkunde. Stuttgart: Schweizerbart’sche Verlagsbuchhandlung

Trepel, M. (2007/8): Zur Bedeutung von Mooren in der Klimadebatte. Jahresbericht des Landesamtes für Natur und Umwelt des Landes Schleswig-Holstein.

Vile, M. A. et al. (2014): N2-fixation by mmethanotrophs sustains carbon and nirtrogen accumulation in pristine peatlands. Biogeochemistry Vol121, pp 317-328, DOI:10.1007/s10533-014-0019-6

Wichtmann, W., Schröder, C. & Joosten, H. (Hrsg.) 2016: Paludikultur – Bewirtschaftung nasser Moore. Stuttgart: Schweizerbart

Umweltbundesamt – Österreich – (2004): Moore in Österreich. Wien. https://www.google.com/search?client=firefox-b-d&q=Umweltbundesamt+%E2%80%93+%C3%96sterreich+%E2%80%93+%282004%29%3A+Moore+in+%C3%96sterreich.+Wien

WWF (2010): Klimaschutz-Schnäppchen: Moorschutz bringt viel für wenig Geld  http://www.wwf.at/de/moore/

Yu, Z. et al. (2010): Global peatland dynamics since the Last Glacial Maximum. Geophysical Research Letters, Volume 37, Issue 13 https://agupubs.onlinelibrary.wiley.com/doi/full/10.1029/2010GL043584

http://www.aktion-moorschutz.de/wp-content/uploads/Vortrag_Succow_MooreImNaturhaushalt.pdf

http://www.imcg.net/media/2016/imcg_bulletin_1611.pdf#page=29

https://www.moorwissen.de/moore-in-deutschland.html

Bioplanetenschutz

LINK-NAME LINK-NAME

Dieser Beitrag beruht auf Recherchen, die ich im Zusammenhang mit dem Unterricht Biologie Heft „Naturschutz auf neuen Wegen“ (UB 465) durchgeführt habe. Das Heft ist im Sommer 2021 erschienen.

Seit Beginn der Industrialisierung haben sich die Verhältnisse auf unserem Bioplaneten Erde (Kattmann 1991,2004) durch exponentielles Wachstum von Wirtschaft und Bevölkerung drastisch verändert, besonders deutlich in den letzten Jahrzehnten. Dank der elektronischen Datenverarbeitung und immer genaueren Registrierungsmöglichkeiten durch Satelliten lassen sich diese Veränderungen recht genau beschreiben. Schon lange vorher gesagt aber erst in den letzten Jahren in den Mittelpunkt des kollektiven Bewusstseins gerückt ist die durch menschliche Aktivitäten verursachte Klimaerwärmung, um die Dimension dieser drastischen Entwicklung besonders zu betonen, wird neuerdings von „Klimaerhitzung“ gesprochen. Obwohl diese negativen Veränderungen besorgniserregend rasch voranschreiten, besteht nach wie vor Hoffnung auf eine Stabilisierung. Es gibt viele Ideen und auch schon realisierte Beispiele, wie man die Zukunft des Bioplaneten nachhaltiger gestalten könnte.

Bioplanetenschutz heißt Schutz der Funktionsabläufe

Nach konservativen Verständnis geht es im Naturschutz um den Erhalt oder gegebenenfalls auch die Wiederherstellung eines jetzigen oder früheren Zustandes, der den Menschen und seine Aktivitäten weitgehend ausklammert. In einem erweiterten Verständnis bedeutet der Schutz der Natur Schutz des Bioplaneten, d. h. insbesondere Schutz und Erhalt der Funktionsabläufe. In diesem Sinne können auch weitgehende Eingriffe und Manipulationen durch den Menschen (Geoengineering, synthetische Biologie), ökonomisch Maßnahmen wie Steuererhebungen oder juristische Maßnahmen wie Verbote von Verbrennungsmotoren oder Kohlekraftwerken als Naturschutzmaßnahmen verstanden werden.

Für die Rechtfertigung solcher Eingriffe sind einmal auf breiter wissenschaftlicher Basis erstellte Analysen und Prognosen erforderlich. Zum anderen müssen diese Erkenntnisse Grundlage von Bildung und Ausbildung werden. Neben neuen technischen Lösungen muss  Naturschutz deshalb verstärkt um die menschliche Akteure einschließen. Sozio-ökonomische Aspekte müssen mit gedacht und interdisziplinär behandelt werden. Dazu gehören besondere Anreize für umweltfreundliches oder naturschutzkonformes Verhalten, deren Vorteile unmittelbar wirksam werden. Nur dann wird es möglich sein, den demokratischen Konsens herzustellen, der für eine politische Durchsetzung sinnvoller Maßnahmen notwendig ist.

Landschaftsgestaltung, Renaturierung, Regeneration

Landschaftsgestalterische Maßnahmen können zur Renaturierung oder sogar Regenerierung von Ökosystemen führen oder neue artenreiche Ökosysteme entstehen lassen.

  • Die Wiedervernässung von Mooren kann deren Fähigkeit wieder herstellen, Kohlenstoff in unvollständig abgebautem Pflanzenmaterial zu speichern. Außerdem wirken die Torfkörper der Moore regulierend auf den Wasserhaushalt.
  • Die Restauration und Neugewinnung ausgedehnter Schilfgürtel um Gewässer, kann die Qualität belasteter Gewässer verbessern, insbesondere den Nitrat- und Phosphatgehalt mindern, aber auch viele andere Schadstoffe binden.
  • Die naturnahe Gestaltung von stillgelegten Kiesgruben, Steinbrüchen  und Tagebauflächen  (z. B. Braunkohle)  kann ökologisch wertvolle Biotope und Landschaften entstehen lassen und damit die Biodiversität fördern.
  • Entrohrung, Renaturierung und Remäandrierung von Bachläufen kann die Wasserqualität verbessern, Überschwemmungsgefahren mindern und im Sinne eines natürlichen Wasserkreislauf wirken. Außerdem entstehen dadurch vielseitige Lebensräume, welche die Biodiversität fördern.
  • Die Anlage von marinen Hartsubstratböden, z. B. um Offshore-Windparks kann die Biodiversität fördern, insbesondere durch die Schaffung neuer Siedlungsflächen für Aufwuchsorganismen und Brutgebiete  für Fische.
  • Durch geeignete Maßnahmen können bisher eher als Plantagen genutzte Waldgebiete in naturnahe Wälder umgebaut werden.
  • In potenziellen Waldgebieten kann der Anteil der Bewaldung durch Aufforstungsmaßnahmen erhöht werden.
  • Extensiv genutzte Weideflächen („Wilde Weiden“) lassen vielseitig strukturierte Landschaften mit hoher Biodiversität entstehen.
  • Vor allem in Trockengebieten können überweidete Landschaften durch Regulierung des Weidegangs aufgewertet werden.
Durch Überweidung desertifizierte Landschaft in Nordafghanistan bei Kunduz,25.7.1974 (Foto W.Probst)

Für diese Renaturierungs- und Regenerationsmaßnahmen werden viele Arbeitskräfte benötigt. Durch entsprechende Förderprogramme können Landwirtschaft und Forstwirtschaft in Renaturierungsprogramme eingebunden werden.

Eine weitere Möglichkeit bestünde darin, für solche Aufgaben verstärkt das Militär einzusetzen und dafür entsprechende Kenntnisse und Fertigkeiten in die militärische Ausbildung einzubauen (J. Ellington in Randers 2012).

Besonders spektakuläre Großprojekte sind Chinas „Grüne Mauer“ und die 2005 diesem Vorbild folgende von der Afrikanischen Union initiierte grüne Mauer durch die Sahelzone . Sie sollen Wüstenbildung aufhalten und teilweise rückgängig machen. 

Die chinesische „Grüne Mauer“ verdankt ihren Namen der chinesischen „Großen Mauer“: Während die Große Mauer Schutz gegen die Völker aus dem Norden bieten sollte, soll die Grüne Mauer vor Wüstenstürmen schützen. Das Projekt wurde schon 1978 begonnen und soll bis 2050 fortgesetzt werden. Bis dahin sollen 350.000 km² – dies entspricht etwa der Fläche der Bundesrepublik – mit Bäumen bepflanzt sein. Dabei besteht allerdings die Gefahr, dass durch die Bewässerung der neu angelegten Schutzwälder alte, flussbegleitende Wälder geschädigt werden (Missall u.a. 2018).

Afrikas „Grüne Mauer“ (GGWSSI; Great Green Wall of the Sahara and the Sahel Initiative) ist als 7775 km langer, mindestens 15 km breiter Baumstreifen geplant, der die Trockenregion am südlichen Rand der Sahara von Dakar bis Dschibuti durchziehen soll. Die Idee geht auf den 1987 ermordeten Präsidenten von Burkina Faso Thomas Sankara und auf die kenianische Professorin und Nobelpreisträgerin Wangari Maathai und ihr „green belt movement“ zurück. Unter der Präsidentschaft des damaligen Präsidenten von Nigeria Olusegun Obasanjo übernahm die Afrikanische Union das Projekt. Bisher wird es von 22 afrikanischen Staaten unterstützt. Mittlerweile sprechen viele Verantwortlichen nicht mehr von einer Mauer sondern eher von einem Mosaik, da verstärkt in Dorfgemeinschaften verwurzelte Projekte unterstützt werden sollen. Außerdem soll auch der Erhalt und  Schutz bereits existierender Baumbestände stärker gefördert werden.  Auf dem „One Planet Summit“ im Januar 2021 in Paris hat die internationale Gemeinschaft 11,8 Mrd. Euro für das Projekt zugesagt.

Über diese und zahlreiche weitere Aufforstungsprojekte berichtet Daniel Schilk in seinem 2019 erschienenen Buch „Die Wiederbegrünung der Welt“.

Ökosystemerhalt durch assistierte Evolution

Die Idee, gefährdete Arten dadurch zu erhalten, dass man sie in Gefangenschaft oder im Labor züchtet und dann in natürlichen Ökosystemen freilässt, ist schon mehr als 100 Jahre alt.1895 hat der Geschäftsmann und Ornithologe Edward McIlhenny auf diese Weise in Louisiana die vom Aussterben bedrohten Schmuckreiher erhalten. Zwischen 1885 und 1807 konnte Richard Henry den neuseeländischen Kakapo (flugunfähiger Papagei) und den Kiwi durch Translokation von Tieren auf die vor der Westküste Neuseelands liegenden Insel Resolution Island vor dem Aussterben retten (Seddon 2017). Mittlerweile gibt es viele mehr oder weniger erfolgreiche Beispiele solcher Versuche, durch Translokation oder Zucht und Aussetzen gefährdete Arten zu erhalten, in Mitteleuropa zum Beispiel Luchse, Biber und Waldtrappe. Dabei geht es nicht nur um den Erhalt der betreffenden Arten sondern auch um die Funktion der Ökosysteme. Durch die Wiederetablierung von Schlüsselarten hofft man, Ökosysteme zu regenerieren oder auch neue wertvolle Ökosysteme zu schaffen.

Doch auch über weitergehende Schritte wird nachgedacht. Dabei könnte die synthetischen Biologie eine wichtige Rolle spielen, indem ausgestorbene Arten wie das Wollhaar-Mammut oder der Auerochse gentechnisch rekonstruiert werden (De-Extinction, Redford 2017). Als Quelle könnte genetisches Material aus alten Sammlungen oder aus Fossilien und verwandte noch lebende Arten genutzt werden.

Die Überlegungen gehen noch einen Schritt weiter: Es können nicht nur natürliche Arten künstlich vermehrt oder wiederhergestellt, sondern auch „verbessert“, also durch Zucht oder Gentechnik gezielt verändert werden. Bei Riffkorallen soll zum Beispiel versucht werden die endosymbiontisch Zooxanthellen gentechnisch so zu verändern, dass sie auch bei höheren Meerestemperaturen funktionsfähig bleiben und dadurch Korallenbleiche vermieden werden können. Allgemein soll es durch das Einbringen solcher „verbesserter“ Lebewesen, die veränderte Umweltbedingungen besser aushalten,gelingen Ökosysteme als Ganzes zu erhalten.

Bisher wird Assistierte Evolution vor allem an Korallenriffen erprobt.

Erhalt, Regeneration und Neuschaffung von Ökosystemen mit Hilfe Assistierter Evolution (Grafik W.Probst)

Verhinderung der Klimaerwärmung durch Geoengineering

Durch technische Eingriffe in das Klimasystem (Geoengineering) soll die Klimaerwärmung vermindert werden. Dabei sind vor allem zwei Möglichkeiten denkbar:

  • Der Atmosphäre werden direkt Treibhausgase, insbesondere Kohlenstoffdioxid, entzogen (Carbon Dioxid Removal CDR, Carbon Capture and Storage, CCS).
  • Die auf die Erde eintreffende Sonnenstrahlung wird verringert (Solar Radiation Management SRM).
Methoden des Geoengeneering (W. Probst verändert nach Angaben in Gynsky u.a. 2011)

Die Bindung von Kohlenstoffdioxid kann entweder terrestrisch oder marin erfolgen. Klassische Vorschläge beruhen auf Methoden, durch die der Aufbau von Biomasse – zum Beispiel durch großflächige Aufforstung – gefördert wird oder Kohlenstoff haltiges Material in den Boden eingearbeitet wird (Beispiel Terra Preta). Auch Möglichkeiten, CO2 direkt aus der Luft zu filtern und unterirdisch dauerhaft zu speichern – zum Beispiel durch Einpressen in tiefliegende geologische Formationen (Carbon Capture and Storage, CCS). Die meisten derzeit laufenden Pilotprojekte testen die Integration dieser Art der CO2 Abscheidung direkt in der Kombination mit Kohlekraftwerken, weil dort in den Abgasen der CO2 Gehalt hoch ist. Die Möglichkeit der direkten Filterung aus der Luft, in der CO2 derzeit höchstens zu 0,5 Volumenpromille enthalten ist, wäre bisher zwar möglich aber sehr kostenaufwendig.

Um CO2 verstärkt in den Ozeanen zu binden, wird die Ozeandüngung diskutiert. Dabei bedient man sich der sogenannten biologischen Pumpe. Kohlenstoffdioxid wird von Mikroalgen assimilert und ein Teil davon wird als dauerhaftes Kohlenstoff-haltiges Sediment am Meeresboden abgelagert. Durch Düngung könnte die Phytoplanktonproduktion angeregt werden. Da man von den Makronährmineralien Nitrat und Phosphat sehr große Mengen benötigen würde, hat man bei bisherigen Versuchen mit dem Mikronährmineral Eisen gearbeitet Entsprechende verhältnismäßig kleinräumige, zeitlich begrenzte Versuche, die zu Beginn des Jahrhundert durchgeführt wurden, hatten allerdings wenig überzeugende Ergebnisse. Zwar konnte man zunächst Algenblüten bewirken, aber das Absinken des Phytoplanktons trat nur in sehr geringem Maße ein. Ein großer Teil wurde vom Zooplankton aufgenommen und dadurch veränderten sich die Nahrungsnetze. Auch die Blüte von toxischen Kieselalgen konnte beobachtet werden. Zudem ist die kontinuierliche Düngung sehr energieaufwendig und die Bilanz des tatsächlich gebundenen CO2 ist dadurch viel geringer als zunächst theoretisch berechnet wurde.

Eine weitere Möglichkeit, die Phytoplanktonproduktion zu erhöhen, läge in der Manipulation der marinen Schichtung. Wenn man verstärkt nährmineralreiches Tiefenwasser in obere Wasserschichten verlagern könnte – wie dies unter derzeit natürlichen Bedingungen zum Beispiel an der Westküste des amerikanischen Kontinents geschieht – könnte man die Phytoplanktonproduktion anregen. Entsprechende aus langen Rohren bestehende Pumpen, die vom Wellenschlag angetrieben werden, wurden zwar erfolgreich konstruiert. Um einen messbaren Effekt bei der marinen CO2– Speicherung zu erreichen, wären allerdings eine sehr große Zahl solcher Pumpen notwendig und die Folgewirkungen sind schwer abzuschätzen.

Außer durch die biologische Pumpe wird auch durch eine physikalische Pumpe CO2 von der Oberfläche in die Tiefen der Weltmeere befördert. Kalte Wassermassen mit hohem Salzgehalt im Nordatlantik und in dem antarktischen Zirkularstrom sinken ab und setzen globale Meeresströmungen in Gang, bei denen es an anderer Stelle zum aufsteigen von Tiefenwasser kommt. Da CO2 in kaltem Wasser eine höhere Löslichkeit hat als in wärmeren Wasser, wird durch diesen Prozess langfristig CO2 aus der Atmosphäre in die tieferen Wasserschichten transportiert. Aber alle Methoden, die bisher versucht wurden, um diesen Absinkeprozess zu verstärken, waren nicht erfolgreich, insbesondere, weil das Absinken des Wassers an anderen Stellen den Auftrieb verstärken und damit kohlenstoffdioxidreiches Wasser an die Oberfläche befördern würde. Ob die Bilanz dann tatsächlich zu einer verstärkten marinen CO2– bzw. C-Speicherung führen würde, ist fraglich.

Die zweite Möglichkeit ist die Verringerung der auf der Erde auftretenden Sonnenstrahlung, also die Beeinflussung des Strahlungshaushaltes (Solar Radiation Management SRM). Sie beruht einmal auf Methoden, welche die Reflexion der Strahlung verstärken, also die Erhöhung des Albedos der Erdoberfläche. Diskutiert wird zum Beispiel das Weißeln von Dachflächen oder die Installation von großen Reflektorflächen in Wüsten oder auf Meeren. Zur zum anderen könnte das Einbringen von Aerosolen in die Stratosphäre oder von großflächigen Spiegeln in den Weltraum das Durchdringen der Sonnenstrahlen bis zur Erdoberfläche verringern. Alle diese Methoden sind höchst umstritten, da man nur schwer Aussagen über die dabei auftretenden Nebeneffekte und Folgen machen kann. Außerdem ist der finanzielle Aufwand sehr hoch.

Insgesamt birgt Geoengineering große Risiken. Wenn sich aber zeigt, dass die vom Weltklimarat 2018 festgelegten Klimaziele  anders nicht erreicht werden können, wird man die Risiken einiger solcher Methoden wahrscheinlich in Kauf nehmen (Ginsky u.a. 2011).

Kreislaufwirtschaft zur Abfallvermeidung

Vermeidung von Abfall und Umweltverschmutzung  muss nicht (nur) auf Sparsamkeit und Verzicht aufgebaut sein, mindestens genauso wichtig ist eine konsequente Kreislaufwirtschaft: Alle Produkte müssen so konzipiert und  hergestellt werden, dass sie „rematerialisierbar“ sind, ob Möbel, Kleider, Autos, Baumaschinen Häuser oder Lebensmittelverpackungen. Nach Ansicht des Chemiker und Designers Michael Braungart und des Architekten William McDonough ist dieses „cradle to cradle-Prinzip“ (C2C, „Von der Wiege zur Wiege“)  sogar alleine entscheidend. (McDounough, Braungart 2009). Sie berufen sich dabei auf die Natur als Vorbild. Die üppigsten und artenreichsten Ökosysteme, die tropischen Regenwälder, sind nicht nur die produktivsten, sie setzen auch die größten Stoffmengen um. Daraus folgert Braungart, dass es nicht darum gehen kann, zu „sparen“ also, weniger umzusetzen, sondern darum, nicht zu „verbrauchen“ sondern zu „gebrauchen“. „Verschwendet! Aber richtig: Macht keinen Müll!“ fordert er. Sonnenenergie steht im Prinzip soviel zur Verfügung, dass es kein Problem ist, verschwenderisch damit umzugehen. Soziale Ungerechtigkeit und das Nord-Süd-Ungleichgewicht können nicht durch Sparsamkeit gelöst werden. Ihre Lösung ist aber Voraussetzung für geordnete, friedliche Verhältnisse auf unserem Planeten.

Dieses Konzept steht in gewissem Widerspruch zu der Forderung einer verminderten Ressourcennutzung wie sie vom Wuppertal Institut für Klima,Umwelt, Energie, zunächst als „Faktor 4“ (v. Weizsäcker, Lovins, Lovins 1995) später als „Faktor 10“ (Schmidt-Bleek 1997) propagiert wurde. Sicher kann es bei einer zukunftsfähigen, nachhaltigen Wirtschaft nur um ein „Sowohl-als-auch“ gehen, denn Kreislaufprozesse ganz ohne Abfall und Umweltschäden – das zeigt auch das Vorbild Natur – gibt es nicht. Fossile Brennstoffe sind ein Beispiel für solche natürlichen Abfälle und globale Katastrophen. Gutes Beispiel für die menschliche Wirtschaft  ist die große Verschwendung von Nahrungsmitteln und die damit verbundene Zerstörung von gut funktionierenden Kreislauf-Ökosystemen und inhumaner Nutztierhaltung.

Wie zukünftiges Wirtschaften verbessert werden könnte zeigt ein in Dänemark entwickelter Industriepark, in dem eine „Symbiose“ zwischen verschiedenen Industrieunternehmen nicht nur eine starke Abfallverminderung sondern auch eine bessere Energienutzung ermöglichen (Kalundborg Symbiosis 2020).

Das größte Problem beim Plastikabfall sind die Verpackungen. Eine konsequente Einführung von kompostiertem Verpackungsmaterial könnte hier große Verbesserungen bringen. Weltweit hat die sehr erfolgreiche Einführung von Kaffeepads aus Kunststoff oder Aluminium zu einem enormen Anstieg von Verpackungsmüll und Ressourcenverbrauch geführt, jährlich mittlerweile über 40 Milliarden Kapseln. Aber immer mehr Firmen versuchen, kompostierbare Verpackugen zu produzieren. Ein Beispiel ist die Firma Nexe Innovations, die derzeit mit ihren kompostierbaren Kaffeepads recht erfolgreich ist, die in allen gängigen Kaffeemascinen verwendet werden können.

Neobiota-Management

Im Laufe der Erdgeschichte zerbrachen Kontinente oder schoben sich zusammen, Inseln und Inselarchipele entstanden neu oder gingen unter, aus Grabenbrüchen wurden Ozeane, Meeresbuchten wurden abgetrennt, Binnenmeere öffneten sich zum Ozean. Diese geologischen Ereignisse wurden begleitet  von Ausbreitung, Rückgang, Einwanderung und Auswanderung von Lebewesen. Die Invasion neuer Arten und die Ausbreitung von Krankheitserregern und die dadurch bedingten Veränderungen von Ökosystemen sind ein natürlicher Vorgang in der Geschichte des Lebens. Doch im Gegensatz zu den geologischen Veränderungen haben die anthropogen verursachten globalen Veränderungen der letzten Jahrhunderte und vor allem der letzten Jahrzehnte zu einer enormen Beschleunigung dieser Invasionen beigetragen.

Schon im Zeitalter der europäischen Eroberungen und Kolonisationen und der Einwanderung von Europäern nach Amerika und Australien  wurden Tier- und Pflanzenarten von Menschen gezielt von Kontinent zu Kontinent verbreitet.

In den letzten Jahrzehnten haben der globale Warenaustausch und der Reiseverkehr, aber auch die gezielte Einfuhr gebietsfremder Arten, zu einer starken Zunahme von Neobiota (Neubürgern) geführt. Diese Einwanderer sind ein ernst zu nehmendes Naturschutzproblem geworden. Durch die Verdrängung einheimischer Arten können sie Ökosysteme verändern und schließlich das Aussterben von Arten bewirken („invasive Arten“). In der EU-Liste invasiver gebietsfremder Tier- und Pflanzenarten („Unionsliste“) werden derzeit 66 Tier- und Pflanzenarten als möglicherweise invasiv aufgelistet. Bereits in Deutschland etabliert sind zum Beispiel der Riesen-Bärenklau (Heracleum mantegazzianum), das Indische Springkraut (Impatiens glandulifera), der Kamberkrebs (Orconectes limosus) und die Amurgrundel (Percottus glenii) (NABU 2019). Neben einer Konkurrenz mit einheimischen Arten geht es dabei auch um Schädlinge wie Kartoffelkäfer, Asiatischem Marienkäfer, Varoamilbe oder Buchsbaumzünsler, gegen die ansässige Arten kaum Abwehrkräfte entwickelt haben.

Wegsaum mit Drüsigem Springkraut (Impatiens glandulifera) im Rotwildpark Stuttgart, September 1991. Die Art stammt aus dem Himalaja und wurde 1839 nach England eingeführt. Von dort gelangte sie auf den Kontinent. Heute gilt sie als invasiver Neophyt und wird teilweise bekämpft. Verschiedene Untersuchungen zeigen jedoch, dass die Pflanze die natürliche Waldverjüngung kaum negativ beeinflusst (Foto W. Probst).

Besonders gefährdet durch invasive Arten waren und sind Inseln mit speziellen Ökosystemen und vielen endemischen Arten. Die absichtliche Aussetzung von Ziegen und Schweinen und die unabsichtliche Einfuhr von Ratten durch die frühen Seefahrer des 16.-19. Jahrhunderts hatten schon verheerende Auswirkungen auf pazifischen Inseln, aber auch die Besiedlung von Amerika, Australien und Neuseeland durch Europäer hat einen gewaltigen Invasionsschub verursacht, der das Ende zahlreicher einheimischer Arten bewirkte. Gut dokumentiert ist der Artenrückgang auf der Pazifikinsel Guam, der durch die eingeschleppte Braune Nachtbaumnatter (Bioga irregularis) verursacht wurde (Probst 2010).

Aber sind alle Neobiota problematisch? Einer der führenden Neobiota-Forscher, Ingo Kowarik, gibt darauf folgende Antwort:

  • Ja, wenn Veränderungen von Natur als Problem gesehen werden.
  • Ja wenn „Fremdes“ als negativ gesehen wird.
  • Nein, wenn unterschiedliche Auswirkungen berücksichtigt werden.

(Ingo Kowarik bei einem Vortrag zum Landesbiologentag an der Universität Hohenheim am 7.11.2020).

Durch auf wissenschaftlichen Grundlagen erarbeitete Management-Pläne versucht man, schädliche Auswirkungen von Neobiota auf die Biodiversität zu begrenzen. Ein Beispiel: Durch den organsierten Austausch von Ballastwasser in der marinen Schifffahrt seit 2017 soll die Einschleppung gebietsfremder Arten verhindert werden.

Pandemien und Naturschutz

Mit dem globalisierten Austausch von Menschen und Waren haben sich auch Krankheitserreger ausgebreitet. Dies führte nicht selten in den neuen Ausbreitungsgebieten zu verheerenden Epidemien. Besonders betroffen waren  indigene Bevölkerungsgruppen Amerikas, zum Beispiel die mittlerweile (fast?) ausgestorbenen Ureinwohner Feuerlands, die Yagan oder Yamana (Kaiser 2013).

Auch in umgekehrter Richtung wurden schon lange Keime übertragen, zum Beispiel der Cholera-Erreger Vibrio cholerae aus Indien. Auch die Übertragung von Krankheitserregern von Tieren auf Menschen geht bis in das Neolithikum zurück, als durch die Einführung der Nutztierhaltung der Kontakt zwischen Tieren und Menschen enger wurde. Masern und Tuberkulose stammen von Kühen, Keuchhusten von Schweinen und Grippe von Enten (Shah 2020).

Die rasant voranschreitende Globalisierung der letzten Jahrzehnte hat die rasche Ausbreitung von Krankheitserregern, insbesondere von Bakterien und Viren, weiter gefördert. Dabei spielen nicht nur die größere Mobilität der Bevölkerung und der Reiseverkehr über große Entfernungen eine wichtige Rolle, sondern auch die immer stärkere Einschränkung von Wildtierpopulationen durch Verlust natürlicher Lebensräume, zum Beispiel tropischer Regenwälder. In den kleineren Populationen können sich Erreger schneller ausbreiten. Außerdem fördert der immer intensivere Kontakt der ständig wachsenden menschlichen Bevölkerung mit Tieren früher sehr abgelegener Regionen den Übergang von Krankheitskeimen von Wildtieren zu Menschen (Beispiel AIDS, Ebola, Vogelgrippe H1N5, SARS-Corona, Covid 19; vgl. Ruppert 2021, Keesing 2010, Jones 2008).

Man kann nur hoffen, dass die derzeitigen Erfahrungen mit der Covid 19 Pandemie zu einem Umdenken und einer vorsichtigeren Vorgehensweise führen.

Die immer intensivere Einflussnahme des Menschen auf alle Lebensräume und die räumliche Einschränkung naturnaher Biotope sollte gestoppt und womöglich rückgängig gemacht werden. Dabei geht es insbesondere darum, die Vielfalt der Arten in ausreichender Populationsgröße zu erhalten. Dadurch kann erreicht werden, dass sich Viren, auch neue mutierte Viren, nicht flächendeckend ausbreiten, sondern eher in einer Nische bleiben und nach einiger Zeit wieder Aussterben (infektionsbiologischer Verdünnungseffekt). Auch Generalisten wie Ratten oder Sperlinge, die für die Übertragung auf menschliche Populationen besonders gefährlich sind, sind in intakten Ökosystemen weniger verbreitet .

Inklusiver Naturschutz

Naturschutz sollte nicht nur in abgegrenzten Gebieten oder Biotopen stattfinden sondern überall. Die Einrichtung von Naturschutzgebieten hat zwar insofern eine gewisse Berechtigung, als es leichter ist, ökologisch wertvolle Lebensgemeinschaften, Schlüsselarten und Habitate auf diese Weise zu schützen. Außerdem sind naturnahe, von Menschen wenig beeinflusste Gebiete eine wichtige Voraussetzung für die ökologischen Funktionen des Bioplaneten. Es besteht aber die Gefahr, dass außerhalb von Schutzgebieten auf Natur und natürliche Funktionsabläufe keine oder zu wenig Rücksicht genommen wird. Angesichts der immer intensiveren Nutzung der Erde durch den Menschen wird es außerdem immer schwieriger, ausreichende Flächen für ungenutzte Gebiete bereitzuhalten. Flächendeckender „inklusiver“ Schutz der Natur auch in Städten und Gewerbegebieten, in Agrarlandschaften und entlang von Verkehrswegen wird deshalb immer wichtiger. Es gibt mittlerweile viele Ansätze, wie Natur auch außerhalb von Schutzgebieten nicht „ausgeschaltet, sondern eingeschaltet“ werden kann (Le Roy 1973), und Biodiversität und natürliche Funktionsabläufe erhalten bleiben.

Städte und Siedlungen

Zwischen 1985 und 2015 hat die die Ausdehnung von Städten und Siedlungen jährlich um 9687 km² zugenommen, mit steigender Tendenz (Liu et al. 2020). Damit ist der Flächenverbrauch der Städte schneller gewachsen als die Bevölkerung. Für eine nachhaltige Entwicklung müssen Städte deshalb „ökologisch“ werden. Eine Stadt mit großen Grünanlagen wie Parks und Gärten bietet zwar eine hohe Lebensqualität und eine bessere Ökobilanz. Dies geht aber insofern auf Kosten der Umgebung, als sie mehr Fläche für denselben umbauten Raum benötigt. Eine Erfolg versprechende Möglichkeit für dicht bebaute Großstädte ist die Integration von Bauwerken und Grünanlagen.

Neben Minderung des Klimawandels durch eine Verbesserung der CO2-Bilanz können dadurch auch die Auswirkungen einer Klimaerwärmung verringert werden (Grewe 2020). Schließlich wirken mit Sachverstand begrünte Städte auch dem Verlust der Biodiversität entgegen.

Die dynamische Vergrößerung städtischer Flächen von1985-2015. Datengrundlage sind Landsataufnahmen mit einer Auflösung von 30m. b) Steigungsrate des Stadtflächen-Wachstums auf den verschiedenen Kontinenten (Quelle Liu et al. 2020).
Vernetzte Dachgärten (Zeichnung W.Probst)

Dächer

Schon lange zählt es zu Attributen ökologischer Bauweise, Dächer zu begrünen. Die Etablierung und Ausgestaltung solcher Dachgärten und Wiesen ist aber noch sehr stark ausbaufähig, wie man auf Luftbildern von Städten leicht erkennen kann. Begrünte Dächer können durch Brücken vernetzt werden. Durch treppenartige Anordnung von Gebäudeteilen können Verbindungen zur bodenständigen Grundflächen hergestellt werden.

Fassaden

Auch begrünte Fassaden gibt es schon lange, aber eher an alten Bauernhäuser auf dem Land als an mehrgeschossigen Stadthäusern, Bankhochhäusern und Industrieanlagen. Eine Möglichkeit: Flächenhafte Begrünungsmodule, die mit einfachen Mitteln an Fassaden angebracht werden können und die durch Anschluss an eine Bewässerungsanlage wartungsarm sind. Die Elemente können aus einem Gerüst bestehen, an dem mehrere auswechselbare Pflanzgefäße aufgehängt werden. Fensterfassaden könnten  durch berankte Schnurgerüste – Hopfenfeldern vergleichbar – begrünt und beschattet werden.

Ein interessanter Vorschlag sind vorbegrünte Pflanzennetze. Solche „Urban Pergolas“ sollen als Verschattungssystem der Aufheizung von Fassaden entgegenwirken und die Städte in einen „diversen Großstadtdschungel“ verwandeln. Die Pflanzennetze können an einem oder zwischen mehreren Gebäuden angebracht werden und dadurch Grünflächen schaffen, ohne andere Nutzungen den Platz wegzunehmen (Urban Pergola 2021).

Balkone

Eine weitere Möglichkeit der vertikalen Begrünung, die in wenigen Beispielen schon verwirklicht ist, wäre die Ausgestaltung von Pflanzbalkonen mit Sträuchern und Bäumen (Boeri 2015).

Städte mit grünem Pelz

Ergänzend zu den genannten Maßnahmen können Verkehrswege, insbesondere Straßen und Schienenverkehr, wie U-Bahnen unter die Oberfläche verlegt werden, wodurch Platz für bodenständige Grünanlagen aber auch Rad- und Fußwege gewonnen würde. Regenwasser können den Zisternen gespeichert und in Trockenperioden zur Bewässerung genutzt werden wodurch die Kanalisation entlastet würde.

So könnten schließlich Städte entstehen, die ganz in einem grünen Pelz eingehüllt sind und die sich fast übergangslos in die umgebende Landschaft einfügen (vgl. Jean Nouvel 2014, Boeri 2015).

Begrünte Wohnblocks (Modellbau W.Probst)

Landwirtschaft

In der Landwirtschaft sollten großflächige Monokulturen durch ökologisch wertvollere Netze (Feldhecken, Blumenstreifen, Bachläufe) und Inseln (Feldgehölze, Feuchtgebiete) unterbrochen werden. Mischkulturen aus Gehölzen, mehrjährigen und einjährigen Nutzpflanzen (Agroforestry) könnten vor allem in wärmeren Klimaregionen eine ökologische Alternative zu Monokulturen darstellen. Die sehr aufwändige arbeitsintensive Bewirtschaftung würde durch einen Einsatz intelligenter Maschinen zu vertretbaren Produktionskosten möglich.

Nachhaltige Landwirtschaft: Vertical Farming spart Flächen und erleichter Stoffkreisläufe; Vernetzung durch Feldhecken und Wildpflanzenstreifen erhöht die Biodiversität in Agrarflächen und wird durch intelligente Maschinen möglich; Agroforestry, Anbau von Kulturpflanzen in mehreren Vegetationsschichten, fördert die Biodiversität und eignet sich vor allem für wärmere Klimazonen (z.B. in Kombination mit Kaffee- und Kakaoanbau) (Zeichung W.Probst)

Landwirtschaft 4.0

Lange Zeit wurden Landmaschinen – den Dinosaurier vergleichbar – immer größer und größer. Vergleicht man einen Traktor aus den 19hundertfünfziger Jahren mit einer heutigen Maschine wird dieser Hang zum Gigantismus deutlich. Er hängt natürlich direkt zusammen mit der Vergrößerung der landwirtschaftlichen Betriebee und vor allem der bewirtschafteten Flächen. Die Dinosaurier sind nicht zuletzt auch wegen ihrer Größe ausgestorben. Die immer größeren Landmaschinen stellen für die Landwirte eine große finanzielle Belastung dar und sicher sind sie ein Grund dafür, dass immer mehr landwirtschaftliche Betriebe aufgeben müssen. Auch die Verdichtung der Böden durch die Riesentraktoren ist ein großer Nachteil. Die Entwicklung kleiner intelligenter Landmaschinen könnte eine neue, ökologisch verträglichere und damit nachhaltigere Form der Landbewirtschaftung einleiten. Diese Maschinen könnten – ähnlich wie ein Schweizer Armeemesser – viele Funktionen in sich vereinen: ein Roboter, der jede Pflanze individuell behandelt, nicht nur mit Herbiziden, Insektiziden und Fungiziden, sondern auch mit angepassten Düngemitteln, und der auch für eine gezielte Bewässerung sorgt. Dies alles könnte in einem Arbeitsgang und in individuell angepassten Mengen geschehen. Die Folgen einer solchen Behandlung von Einzelpflanzen statt von ganzen Feldern bedeutet nicht nur eine deutliche Reduktion benötigter Chemikalien und anderer Ressourcen. Diese Maschinen könnten von Drohnen oder von Satelliten gesteuert die jeweiligen Zielorte erreichen. Eine Weiterentwicklung der Erntemaschinen könnte Mischkulturen und Agroforestry wirtschaftlicher machen.

Vertical Farming

Eine zukunftsweisende und flächensparende Form zur Produktion von Nahrungsmitteln und anderen nachwachsenden Rohstoffen wird mit dem Begriff „Vertical Farming“  bezeichnet. Der New Yorker Professor für Umweltgesundheit und Mikrobiologie Dickson Despommier entwickelte mit seinen Studenten ab 1999 entsprechende Ideen  zunächst für die Nahrungsmittelversorgung der 50000 Einwohner Manhattans. Ausgangspunkt waren Überlegungen zum möglichen Gemüseanbau auf Dachflächen. In der Weiterentwicklung  wurden Hochhäuser geplant, die insgesamt der Pflanzenkultur dienen sollen. Diese Einbindung von Farmen in das Innere von Gebäude wird mit dem Begriff „Sponge City- Architecture“ oder „Agritecture“ bezeichnet. In mehreren oder allen Stockwerken eines solchen  Hochhauses sollen Pflanzen auf optimale Weise automatisch gesteuert und reguliert kultiviert werden. Gleichzeitig sind diese Kulturen in Kreislaufsysteme, insbesondere der  Wasserwiederverwendung und Abwasseraufbereitung, eingebunden (Despommier 2011). Auch eine Kopplung mit Aquakulturen und anderen Formen der Nutztierhaltung ist möglich.

Der Vorteil solcher Plantscraper ist nicht nur der gegenüber normalem Farmland  10-20mal geringere Flächenverbrauch. Erhebliche Ressourcen könnten dadurch ein gespart werden, dass es einen geschlossenen Wasserkreislauf gibt und kontrollierte Umgebungsbedingungen den Einsatz von Pestiziden und Düngemitteln reduzieren. Die Kulturen sind unabhängig von Außenbedingungen wie Dürre, Frost, Starkniederschläge, Hagel und Sturm und sie können ganzjährig betrieben werden. Künstliches Licht kann Pflanzenwachstum rund um die Uhr auch in dunklen Jahreszeiten ermöglichen. Die schnellere und einfachere Versorgung der städtischen Bevölkerung mit frischen Nahrungsmitteln erfordert weniger Transportkosten, verbessert die Luft und mindert über Wasserspeicher die Überflutungsgefahr. Die Energieversorgung kann über Solarzellen, Windenergieanlagen und die Produktion von Biogas aus organischen Abfällen in einem Kreislaufsystem gesichert werden.

Der extrem dicht bevölkerte Stadtstaat Singapur plant seine Nahrungsmittelversorgung durch schwimmende Hochhäuser zu verbessern.

Geplante schwimmend Plantscraper für Singapur (Quelle
https://www.designboom.com/architecture/forward-thinking-architecture-japa-floating-responsive-agriculture-07-18-2014/ )

Voraussetzungen für den erfolgreichen Betrieb solcher Hochhausfarmen ist eine ausgefeilte Technik, die von intelligenten Computersystemen gesteuert wird. Das schwedische Architekturbüro Plantagon plant ein Forschungszentrum für urbane Landwirtschaft in Linköping zu entwickeln. Ausgangspunkt soll ein im Bau befindlicher Plantscraper sein, an dem technische Systeme erprobt und verbessert werden können.

Modell-Plantscraper in Linköping,Schweden, im Bau (Quelle: http://www.plantagon.com/about/business-concept/the-linkoping-model/ )

Verkehrswege

Durch Brücken und Tunnel kann der Zerschneidungseffekt von Verkehrswegen gemindert werden (Zeichnung W.Probst)

Je dichter die Besiedelung, desto dichter sind nicht nur Städte, Siedlungen  und Industrieanlagen, desto dichter ist auch das Netz von Verkehrswegen, insbesondere Straßen und Autobahnen (in Deutschland  derzeit nach Erhebung des Umweltbundesamt knapp 20000 km², das entspricht rund 5,5% der  Landesfläche). Das wirkt sich r nicht nur über den Flächenverbrauch und die Versiegelung sondern vor allem über den Zerschneidungseffekt nachteilig auf die Funktion von Ökosystemen aus. Mehr noch als Pflanzenarten sind Tierpopulationen durch die dadurch bedingte Verinselung betroffen. Auch die direkte Tötung von Tieren durch den Verkehr spielt eine Rolle. Indirekt wirkt sich dies über die Bestäuber und die Verbreitung von Früchten und Samen auf die Vegetation aus.

Eine Verbesserung kann einmal durch geeignetes Straßenbegleitgrün erreicht werden (Kühne/Freier 2012). Vor allem aber kann die trennende Wirkung von Verkehrsflächen durch Brücken, sowohl Brücken über schützenswerte Landschaftsteile als auch verbindende Grünbrücken, und Tunnel erreicht werden. Schutzgräben oder Zäune können in Kombination mit kleinen Tunneln insbesondere  Amphibien bei ihren Laichwanderungen schützen (Krötenzaun, Krötentunnel).   Nicht mehr benötigte Verkehrswege sollten renaturiert (entsiegelt) werden.

Schließlich sind die hohe Verkehrsdichte und die damit verbundenen Emissionen der Verkehrsmittel ein großes Problem. Sie wird einmal durch den Individualverkehr, zum anderen durch den Güterverkehr verursacht. Beide haben in den letzten Jahrzehnten ständig zugenommen. Eine größere Verlagerung dieses Verkehrs auf die Bahn wird schon lange als Ziel formuliert, ließ sich aber bisher politisch nicht durchsetzen. Auch eine Förderung dezentraler Produktion könnte der ständigen Zunahme des Güterverkehrs entgegenwirken.     

Quellen

BMU (2020): Plastikmüll – ein Problem, das uns alle angeht. https://www.bmu-kids.de/wissen/boden-und-wasser/wasser/meeresumweltschutz/plastikmuell-im-meer/

Crutzen, P. J. (2002): Geology of mankind. Nature 415, p.23

Daily, G. C. (2001): Ecological forecast. Nature 411, p.245

Dasgupta,  P. (2020): Interim Report – The Dasgupta Review: Independent Review on the Economics of Biodiversity. Crown copyright. https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/882222/The_Economics_of_Biodiversity_The_Dasgupta_Review_Interim_Report.pdf

Despommier, D. (2011): The vertical  farm: Feeding the world in the 21th century. Picador (Nachdruck der Ausgabe von 2010)

De Souza Machado, A. A., Lau, C. W. u. a. (2019): Microplastics Can Change Soil Properties and Affect Plant Performance. In: Environmental Science & Technology. 53, S. 6044, doi:10.1021/acs.est.9b01339.

Dierkes, P., Homes, V. (2017): Artenschutz. UB 427 (41.Jg.), S. 2-11, Seelze: Friedrich

Gynsky, H. u. a. (2011): Geo-Engeneering – wirksamer Klimaschutz oder Größenwahn? Dessau-Roßlau: Umweltbundesamt https://www.umweltbundesamt.de/sites/default/files/medien/publikation/long/4125.pdf

Hallmann, C. A. u.a. (2017): More than 75 percent decline over 27 years in total flying insect biomass in protected areas.PLOS one https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0185809

Heinrich-Böll-Stiftung und BUND (2020): Der Plastikatlas 2019, 4. Aufl.

Hendersen, D. : American Wilderness Philosophy. In: Internet Encyclopedia of Philosophy (IEP)  http://www.iep.utm.edu/am-wild/ 

Hupke, K.-D. (2015):: Naturschutz. Ein kritischer Ansatz. Heidelberg: Springer Spektrum

IPCC (2013): Working Group I Contribution to the IPCC Fifth Assessment Report, Climate Change 2013: The Physical Science Basis, Summary for Policymakers

https://iopscience.iop.org/article/10.1088/1748-9326/9/1/014010

Jones, K.E. u.a. (2008): Global Trends in Emerging Infectious Diseases. Nature 451, S. 990-993

Kaiser, A. (2013): „Indianer“ im Sachunterricht. Baltmannsweiler: Schneider

Kalundborg Symbiosis http://www.symbiosis.dk/en/

Kattmann, U. (1991). Bioplanet Erde: Neue Ansichten über das Leben. Unterricht Biologie15(162), 51-53.

Kattmann, U. (2004). Bioplanet Erde: Erdgeschichte ist Lebensgeschichte. Unterricht Biologie28(299), 4-14.

Keesing, F. u.a. (2010): Impacts of Biodiversity on the Emergence and Transmission of Infectious Diseases. Nature 468, S. 647-652

Kühne, S./Freier, B. (2012): Saumbiotope und ihre Bedeutung für Artenvielfalt und biologischen Pflanzenschutz. Workshop „Biological Diversity in Agricultural
Landscapes“ – February 09-10, 2012, Berlin-Dahlem

Le Roy, L. G. (1973): Natur ausschalten – Natur einschalten. Stuttgart: Klett Cotta

Little, A. (2019): The fate of food. What we’ll eat in a bigger, hotter, smarter World. London: Oneworld Publications

Liu, Xiaoping et al. (2020): High spatiotemporal resolution mapping of global urban change from 1985 to 2015: Nature Sustainability 3, pp.564-570.

Mantyka-Pringle, C. S., Martin, T. G., Rhodes, J. R. (2012): Interactions between climate and habitat loss effects on biodiversity: a systematic review and meta-analysis. Global Change Biology 18, pp. 1239-1252

Matthews, H.D., et al. (2014): National contributions to observed global Warming, Environmental Research Letters 9, doi:10.1088/1748-9326/9/1/014010

McDounough, W./Braungart, N. (2009): Cradle-to-cradle. New York: Vintage

Meyer-Abich KM (1990): Aufstand für die Natur. Von der Umwelt zur Mitwelt. Hanser, München

Missall, S. u. a. (2018): Trading Natural Riparian Forests for Urban Shelterbelt Plantations—A Sustainability Assessment of the Kökyar Protection Forest in NW China. Water- MDPI file:///C:/Users/WIPRO_~1/AppData/Local/Temp/Trading_Natural_Riparian_Forests_for_Urban_Shelter.pdf

Müller, F. u. a. (2020): Leitsätze der Kreislaufwirtschaft. Dessau-Roßlau:Umweltbundesamt. https://www.umweltbundesamt.de/sites/default/files/medien/1410/publikationen/2020_04_27_leitlinie_kreislaufwirtschaft_bf.pdf

Die EU-Liste invasiver gebietsfremder Tier- und Pflanzenarten. https://www.nabu.de/tiere-und-pflanzen/artenschutz/invasive-arten/unionsliste.html

PACE -The Platform for Accelerating the Circular Economy (2019): A New Circular Vision for Electronics. World Economic Forum http://www3.weforum.org/docs/WEF_A_New_Circular_Vision_for_Electronics.pdf

Perino, A. et al. (2019): Rewilding complex ecosystems. Science 364 https://science.sciencemag.org/content/sci/364/6438/eaav5570.full.pdf

Pimm, S. L. u.a. (2014): The biodiversity of species and their rates of extinction, distribution, and protection. Science 344 (Issue 6187)

Probst, W. (2009): Stoffkreisläufe. UB 349, S.2-11. Seelze: Friedrich

Probst, W. (2010): Die Schlange im Paradies – Invasionen auf Inseln. UB 354, Seelze: Friedrich

Probst, W., Hrsg. (2017): Saumbiotope – Grenzen und Übergänge. UB 425. Seelze: Friedrich

Probst, W. (2020): Der grüne Pelz. http://www.wilfried-probst.de/site/der-gruene-pelz/

Probst, W. (2020): Schwarze Erde – Möglichkeiten der Kohlenstoffspeicherung im Boden beurteilen. UB 457, S. 26-31.Hannover: Friedrich

Probst, W. (2021): Naturschutz auf neuen Wegen. Unterricht Biologie 465 (Jg.45). Hannover: Friedrich

Prominski, M., Maaß, M., Funke, L. (2014): Urbane Natur gestalten. Basel: Birkhäuser

Randers, J. (2012).: 2052 – eine globale Prognose für die nächsten 40 Jahre. München: Oekom , Ausblick 7-4

Redford, K. H. (2017):  The role of Synthetic Biology in conserving the new nature https://reefresilience.org/de/assisted-evolution-a-novel-tool-to-overcome-the-conservation-crisis-2/

Ruppert, W. (2021): Zoonosen. Unterricht Biologie Kompakt 466 (Jg.45). Hannover: Friedrich

Schilk,, D. (2019): Die Wiederbegrünung der Welt. Klein Jasedow: Drachen-Verlag

Schmidt-Bleek, F. (1997) : Wieviel Umwelt braucht der Mensch? Faktor 10 – das Maß für ökologisches Wirtschaften. München: dtv

Seddon, P. (2017): A history of assisted colonization https://www.youtube.com/watch?v=pOgpyeGPzF8&feature=youtu.be

Shah, S. (2020): Woher kommt das Corona-Virus? Le Monde diplomatique vom 12.03.2020

Smil, V. (2019): Growth – From microorganismes to megacities. Cambridge MA.: MIT-Press

Trommer, G. (1994): Didaktisch differenzierte Leitbilder – ein Drei-Umwelten-Modell zum pägagogischen Umgang mit Natur und Landschaft. Workshop Ökologische Leitbilder, Cottbus 9.6.1994. TUC Aktuelle Reihe 6/94:57-62

Ümüt Halik, TU Berlin: Planung und Management städtischer Freiflächen in Ürümqi. (Memento vom 19. Februar 2005 im Internet Archive) In: TU International, 46/47, Dezember 1999, (PDF-Datei, 4 S.).

Watson, J. E. M., Allen, J. A. u. a.: (2018): Protect the last of the wild. Nature 563, pp. 27-30

WEF (2019): A new circular vision for electronics. Time for a global reboot. http://www3.weforum.org/docs/WEF_A_New_Circular_Vision_for_Electronics.pdf

Weizsäcker, E. U. von (1995): Faktor Vier – Doppelter Wohlstand – halbierter Naturverbrauch. Stuttgart: Droemer-Knaur, https://de.wikipedia.org/wiki/Klimarahmenkonvention_der_Vereinten_Nationen

https://neobiota.bfn.de/grundlagen/neobiota-und-invasive-arten.html

http://eh-da-flaechen.de/

https://www.thejakartapost.com/life/2019/12/31/grown-from-necessity-vertical-farming-takes-off-in-ageing-japan.html

https://www.thejakartapost.com/life/2018/05/10/growing-up—why-the-uaes-first-vertical-farm-could-be-a-regional-gamechanger.html

https://wiki.bildungsserver.de/klimawandel/index.php/Treibhausgasemissionen

https://www.vbio.de/themenspektrum/biodiversitaet/insektenschwund/

https://www.heise.de/hintergrund/Afrikas-Gruenstreifen-3664743.html?seite=2

https://reefresilience.org/de/assisted-evolution-a-novel-tool-to-overcome-the-conservation-crisis-2/

https://www.agritecture.com/blog/2017/11/29/move-over-skyscrapers-this-plantscraper-can-feed-5000-a-year

https://reefresilience.org/de/assisted-evolution-a-novel-tool-to-overcome-the-conservation-crisis-2/

https://www.zdf.de/nachrichten/politik/one-planet-summit-afrika-gruene-mauer-wueste-macron-100.html

Hülsenfrüchtler als Nahrungslieferanten– Eine Ergänzung zu UB 444 „Erbsen, Bohnen und Co.“

LINK-NAME LINK-NAME

Art Verwendungsform Anbaugebiete Herkunft
Ackerbohne, Pferdebohne, Saubohne, Puffbohne (Vicia faba, früher Faba vulgaris)   Mehl, Schrot, ganze Bohnen als Gemüse früher in Europa sehr verbreitet, durch die Einführung der Neuwelt-Bohnen (Gattung Phaseolus) stark zurückgegangen; Indien, China, Japan Mittelmeerraum bis Vorderer Orient
Adzukibohne (Vigna angularis) reife Samen, grüne Hülsen und Bohnen als Gemüse und Salat Japan, subtropische bis warm- gemäßigt Zonen weltweit Japan, Korea, China
Bambara-Erdnuss, Erderbse (Vigna subterranea, syn.Voandzeia subterranea)   Mehl aus reifen Samen, unreife Bohnen geröstet oder gekocht Afrika Trockengebiete Westafrikas
Bockshornklee (Trigonella foenum-graecum)   Samen als Nahrungsmittel und Tierfutter, Gewürz (z. B. in türkischer Gewürzpaste Çemen), Sprossen (verursachten wg. bakterieller  Verunreinigung EHEC-Epidemie), medizinisch möglicherweise gegen Parkinsonsymptome (Verzögerung der Schädigung dopinerger Nerven) Süd- u. Mitteleuropa, Afrika, Naher Osten, Indien, China, Australien Westasien
Cassie, Röhren-, Purgier-Kassie, Indischer Goldregen (Cassia fistulosa) das harzige Fruchtfleisch der röhrenförmigen Hülsen wird ähnlich wie Lakritz genutzt und ist Bestandteil von Abführmitteln; dient auch zum automatisieren von Tabak Tropen und Subtropen Indien
Catjang-Bohne, Angola-Bohne  (Vigna unguiculata ssp. cylindrica)   Salate, Gemüse (grüne Blätter, junge Hülsen), reife Bohnen (gekocht, geröstet), Mehl, Schrot tropisch-subtropische Gebiete Afrikas u. Asiens Afrika
Erbse (Pisum sativum ) Gemüse (Zuckererbsen:ganze Hülsen), Schrot, Mehl, Kleie (mit Hülsen), weltweit, vor allem in gemäßigten Zonen Mittelasien
Erdbohne (Macrotyloma geocarpum) Samen grün und in reifen Zustand, Snack (mit Salz geröstete Bohnen); Viehfutter Senegal bis Nordnigeria, Nordghana Savannen Westafrikas
Erdnuss (Arachis hypogaea ) Mehl, Schrot, Öl, geröstete Nüsse, Erdnussbutter, in Süßwaren weltweit, tropisch-subtropisch Brasilien
Feuerbohne (Phaseolus coccineus) vor allem reife Samen als Gemüse (wegen der giftigen aber hitzeempindlichen Lektine nur gekocht) weltweit in gemäßigten bis subtropischen Zonen, besonders beliebt im Vorderen Orient und Balkan Südamerika (Anden)
Flügelbohne, Goabohne (Psophocarpus tetragonolobus) alle Pflanzenteile, auch die eiweißreichen Knollen sind essbar, Ölgewinnung Südostasien, Afrika (vor allem im Gartenbau) Afrika, Madagaskar
Gartenbohne (Phaseolus vulgaris) sehr viele Sorten mit unterschiedlich gefärbten und geformten Samen unreife Hülsen („grüne Bohnen“) und reife Samen als Gemüse weltweit mit Schwerpunkt in Asien Mittelamerika und andines Südamerika
Guarbohne (Cyamopsis tetragonobolus) Hülsen als Gemüse und Grünfutter; Guarkernmehl mit Hauptbestandteil des Mehrfachzuckers Guaran als Verdickungsmittel (E 412); technisch für Fracking verwendet Indien und Pakistan, Südwest-USA, Australien, Israel vermutlich Indien
Hamburger Bohne, Samtbohne (Mucuna sloanei) gekochte unreife Hülsen und reife Bohnen als Gemüse;abführend und harntreibend;aus allen Pflanzenteilen kann ein schwarzer Farbstoff gewonnen werden Tropen tropisches Afrika, Süd- und Mittelamerika
Helmbohne, Faselbohne, Lab-Lab-Bohne (Lablab purpureus, syn. Dolichos lablab) grüne Hülsen und unreife Bohnen als Gemüse, reife Bohnen als Gemüse oder Mehl, in Ägypten Gebäck „Tauniah“ (auch aus Vicia faba); Bodenverbesserung und Gründüngung; in Ostasien medizinisch genutzt Ostafrika, Indien Ost- bzw. Nordostafrika oder Indien
Horsegram,“Pferdebohne“ (Macrotyloma uniflorum) Samen als Nahrungsmittel und Tierfutter S.-O.-Asien, Afrika, Australien Südindien
Jackbohne (Canavalia ensiformis, syn. Dolichos ensiformis) junge Hülsen und unreife Bohnen als Gemüse, reife Samen nach entwässern und langem Erhitzen als Gemüse subtropische und tropische Gebiete weltweit Mittel und Südamerika
Johannisbrot (Ceratonia siliqua) Frucht wird frisch oder getrocknet verzehrt, zu Saft gepresst, zu Sirup verarbeitet oder zu alkoholischem Getränk vergoren, das getrocknete Fruchtfleisch wird auch zu Carobpulver vermahlen und wie Kakaopulver genutzt; die Samen liefern ein technisch genutztes Verdickungsmittel, Carubin oder Johannisbrotkernmehl (E 410) Mittelmeergebiet, insbesondere Spanien einschließlich der Balearen Mittelmeergebiet und Vorderasien
Juckbohne (Mucunia pruriens) in den Tropen weit verbreitete Futterpflanze (Heu, Silage), Bohnen geröstet als Kaffeeersatz, als Gemüse nur nach langem Einweichen und Kochen, da roh giftig (Alkaloide) Heilpflanze, z. B. gegen Parkinson; Haare für Juckpulver Tropen Ostindien,Sikkim, Kaschmir
Kichererbse, Echte Kicher, Römische Kicher, (Cicer arietinum) Trockenerbsen, geröstete Erbsen, Mehl, Schrot vorwiegend Trockengebiete vom Mittelmeergebiet bis Asien Kleinasien bis Nordindien
Knollenbohne, Yambohne (Pachyrhizus tuberosus) Wurzelrübe wird roh oder gekocht gegessen, übrige Pflanzenteile sind giftig Südamerika, S.-O.-Asien, Afrika nördliches Südamerika
Knollenbohne, Andine (Pachyr(r)hizus ahipa) wie vorige Art tropisch weltweit (wird aber nur noch wenig angebaut) Gebirgsregionen Mittel und Südamerikas
Kuhbohne, Augenbohne (Nabel augenartig) Vigna unguiculata ssp. unguiculata, syn. V. sinensis)   Gemüse (grüne Blätter, junge Hülsen), Sprossen; reife Bohnen (gekocht, geröstet), Mehl, Schrot, USA: Konserven „southern pea“; v. a. Afrika (Nigeria), N.Amerika, wenig in Asien, Europa Ostafrika
Limabohne, Mondbohne (Phaseolus lunatus) Samen als Gemüse Süd- u. Mittelamerika,N.-Amerika bis Rio Grande Mittelamerika und andines Südamerika
Linse (Lens culinaris) ganze Samen (Gemüse, Suppe), Mehl (medizinisch als „Heil- oder Kraftmehl“); Sprossen; zahlreiche unterschiedliche Sorten:   Tellerlinsen. …   Belugalinsen. …   Berglinsen. …   Rote Linsen. …   Pardinalinsen. …   Gelbe Linsen. …   Chateaulinsen. …   Grüne LInsen aus Le Puy Mittelmeergebiet, Orient Mittelmeerraum bis Mittelasien
Linsen-Wicke, Bitter-Wicke, Steinlinse, Ervilie (Vicia ervilia , syn= Ervum ervilia)   Grünmasse als Futter, der giftige Bitterstoff der Bohnen kann durch Dämpfen und Auswaschen entfernt werden, Mehl für medizinische Zwecke früher im Mittelmeerraum und bis Mitteleuropa, heute wenig angebaut östlicher Mittelmeerraum
Lupine, Anden- (Lupinus mutabilis) entbittertes Mehl als eiweißreicher Zusatz in Backwaren, Wurst und Nudeln; in Europa vor allem für Tierfutter; Snack Südamerika, subtropische bis warm- gemäßigt Zonen weltweit Südamerika (Anden- Hochland)
Lupine, Gelbe (Lupinus luteus) Bohnen vor allem als Snack im Mittelmeergebiet und in Lateinamerika Mittelmeergebiet, Lateinamerika Mittelmeerraum
Lupine, Schmalblättrige, Blaue Lupine (Lupinus angustifolius) erst nach Züchtung alkaloidarmer Sorten als Futter- und Nahrungsmittel nutzbar; Snack Australien, Neuseeland, Südafrika, in Europa unbedeutend Mittelmeerraum, Iberische Halbinsel, eventuell auch Palästina
Lupine, Weiße (Lupinus albus) Mehl, Schrot, Bohnen; ähnliche Nutzung wie Sojabohne (Eiweiß, Öl, Grünfutter); Snack (span.“Altramuces“,ital.“Lupini“) Mittelmeerländer, subtropische bis warm- gemäßigt Zonen weltweit Mittelmeergebiet
Mattenbohne, Mottenbohne (Vigna aconitifolia)   ganze oder halbierte Bohnen als Gemüse gekocht oder fritiert Indien, Sri Lanka, asiatische Trockengebiete Indien
Mungobohne , „Green Gram“ (Indien) (Vigna radiata)   ganze oder halbierte Bohnen als Gemüse gekocht oder frittiert, Mehl für verschiedene Gerichte, z. B. Glasnudeln; grüne Bohnen als Salat oder Gemüse, Sprossen Indien, China, Australien , USA Indien
Pferdebohne, Horsegram (Macrotyloma uniflorum syn. Dolichos uniflorum) reife Bohnen vor allem als Viehfutter aber auch für die menschliche Ernährung Indien Südindien
Platterbse, Saat-, Kicherling, (Lathyrus sativus) Mehl, Schrot, Gemüse Europa (v.a. Mittelmeergebiet), W-Asien Mittelasien (pontisch-kaspisch)
Reisbohne (Vigna umbellata) trockene Bohnen werden wir Reis zubereitet; grüne Hülsen und junge Bohnen als Gemüse und Salat, Sprossen Südostasien, Indien Zentralchina bis Malaysia
Schabziger-Klee; Brotklee (Trigonella caerulea) Gewürz, v.a. zur Herstellung des Schabziger-Käses (Kräuterkäse,Schotterkäse,Grüner Käse) Alpenraum, v. a. Schweiz, Südtirol, Ursprungsart T. .procumbens im östlichen Mittelmeergebiet und Kaukasus
Schwertbohne (Canavalia gladiata) reife Körner müssen wie bei der Jackbohne entgiftet werden subtropische und tropische Gebiete weltweit Südasien und Afrika
Senegal-Akazie (Senegalia senegal) Gummi arabicum (Harz), Verdickungsmittel,Bindemitte und Stabilisator in Nahrungsmitteln und Getränken, aber auch in Kosmetikartikel, Farben u.a. (E 414) nicht kultiviert Wüsten- und Halbwüstengebiete südlich der Sahara, v. a. Senegal
Sojabohne (Glycine max) Mehl, Schrot, Öl, Soßen, Gemüse (ganze Pflanze oder grüne Hülsen, jap. Edamame), Gewürz weltweit von Tropen bis in gemäßigte Zonen Ostasien
Spargelbohne, Langbohne (Vigna unguiculata  ssp. sesquipedalis) Salate, Gemüse (grüne Blätter, junge Hülsen), aus reifen Bohnen Mehl Indien, China, Ost- und Südostasien, Ostafrika, Karibik Afrika (?)
Straucherbse (Cajanus cajan) ganze oder halbierte Bohnen als Gemüse gekocht oder fritiert, Blätter für Salat und Gemüse; vielseitige Anwendung in traditioneller Heilkunde Tropen, Subtropen Indien, möglicherweise auch Ostafrika
Süßholz, Echtes (Glycirrhiza glabra) eingedickter Wurzelsaft zur Lakritzherstellung, Heilwirkung bei Magenentzündung und als Schleimlöser Vorderer Orient, früher auch in Mitteleuropa (heute noch von Bamberger Süßholz-gesellschaft) Mittelmeerregion und Westasien
Tamarinde, Indische Dattel, Sauerdattel (Tamarindus indica) im Nahen Osten wird aus dem Fruchtfleisch Limonade hergestellt; in Thailand und Mexiko werden kandidierte Früchte als Konfekt gegessen; die Samen werden gekocht und geröstet und zu Mus gestampft (Tamarindenmark); gemahlene Samen dienen auch als Geliermittel Tropen und Subtropen Afrika
Teparybohne (Phaseolus acutifolius) junge Hülsen als Gemüse, reife Samen in Suppen v.a. Mexiko nördliches Mexiko
Tragant (Astragalus gummifer u.a.Arten) Harz (Traganth) dient als Verdickungs- und Bindemittel (E 413) kaum kultiviert West- und Vorderasien, Iran bis Türkei
Turibaum, Kolibribaum (Sesbania grandiflora) Gemüse, Grünfutter, Harze und Gerbstoffe, v. a. für lokale Nutzung Tropen SO-Asien
Urdbohne, Linsenbohne, „Black Gram“ (Indien) (Vigna mungo)   reife Bohnen gekocht, Mehl für Suppen, Brei,in Brot und Backwaren,Papadam-Fladen; grüne Hülsen als Gemüse Indien, Südostasien, Australien Indien
Wicke, Einblütige, Wicklinse, Algaroba-Linse (Vicia articulata)   Gewinnung von Grünmasse (Futter, Düngung), Bohnen für Suppen und Gemüsebrei früher im Mittelmeerraum und bis Mitteleuropa, heute wenig angebaut Mittelmeerraum, Südwestasien
Wicke, Saat-, Futter-Wicke (Vicia sativa )   Gewinnung von Grünmasse (Futter, Düngung), Bohnen selten für menschliche Ernährung weltweit von Subtropen bis in gemäßigte Zonen Europa,Vorderasien
Wicke,Narbonner;  Maus-Wicke, Schwarze Ackerbohne (Vicia narbonensis) wie Ackerbohne, aber geringere Erträge Mittelmeerraum einschließlich Nordafrika, Vorderer Orient Mittelmeerraum
Yambohne, Afrikanische; Knollenbohne (Sphenostylis stenocarpa, syn. Dolichos stenocarpus) Samen und Knollen; die Bohnen werden gemahlen, geröstet oder eingeweicht und gekocht Afrika mit Schwerpunkt Westafrika Afrika südlich der Sahara
Yambohne, Yam bean (Pachyr(r)hizus erosus und P. tuberosus.) stärkereiche Knollen; Samen und Hülsen werden teilweise verwendet, enthalten aber Giftstoffe tropisch subtropische Gebiete weltweit Mittel- und Südamerika

Chicken Wings und Chiasamen – auf Entdeckungsreise im Supermarkt

LINK-NAME
Überlegungen zu einem geplanten Schüler-Kompakt von Unterricht Biologie

Die Frage der richtigen und gesunden Ernährung ist in unserer Überflussgesellschaft ein wichtiges und von Medien und Öffentlichkeit viel diskutiertes Problem. Sie ist wirklich ein Problem, aber nicht zuletzt ein Überflussproblem. Kurz gesagt scheint die Lösung einfach:

Esst wenig Zucker, Fett, Fleisch und viel Salat, Obst, Gemüse

Mit dieser einfachen Richtlinie ließen sich viele Ernährungsprobleme lösen. Aber das große Angebot macht die Realität für den Konsumenten ziemlich komplex und wenn man Schülerinnen und Schüler im Unterricht auf diese komplexe Wirklichkeit vorbereiten will, kommt man nicht umhin, die Frage nach der gesunden und nachhaltigen Ernährung auch in einer gewissen Komplexität zu bearbeiten. In der Sprache der zeitgemäßen Didaktik formuliert: Es gelingt sonst nicht, dass Schülerinnen und Schüler die Kompetenz entwickeln, sich gesund, umweltverträglich und nachhaltig zu ernähren.

Wie kann man SchülerInnen motivieren, sich einen Überblick über diese Vielfalt des Nahrungsmittelangebots in den Verbrauchermärkten zu  verschaffen und vernünftige, auf Fachkenntnissen beruhende Kaufentscheidungen zu treffen? Das Ziel: Die SchülerInnen sollen Verbraucherkompetenz entwickeln. Die Gefahr: Der deutlich erhobene Zeigefinger wirkt so, dass der Unterricht nicht ernst genommen wird bzw. langweilt. Eine motivierende Möglichkeit könnten Exkursionen in Kauflandschaften sein, bei denen die Entdeckungen von neuen Angeboten und unbekannten Produkten zu weiteren Recherchen und Informationen führen. Deshalb sollen die Beispiele in dem geplanten Kompakt von Unterricht Biologie insbesondere neuere Angebote und Werbestrategien in den Blick nehmen.

Konsumenten und Produzenten

Versuchen wir uns die komplexe Situation vorzustellen:

Produzent und Konsument

Ein Problem für den Konsumenten ist  die Vielfalt des Angebotes und die Vielfalt der (Werbe-)Informationen, denen er sich gegenüber sieht. Wie kann man SchülerInnen motivieren, sich einen Überblick über diese Vielfalt  zu verschaffen und sich um vernünftige, auf Fachkenntnissen beruhende Entscheidungen zu treffen?

Wenn der Verbraucher eine Kaufentscheidung für ein bestimmtes Nahrungsmittel im Supermarkt trifft, denkt er zunächst einmal daran, ob ihm das zu Kaufende schmecken wird, also an seinen Genusswert. Bei der Produktion des Nahrungsmittel hat der Produzent dieses natürlich auch im Blick, aber der entscheidende Gesichtspunkt für den Produzenten ist die Frage, ob er mit einem bestimmten Produkt auch Gewinn machen kann. Dabei spielt die Werbung eine entscheidende Rolle, also zum Beispiel die Verpackung, die Aufschriften usw.  (Motto: Mehr scheinen als sein).

Die Tendenz, möglichst billig zu produzieren, wird durch gesetzliche Bestimmungen beschränkt. Dabei kommt es immer wieder zu Übertretungen und die Medien berichten gerne von solchen Lebensmittelskandalen. Verbraucherorganisationen sind bestrebt, den Gesetzgeber dazu zu bringen, gesetzliche Vorschriften strenger zu fassen. Dabei können Ihnen die  Konsumenten  als Wähler helfen. Umgekehrt versucht die Lobby der Lebensmittelhersteller den Gesetzgeber so zu beeinflussen, dass diese Vorschriften nicht zu streng ausfallen.

Zwar hat der Verbraucher durchaus eine gewisse Macht. Seine Kaufentscheidung kann dazu beitragen, dass gesündere, auf sozial und ethisch verträglichere Weise produzierte Lebensmittel angeboten werden. Die Vielfalt des Angebots und die Vielfalt der Werbeinformationen und Berichte in den Medien über Gesundheit oder Schädlichkeit von Nahrungsmitteln ist jedoch oft schwer durchschaubar.

Qualitätsmerkmale aus Verbrauchersicht

Wenden wir uns nun noch einmal den Qualitätsmerkmalen zu, auf die ein Verbraucher bei einem Nahrungsmittel schauen könnte oder sollte.

Der Genusswert umfasst alle Eigenschaften, die man beim Essen mit den Sinnen wahrnehmen kann, also Aussehen, Geruch, Geschmack und Konsistenz, zum Beispiel die Reife einer Frucht oder die Frische eines Gemüses. Er wird aber auch von subjektiven Empfindungen bestimmt.

Der Gesundheitswert wird auch als ernährungsphysiologischer Wert bezeichnet. Er wird einerseits durch den Gehalt an Nährstoffen, Vitaminen, Mineralstoffen und Ballaststoffen bestimmt, andererseits von enthaltenen gesundheitsgefährdenden oder gefährlichen Stoffen und Keimen. Die Gesundheit von Nahrungsmitteln wird besonders intensiv für die Werbung genutzt. Es wird zum Beispiel versucht, den gesundheitsbewussten Konsumenten durch Nahrungsmittel mit speziellen Zusatzstoffen zu locken (Functional Food).Für eine gesunde Zusammensetzung der Nahrung gibt es zahlreiche Empfehlungen, zum Beispiel den sogenannten Ernährungskreis.

Der Gebrauchswert ergibt sich zum Beispiel aus Haltbarkeit, Zeitaufwand für die Zubereitung und Preis. So soll etwa durch  vorgefertigte Nahrungsmittel – Convenience Food –  der Gebrauchswert verbessert werden, indem die Nahrungszubereitung vereinfacht wird.

Um die Qualität eines Nahrungsmittel zu beurteilen spielt außerdem seine Herstellungsweise eine wichtige Rolle. Sie hat einmal Auswirkungen auf die innere Struktur. Zum anderen sind damit ökologische und gesellschaftliche Aspekte verbunden. Dazu formulierte die Bundesverband Verbraucherzentralen (V ZB V) folgende Fragen, die sich der Konsument stellen sollte:

  • Wie wirkt sich mein Konsumverhalten auf Klima und Umweltschutz aus?
  • Wie trage ich zum Energiesparen und zur Schonung der Ressourcen bei?
  • Was ist fairer Handel?
  • Wie sind die Arbeitsbedingungen in fernen Ländern?

Früher sei es eine Kernaufgabe von Eltern und Großeltern gewesen, solches Alltagswissen an nachfolgende Generationen weiterzugeben. „Doch das funktioniert heute in der Komplexität der Märkte und der Innovationen nicht mehr“, so der VZBV. Deshalb seien die Schulen hier gefordert. Konsequent wurde im Bundesland Schleswig-Holstein das das Schulfach Verbraucherbildung eingeführt. Dies wird der Tatsache gerecht, dass der genannte Fragenkatalog Bereiche ganz verschiedener klassischer Fächer berührt.

Aber auch die Behandlung im Biologieunterricht ist zu rechtfertigen.

  • Die menschliche Ernährung ist eng verknüpft mit dem klassischen biologischen Thema des menschlichen Stoffwechsels und der Funktion der Verdauungsorgane.
  • Nahrungsmittel werden aus Pflanzen und Tieren hergestellt und dabei geht es um grundlegende biologische Sachverhalte.
  • Nahrungsmittelproduktion hinterlässt deutliche „ökologische Fußspuren“, sie hat großen Einfluss auf die Ökosysteme und den Naturhaushalt.
  • Klassische und moderne Züchtung bzw. Herstellung von Nutzpflanzen und Nutztieren fußen auf Erkenntnissen und Gesetzmäßigkeiten der Genetik und der Molekularbiologie.
  • Die Kritik der modernen Massentierhaltung und die Forderung nach artgerechter Tierhaltung beruht auf Kenntnissen des tierlichen Verhaltens

Einige Beispiele sollen zeigen, wie eine vertiefte Behandlung des Themas „Nahrungsmittelqualität“ aussehen könnte.

Chicken Wings und die industrielle Fleischproduktion

In früheren Zeiten –zu Zeiten von Max und Moritz – war Geflügel ein Festessen. Brathähnchen, wie sie zum Beispiel auf dem Cannstatter Volksfest in Stuttgart angeboten wurden, „Göckele“, waren etwas ganz besonderes. Ein halbes Hähnchen kostete allerdings in meiner Jugend noch mindestens fünfmal so viel wie eine Bratwurst und für das Geld konnte man sicher mit 10 Karussellen fahren.

Damals, in den 1950 er Jahren, wurden die Hühner bei uns noch in relativ kleinen Hühnerfarmen gehalten. Ein paar hundert Tiere waren schon viel.

Aber der Hunger nach dem leckeren Hühnerfleisch war groß, die Hühnerfarmen wurden größer und größer, die Angebote immer günstiger und aus dem seltenen Festtagsbraten wurde ein immer populäreres  und schließlich auch immer billigeres Fleischgericht („Am Sonntag bleibt die Küche kalt, wir gehen in den Wienerwald“). Heute ist ein Kilo Hähnchen manchmal kaum teurer als ein Kilo Kartoffeln und oft billiger als ein Kilo Auberginen.

Ursache dieses Preisverfalls ist die industrielle Fleischproduktion. Ihre Anfänge gehen zurück bis zu den Schlachthöfen von Chicago zu Beginn des 20. Jahrhunderts, die literarisch zum Beispiel einen Niederschlag fanden in den Werken von Upton Sinclair (The Jungle) und Bert Brecht (Die heilige Johanna der Schlachthöfe). Über die gegenwärtige industrielle Fleischproduktion gibt es unzählige kritische Bücher, Berichte, Videos und Dokumentationen, zum Beispiel von PETA (People for the Ethical Treatment of Animals). In Deutschland besonders skandalbelastet sind die Schweineproduktion und die Geflügelproduktion.

Für die sechs  Hühner der Witwe Bolte, die ihr Leben bis zu Max und Moritz „lebensfroh im Sande scharrend“ verbringen konnten, bot sich nur das Braten am Stück an. Auch in den ersten Jahrzehnten nach dem Zweiten Weltkrieg wurden Hähnchen bzw. Hühner vor allem ganz gekauft und gegessen.

Mit zunehmender Industrialisierung der Hühnerfleischproduktion wurden nicht nur die Stückzahlen der gehaltenen Hühner immer größer, es gab auch eine immer weitergehende Spezialisierung  in

  • Zuchtbetriebe für Großeltern- und Elterntiere,
  • Vermehrungsbetriebe zur Produktion von Bruteiern,
  • Brütereien,
  • Mästereien und schließlich
  • Schlachtereien, in denen die Hühner am Fließband geschlachtet und die einzelnen Hühnerteile getrennt verarbeitet werden.

Parallel mit dieser Spezialisierung (als Folge oder als Voraussetzung?) entwickelte sich die Massentierhaltung mit immer größerem Tierbesatz und allen damit zusammenhängenden Scheußlichkeiten. Die industrielle Schlachtung und Weiterverarbeitung erlaubte eine Einzelvermarktung der verschiedenen Hühnerteile.

Zunächst gewann insbesondere die schnell, einfach und ohne Abfall zuzubereitende Hähnchenbrust an Bedeutung. Hühner wurden vor allem produziert, um Hühnerbrüste zu verkaufen, sodass die Produzenten einen Überschuss an allen anderen Hühnerteilen wie Keulen und Flügeln hatten. Entsprechend preiswert mussten diese Teile verkauft werden. Da war die „Erfindung“ der Chicken Wings als Kultgericht ein besonderer Glücksfall für die Geflügelproduzenten. 

Denn diese Hühnerteile gehören heute zu den beliebtesten Fast Food Gerichten, die man in Restaurants und Imbissbuden sehr preiswert serviert bekommt. Die handlichen Stücke lassen sich als Fingerfood verzehren und sie erfreuen sich vor allem bei Jugendlichen großer Beliebtheit. In Supermärkten werden sie in unterschiedlichen Varianten angeboten, schon vollständig vorgefertigt (Convenience Food) oder tiefgekühlt und schon fertig gewürzt  oder auch ohne Würzung zum selber  Frittieren oder Grillen.

Im Gegensatz zu vielen Gerichten der Alltagskultur haben die oft auch als „Buffalo Wings“ angebotenen Hühnerteile einen bekannten Ursprung: die Anchor Bar in Buffalo im Staat New York. Dort wurden sie erstmals am 30. Oktober 1964 serviert.

Die entscheidende Ausbreitung erfolgte in den 1990 er Jahren. Die weltweit agierenden Fast Food Ketten Pizza Hut und Domino‘s nahmen Chicken Wings in ihre Speisekarten auf. 1994 führten sie das Gericht zur American Football Saison landesweit ein. Domino‘s gab 32 Millionen US $ für Werbespots aus. Der Flügelkonsum ist seither besonders eng mit dem sogenannten Super Bowl verbunden. 2017 wurden am Super Bowl Wochenende 1,33 Milliarden Chicken Wings verzehrt.

Mittlerweile ist es deshalb so, dass die starke Nachfrage nach Hühnerflügeln ein Überangebot an anderen Teilen des Huhnes geschaffen hat. Und auch vom Flügel wird nicht alles benötigt. Die Flügelspitzen werden nach Asien, insbesondere nach China, exportiert und dort für die beliebten Geflügelsuppen verwendet.

Bei einer Qualitätsbewertung werden die Wings und die Nuggets beim Genusswert vermutlich ziemlich gut abschneiden, wegen des niedrigen Preises und der leichten Zubereitung sicherlich auch beim Gebrauchswert. Beim Gesundheitswert  ist der hohe Protein- und Fettgehalt zu beachten. Ökologie, Nachhaltigkeit, Tierschutz und Arbeitsbedingungen bei der „Produktion“ werden jedoch ein sehr schlechtes Zeugnis bekommen.

Chiasamen und andere Superfoods

Chia-Samen

Seit einigen Jahren trifft man in den Supermarktregalen immer häufiger auf einen neuen Namen: „Chia“. Es gibt Chia Müsli, Chia-Brot, Chia-Öl, Chia-Mehl oder auch ganze Packungen mit Chia-Samen.

Was steckt hinter diesem Chia?

Das Wort Chia ist aus der Sprache der ursprünglich in Kalifornien lebenden Nhuatl-Indianer abgeleitet, dort bedeutet chian so viel wie ölig . Es wird für zwei meist einjährige Salbei-Arten mit öligen Samen verwendet, die von den Indianerstämmen des heutigen Kaliforniens und Mexikos zu medizinischen Zwecken und als Speisezusatz verwendet wurden. Die nun bei uns im Handel befindlichen Samen stammen von Salvia hispanica. Der wissenschaftliche Name ist nicht ganz passend, denn dieser Salbei stammt ursprünglich aus Mexiko, weshalb er auch Mexikanischer Salbei genannt wird. Aber die Spanier brachten die Pflanze nach Europa und deshalb verwendete Linné, der die Pflanze schon kannte, das nicht ganz passende Epitheton. Die Pflanzen werden bis zu 2 m hoch. Sie blühen – ähnlich wie unser Wiesen-Salbei – blau violett. Die andere bisher als Superfood weniger genutzte Chiapflanze ist Salvia columbariae (Kalifornischer Salbei), deutlich kleiner und ziemlich xeromorph, die in den Halbwüsten Kaliforniens vorkommt.

Wie bei allen Lippenblütlern werden die Samen in Schließfrüchten gebildet. Bei der Reife zerfallen diese in vier Teilfrüchte („Klausen“), die jeweils einen Samen enthalten. Bei Mayas und Azteken genossen die Salbeisamen wegen ihrer sättigenden und gesundheitsfördernden Wirkung hohes Ansehen. Sie gaben die Samen ihren Botschafter mit – ihre sättigende Wirkung sollte ihnen helfen, lange Wegstrecken zu meistern.

Chia-Samen enthalten bis zu 38 % Öl, 18-23 % Proteine und etwa 40 % Kohlenhydrate, die zum größten Teil aus quellfälligen und unverdaulichen Polysacchariden bestehen („Ballaststoffe“). Die Konzentration von B-Vitaminen (Thiamin,Niacin, Riboflavin, Folsäure) und β-Carotin (Provitamin A) ist vergleichsweise hoch. Auch der Gehalt an Antioxidantien  (Tocopherole,Vitamin E) sowie ernährungsphysiologisch wichtigen Mineralstoffen ist beachtlich – dies gilt insbesondere für die Elemente Calcium, Kalium, Phosphor, Zink und Kupfer. Das Chia-Öl hat mit etwa 90 % einen besonders hohen Anteil an ungesättigten Fettsäuren, insbesondere der dreifach ungesättigten α-Linolensäure (55%).

http://www.apotheken-umschau.de/Ernaehrung/Chia-Samen-Wirklich-ein-Superfood-491003.html

Um besonders gesundheitsbewusste Verbraucher zu locken, lassen sich Lebensmittelindustrie und insbesondere Naturkostläden immer wieder neue Produkte einfallen. Oft handelt es sich – wie bei Chia – um exotische Naturprodukte, die traditionell in entfernten Kulturen eine wichtige Rolle gespielt haben. Zu nennen wären zum Beispiel Quinoa (Chenopodium quinoa), Urdbohnen (Vigna mungo), Goji-Beeren (Lycium barbarum, L.chinense), Acai- (Euterpe oleracea, Kohlpalme) Moringa- Pulver (Moringa oleifera, Meerretichbaum) oder Spirulina-Pulver aus Blaugrünen Bakterien („Blaualgen“). Sie werden als Neuentdeckungen angepriesen, als Superfood, unwahrscheinlich gesund. Dies rechtfertigt einen verhältnismäßig hohen Preis und entsprechend hohe Gewinnspannen. Dabei ist unbestritten, dass solche exotischen Nahrungsmittel oft der Gesundheit förderlich sind und zum Teil sogar heilende Wirkungen haben. Aufgrund der Werbung wird der gesundheitliche Wert jedoch meist überschätzt, vor allem ist es nicht unbedingt einsichtig, warum diese neuen Nahrungsmittel traditionellen Produkten deutlich überlegen wären. Der Chia-Hipe ist dafür ein gutes Beispiel.

Das Enfant terrible der Lebensmittelchemiker, Udo Pollmer, hat im Deutschlandradio Kultur einen sehr kritischen Kommentar dazu abgegeben:

„Die Wiederentdeckung verdanken wir der Futtermittelwirtschaft, die vor 15 Jahren versuchsweise Hühner mit Chia fütterte. Als die aber Eier mit kleinerem Dotter legten, schwand das Interesse. Und was macht der kluge Händler, wenn seine Ware nicht für den Futternapf taugt? Er kippt das Vogelfutter ins Müsli und annonciert es als „Superfood“. … Dort wo die Chia heimisch ist, wird sie gewöhnlich als trübes Erfrischungsgetränk mit etwas Fruchtsaft genossen, eine unbedenkliche Zubereitung. Ihre Fähigkeit Unmengen Wasser zu binden, weckte inzwischen auch die Neugier der Lebensmittelindustrie. Mit derart potenten Quellstoffen lassen sich kalorienreduzierte Produkte herstellen, aufgrund ihrer emulgierenden Eigenschaften ersetzt der Schleim in Kuchenteigen die Eier, in Speiseeis die Sahne. Es ist nicht gerade ein Superfood, aber als Superschleim können es die Samen noch weit bringen.“

Was ist nun wirklich dran an dem Wunder-Chia? Vergleicht man die Inhaltsstoffe von Chiasamen mit traditionelleren Samen wie Leinsamen oder Sonnenblumenkernen, stellt man fest,es gibt keine entscheidenden Unterschiede bis auf vielleicht die hohe Quellfähigkeit.

Tatsächlich ist diese hohe Wasserbindungskraft der Chia-Polysaccharide nicht ganz unbedenklich. Chia Samen binden die 25 fache Gewichtsmenge Wasser. Dies kann dazu führen, dass bei der Darmpassage Flüssigkeit aus dem Gewebe gezogen wird und die aufgequollene Masse den Darm blockiert. Dazu müsste man allerdings größere Mengen zu sich nehmen und vermutlich ist das auch der Grund, warum es eine Empfehlung der Europäischen Kommission gibt täglich nicht mehr als 15 g Chia-Samen zu verzehren.

Wechselwirkungen mit Gerinnungshemmern wie Warfarin/ Coumadin®, Acetylsalicylsäure/ASS/Aspirin sind möglich.

Auch der Anbau von Chia-Samen, der sich wegen des guten Verkaufs mittlerweile in den Subtropen immer weiter ausbreitet, kann kritisch gesehen werden: Das Saatgut wird mit Pflanzenhormonen behandelt, um die Keimung der Samen zu vereinheitlichen. Zudem werden reichlich Unkrautvernichtungsmittel verwendet, auch solche, die in der EU umstritten oder sogar verboten sind. Im Vergleich zu anderen Nahrungspflanzen liefern Chia-Pflanzen einen eher geringen Ertrag. Die für den Chia-Anbau genutzten Ackerflächen können aber gleichzeitig nicht für ertragreichere nährende Lebensmittel genutzt werden – das hat negative Folgen für die Menschen im Ursprungsland des Superfood.

Auf jeden Fall gibt es kostengünstigere und gleichwertige Alternativen, zum Beispiel Leinsamen und Sonnenblumenkerne.

Bei einer Bewertung wird hier vermutlich der Genusswert relativ niedrig ausfallen, der Gesundheitswert entsprechend hoch. Allerdings müssen dabei einige Fragezeichen gemacht werden. Die Kosten sind im Vergleich zu ähnlichen herkömmlichen Nahrungsmitteln hoch, weshalb man den Gebrauchswert als relativ niedrig einstufen muss. Der politische Wert (Ökologie, Nachhaltigkeit, soziale Fragen) dürfte ebenfalls eine ziemlich schlechte Bewertung bekommen.

Frei von – Nahrungsmittel

Glutenfreie Nudeln

Wir sind in der Nudelabteilung des Supermarkts. Unendlich dehnt sich das Angebot. Da kann man nicht nur unterscheiden zwischen Bandnudeln, Hörnchen, Spiralnudeln, Muscheln, Spätzle,  Spaghetti, Makkaroni, Gnocchi. Auch Teigwaren aus verschiedenen Mehlsorten wie Weizen-Weißmehl, Dinkelmehl oder Vollkornmehl, ja sogar Reismehl und Mehl aus unterschiedlichen Hülsenfrüchten werden angeboten, eine wahrhafte Nudeldiversität!

Auf einem guten Meter Regalbreite finden sich Packungen, die im Schnitt deutlich teurer sind und bei genauem Hinsehen erkennt man den Grund: da steht auf den Packungen „glutenfrei“  (GF)  auf manchen ist auch das Symbol einer durchgestrichenen Weizenähre zu sehen.

Der weniger gebildete Verbraucher fragt sich, was wohl dahinter stecken mag. Wird hier die Freiheit von einem Stoff garantiert, der in den üblichen Teigwaren enthalten ist und der Gesundheit schadet und sollte man deshalb sicherheitshalber auf solche glutenfreien Produkte zurückgreifen?

Gluten oder Klebereiweiß ist ein Sammelbegriff für ein Stoffgemisch aus Proteinen, das in den Samen einiger Getreidearten vorkommt, zum Beispiel im Weizenkorn. Wenn man einen Teig aus Weizenmehl anrührt und die Stärke und alle löslichen Bestandteile mit Salzwasser herauslöst, bleibt ein zähes Gemisch aus viel Proteinen und wenig Lipiden und Kohlenhydraten übrig, das für den Zusammenhalt des Teiges verantwortlich ist. Wegen seiner klebrigen Eigenschaft wird es auch „Kleber“ genannt. Der Proteinanteil ist das Gluten, das aus verschiedenen Glutamin- und Prolin-haltigen Proteinen zusammengesetzt ist. Es hat für die Backeigenschaften des Mehls eine zentrale Bedeutung. Nur aus Mehlen mit Gluten kann Brot in Form eines Laibs gebacken werden, da nur ein solcher Teig beim Erhitzen die notwendige Gashaltefähigkeit hat. Sie ist die Voraussetzung dafür ist, dass das Gebäck durch das Gärgas Kohlenstoffdioxid aufgehen kann.

Glutengehalt von Getreidemehlen pro 100 g Mehl in g (n.Wikipedia)

Dinkel (Typ 630) 10,3
Weizen (Typ 405) 8,66
Hafer (Vollkornmehl) 5,6
Gerste (entspelzte Körner) 5,6
Hartweizen, Emmer, Einkorn, Roggen 3,2
Teff, verschiedene Hirsen, Reis, Mais 0
Pseudogetreide Quinoa, Amaranth, Buchweizen 0

Das ist der Grund, warum man aus Mais oder Hirse kein Brot, allenfalls Fladenbrote, backen kann.

Aber was ist schlecht an Gluten? Manche Menschen vertragen bestimmte der im Gluten enthaltenen Proteine nicht. Sie entwickeln dagegen eine Immun- und in der Folge auch eine Autoimmunreaktion. Sie führt zu einer pathologischen Veränderung der Dünndarmschleimhaut und in der Folge zu einer Degradation der Darmzotten. Dadurch wird die Resorptionsfähigkeit des Dünndarms wesentlich verschlechtert, mit vielen nachteiligen Folgen. Diese als Zöliakie bekannte Krankheit soll aber in Deutschland nur relativ selten (bei 0,3% der Bevölkerung) vorkommen.

Symptome für Zöliakie

Intestinale Symptome
Motilitätsstörungen, von Durchfall bis Verstopfung
Übelkeit, Erbrechen, Blähungen, chronische Bauchschmerzen
Extraintestinale Symptome
Gewichtsverlust
Wachstumsstörungen bei Kindern
Anämie
Knochenveränderungen/Osteoporose, Zahnschmelzveränderungen
Periphere Neuropathie
Muskelschwäche
Nachtblindheit
Hämatome
Ödeme
Entzündungen der Mundschleimhaut

http://www.awmf.org/uploads/tx_szleitlinien/021-021l_S2k_Z%C3%B6liakie_05_2014_01.pdf

Das sind relativ vielseitige und zweifellos nicht nur mit der Zöliakie verbundene Symptome. Aber Zöliakie hat eine große mediale Aufmerksamkeit erfahren und die Gefahr besteht, dass der Verbraucher sich die Selbstdiagnose Zöliakie stellt und meint, es wäre sinnvoll,  nur noch glutenfreie Nahrungsmittel zu sich zu nehmen. Der Nahrungsmittelindustrie kommt diese Entwicklung entgegen. Sie sucht angesichts des Überangebotes ständig nach Nischen, wo noch Zuwächse erzielt werden können. Die „frei von“-Produkte haben sich dabei als sehr ergiebige Nischen erwiesen. Die Verbraucherzentrale Hamburg hat ausgerechnet, dass glutenfreie Nahrungsmittel im Schnitt zweieinhalb mal so viel kosten wie normale.

Wichtigster Wirkstoff bei der Zöliaki ist das Gliadin. In Zusammenwirken mit dem Humanen Leucocyten-Antigensystem (HLA) weden in den Dünndarmzotten der entspre3chend empfindlichen Menschen bestimmte T-Helfezellen aktiviert, vermehrt entzündungsauslösende Botenstoffe wie Interferon und Interleukine zu bilden. Die Folge ist schließlicch eine  schwere Beschädigung der Dünndarmzotten.

Mittlerweile konnte schon gentechnisch veränderter Weizen entwickelt werden, der die für Zöliakie relevanten Gluten-Proteine nicht enthält. Die meisten glutenfreien Mehle stammen bisher aber von glutenfreien Getreiden und Pseudogetreidearten wie Hirsemehl oder Amaranthmehl und einem Zusatz reiner Stärke oder z. B. auch Chiamehl ,  Agar, Maniokmehl oder Eiklar.

Angesichts der stürmischen Entwicklung der „frei von“ – Nahrungsmittel sollte das Thema in den Unterricht aufgenommen werden. Auch wenn die immunbiologischen Zusammenhänge vergleichsweise kompliziert sind, so ist eine didaktische Reduktion durchaus möglich,  zum Beispiel auf Basis der Dünndarmabbildungen in vielen Schulbüchern.

Exkursionen in den Supermarkt

Ein wichtiges Prinzip des Biologie-Unterrichtes ist es, unmittelbare Anschauung zu ermöglichen. Dies kann z. B. durch praktische Arbeiten der Schüler und Schü­lerinnen im Labor oder im Freiland erreicht werden. Ein mögliches Erfahrungsfeld für unmittelbare Anschaulichkeit sind aber auch Einkaufszentren wie Verbrauchermärkte, Su­permärkte usw. Dabei spielen diese Einkaufslandschaften als Aufenthaltsorte von Kindern und Jugend­lichen schon lange eine wichtige Rolle. Schon vor 30 Jahren haben wir bei etwa 400 Schülerinnen und Schülern von Flens­burger Haupt-, Real- und Gesamtschulen im Alter zwischen 9 und 16 Jahren eine Befragung durch­geführt. Das Ergebnis hat uns nicht sehr überrascht. Kauflandschaften sind Orte, an denen sich Schüler und Schülerinnen in ihrer Freizeit bedeutend länger und häufiger aufhalten, als dies zum Einkaufen nötig wäre. Das dürfte sich bis heute eher noch verstärkt haben. Kauflandschaften sind zu einem wichtigen Teil unserer Um­welt geworden und viele Menschen verbringen dort einen guten Teil ihrer Freizeit. Es bietet sich deshalb an, diesen Teil der Umwelt für die (biologische) Allge­meinbildung zu nutzen. Dies gilt nicht nur für Fragen von Ernährung und Stoffwechsel, aber diese Inhalte bieten sich natürlich für „Biologie im Supermarkt“ besonders an.

Für unsere drei Beispiele könnte ich mir folgende Aufgabenstellungen für Exkursionen in den Supermarkt vorstellen: 

Chicken Wings

Die meisten Schüler – soweit sie nicht Veganer oder Vegetarier sind – werden Chicken Wings und Chicken Nuggets ganz gerne essen. Ein Unterricht zu dem Thema könnte so aufgebaut sein, dass die Schüler sich zunächst über das Hühnerfleischangebot in einem Supermarkt informieren, dann eine begründete Aussage darüber machen, welche Hühnerfleischprodukte sie beim Kauf bevorzugen würden und schließlich mit der Produktion von Hühnerfleisch und speziell von Chicken Wings über vorgegebene Texte oder eigene Recherchen aufgeklärt werden.

  •  Bestandsaufnahme der angebotenen Formen von Hühnerfleisch
  • Preisvergleiche bezogen auf den Kilopreis von verschiedenen Hühnerfleischprodukten, Kartoffeln und Gemüsen.
  • Recherchen zu Hühnerfleischproduktion

Chia

  • Alle Produkte, die Chiasamen oder Mehl enthalten, aufspüren. Werbeaussagen auf den Packungen sammeln.
  • Inhaltsstoffe von Chiasamen nach Angaben auf den Verpackungen notieren und ihre Bedeutung für den menschlichen Organismus herausfinden (Recherche)
  • Quellvesuch mit Chiasamen
  • Suche nach anderen „Superfoods“ und Recherche nach Informationen über diese Lebensmittel
  • Vergleich von Chia-Inhaltsstoffen mit Leinsamen, Sonnenblumenkernen, Walnusskernen, Erdnüssen …

Frei von …

  • Nahrungsmittel, die mit „glutenfrei“ gekennzeichnet sind suchen und die Preise mit nicht glutenfreien aber sonst identischen Lebensmitteln vergleichen.
  • Durch Studium der Packungsaufschriften herausfinden, von welchen Pflanzen glutenfreie Mehle stammen.
  • Auf die Suche nach anderen „frei von“-Lebensmitteln gehen und den jeweiligen gesundheitlichen Hintergrund recherchieren
  • Herausfinden, ob auch Lebensmittel mit „frei von“ etikettiert werden, die den entsprechenden Stoff ohnehin nicht enthalten.

Zur Dokumentation der Recherchen können einfache Kameras (Handy) eingesetzt werden.

Weitere Themen für Exkursionen in den Supermarkt

  • Gerstengraupen, Haferflocken, Bulgur (aus welchen Bestandteilen besteht ein Getreidekorn und wie werden diese zu Nahrungsmitteln verarbeitet?)
  • Pseudogetreide (Amarant, Buchweizen, Hanf, Quinoa – wo kommen sie her, welche Vorteile könnten sie bringen?)
  • Pak Choi, Okra und andere exotische Gemüse und Salate
  • Protobiotische Nahrungsmittel und andere Functional Foods (Werbung und Wahrheit über funktionelle Zusatzstoffe ind Nahrungsmitteln)
  • Obstangebot und Nachhaltigkeit (Saisonalität, Herkunntsländer)
  • Light-Produkte (Helfen Sie wirklich beim abnehmen? Gibt es gesundheitliche Bedenken?)
  • Was bedeuten  die E-Nummern?
  • Natürlich, künstlich und naturidentisch
  • Inhaltsangaben (die Liste der Inhaltsstoffe, die auf Verpackungen von Lebensmitteln angegeben wird, ist auf der lang. Was sind das für Stoffe, was bewirken sie, könnte man auf sie verzichten?)

Literatur, Quellen

Biesiekierski, J, R. (2017): What is gluten? Journal of Gastroenterology and Hepatology, Volume 32, Issue S1 https://onlinelibrary.wiley.com/doi/full/10.1111/jgh.13703

Brockhaus Lexikonredaktion (Hrsg.) (2001):  Der Brockhaus Ernährung – Gesund essen, bewusst leben. Leipzig/ Mannheim: Brockhaus

Foer, J.S. (2010): Tiere Essen: Köln: Kiepenheuer und Witsch

Heindl, I.(2003): Studienbuch Ernährungsbildung, Heilbrunn: Klinkhardt

Hoffmann, I./Leitzmann, C./Schneider, K. (2011): Ernährungsökologie: Komplexen Herausforderungen integrativ begegnen. München: oekom-Verlag

Leitzmann, C. (2011): Mehr als ein Ernährungsstil: Vegetarismus. Biol.Unserer Zeit 41(2), S. 124-131

Müller,T. (2018): glutenfreie Ernährung mit bitterem Nachgeschmack. Ärztezeitung. https://www.aerztezeitung.de/panorama/ernaehrung/article/958794/ernaehrung-glutenfreie-ernaehrung-bitterem-nachgeschmack.html

Pollan, M. : Das Omnivoren-Dilemma.Goldmnn/Arkaner, München 2011

Probst, W., Scharf, K.-H. (2010): Biologie im Supermarkt. 2.A., Seelze: Aulis Verlag in Friedrich Verlag

Probst, W. (Hrsg.) (2013): Küchenbiologie. Unterricht Biologie 385 (Jg. 37), Seelze: Friedrich Verlag

Rudolf, G. (2016): Chia-Samen – ein Superfood? Unterricht Biologie 415 (40. Jg.), S.18-22, Seelze: Friedrich Verlag

Wertschätzung und Verschwendung von Lebensmitteln http://www.evb-online.de/schule_materialien_wertschaetzung_uebersicht.php

Young, S. R. (2011): Gourmet lab – The scientific principles behind your favorite foods.  Arlington, Virginia (USA): NSTApress

https://de.wikipedia.org/wiki/Gluten

Leben und Konsum

LINK-NAME

Titelfoto: Zucker als Abfall Phloemsaft konsumierender Blattläuse auf Lindenblatt.

Im September 2020 ist UB 457 „Leben und Kosum“ erschienen.

Konsum und Konsument

Der Begriff „Konsum“ und „Konsument“  bzw. „Verbraucher“ spielt in der modernen Gesellschaft eine wichtige Rolle. Man spricht von einem Konsumklima und es gibt sogar einen Konsumklimaindex, ein Verbraucherministerium und Verbraucherzentralen, die dem Verbraucherschutz dienen sollen. In Schleswig-Holstein gibt es seit einigen Jahren das Schulfach „Verbraucherbildung“, seit 2017 werden von der  Verbraucherzentrale Bundesverband (vzbv)  Schulen mit besonders vielfältigem Engagement in der Verbraucherbildung mit der Auszeichnung „Verbraucherschule Gold“ bzw. „Verbraucherschule Silber“ gewürdigt.

In Wirtschaftsberichten ist Konsumsteigerung positiv belegt. Der Konsum muss gesteigert werden, um das für die Wirtschaft notwendige Wachstum zu ermöglichen. Allerdings wird diese marktwirtschaftliche Prämisse mindestens seit 40 Jahren, seit der Studie des Club of Rome über die „Grenzen des Wachstums“ von 1972, auch kritisch gesehen,  wird über den Zusammenhang von Wirtschaftswachstum und ökologischem Wachstum nachgedacht. Dabei spielt der Begriff der Nachhaltigkeit eine zentrale Rolle. Seit 2008 findet als wichtigste Veranstaltung der Wachstumskritiker die Internationale Degrowth-Konferenz statt. Diese Kritiker fordern, dass Wirtschaftsmodelle an die realen Bedingungen angepasst werden müssen. Die ökonomischen Theorien dürfen nicht zu einem Wachstumszwang führen.

Häufig wird die Biosphäre als Vorbild für mögliche menschliche Wirtschaftsweisen herangezogen. Konsumbedingte Umweltprobleme könnten durch Konsumverzicht, aber auch durch Kreislaufwirtschaft gemindert werden. Welche Methode für nachhaltige Entwicklung vielversprechender ist, wird kontrovers diskutiert (Probst 2009).

Waxchstum der Weltbevölkerung von 1700 bis heute und prognostizierte zukünftige Entwicklung

Durch das Studium der Wachstums- und Konsumproblematik in der Biologie können Einsichten in ökologische und ökonomische Probleme gewonnen werden. Formen exponentiellen Wachstums, wie sie zum Beispiel in Bakterienkulturen oder bei Krebsgeschwüren auftreten, scheitern relativ schnell an der eigenen Dynamik. Andere Wachstumsprozesse, die kurzfristig zu einem „Umkippen“ des Systems führen sind zum Beispiel die Hypertrophierung eines Gewässers, die Massenvermehrung einer eingeschleppten Art oder das Aussterben einer Schlüsselart. Beispiele für das Zusammenspiel von Wachstum, Konsum und Abfall, die in längeren Zeiträumen ablaufen, sind Prozesse wie die Verlandung eines Gewässers, Wüstenbildung oder Walddegradation.

Das in den letzten 200 Jahren abgelaufene exponentielle Wachstum der menschlichen Bevölkerung von etwa 1  Mrd. Menschen 1804 bis auf heute 7,3 Mrd. hat eine enorme Konsumsteigerung mit sich gebracht. Die Ressourcen an Rohstoffen und Energie werden immer stärker in Anspruch genommen und Bemühungen um Recycling  der Abfälle konnten bisher nicht verhindern, dass die Lücke zwischen Verbrauch und Regenaration immer größer wird. Die wichtigste Zukunftsaufgabe der Menscheit ist es, diese Lücke zu schließen.

Konsument Lebewesen

Leben ist immer mit Konsum verbunden. Dieser Konsum bedeutet zunächst einen ständigen Bedarf an Nährstoffen, sodann eine ständige Abgabe von Abfallstoffen. Da es für Lebewesen außerdem charakteristisch ist, dass sie ständig wachsen und sich vermehren, steigen damit auch Verbrauch und Abfall an. Das Ende einer solchen Entwicklung ist abzusehen: Irgendwann sind entweder die Nährstoffe erschöpft oder die Abfallstoffe lebensgefährlich angehäuft. Die Lebewesen verhungern oder vergiften sich. Die Grenzen des Wachstums sind eng verbunden mit Verbrauch und Abfall.

Obwohl solche Grenzen im Laufe der Erdgeschichte regelmäßig zu Engpässen und auch zur Vernichtung von Lebensräumen und zum Aussterben von Arten geführt haben, konnte das Leben auf der Erde dieser gefährlichen Entwicklung  immer wieder  dadurch entgehen, dass Lebewesen in der Lage sind, sich zu verändern. Durch die Mechanismen der Anpassungsselektion gelang es ihnen, neue Nahrungsquellen zu erschließen und der Gefährdung durch Abfälle zu entgehen. Dabei haben große Mengen zunächst gefährlicher Abfallstoffe oft zu besonders großen Schüben in der Evolution geführt, in dem die Abfallstoffe als neue Rohstoffe genutzt und recycelt wurden:

  • Sauerstoffanhäufung durch photosynthetisch aktive Cyanobakterien führte zu „Erfindung“ der aeroben Dissimilation und damit zum Beginn eines sehr effektiven Stoffkreislaufs.
  • Überschuss an Zucker bei fotosynthetisch aktiven Pflanzen ermöglichte die verstärkte Bildung von stabilisierenden Stoffen auf Kohlenhydratbasis wie Zellulose und Lignin. Diese Stoffe waren eine wesentliche Voraussetzung für die Stabilität großer Landpflanzen und damit der Entwicklung von Wäldern.
  • Kalküberschuss durch Nutzung von Hydrogenkarbonat bei der Photosynthese ermöglichte Skelett- und Schalenbildung. Die endosymbiotischen Algen  in Steinkorallen verschieben durch ihre Assimilation  das Gleichgewicht zwischen Kohlenstoffdioxid und Karbonat und schaffen damit die Voraussetzung für die Bildung der Korallenriffe.
  • Proteinüberschuss war die Voraussetzung zur Bildung von Hornschuppen, Haaren und Federn.
  • Die Notwendigkeit überschüssige Stickstoffverbindungen loszuwerden, begünstigt silbrige (guaninhaltige) Fischschuppen und bei Pflanzen die Bildung von Alkaloiden.

Stoffkreisläufe

Laubstreu im Buchenwald

Ökosysteme bestehen aus Produzenten,  Konsumenten und Destruenten. Dabei kann man die Konsumenten verschiedenen Trophiestufen zuordnen. Der Konsum der höheren Stufe wird häufig durch Produktion auf der niederen Stufe reguliert (Bottom-up Regulation), umgekehrt können aber auch die Konsumenten höherer Ordnung die Konsumenten der nächstniederen Stufe regulieren (Top-down Regulation).

Die Abfall-verwertenden Destruenten sind für die Stoffkreisläufe von besonderer Bedeutung. Durch die Wiederverwertung von Abfällen haben sich die großen Stoffkreisläufe der Biosphäre herausgebildet. Photosynthese und Atmung sind bis heute die Grundlage des Kohlenstoffkreislaufs. Der Abbau organischer Stickstoffverbindungen bis zum Ammoniak bzw. durch Nitrifikation zum Nitrat ermöglichen den Stickstoffkreislauf.

Solche Stoffkreisläufe haben sich auf dem Bioplaneten Erde in seiner mehr als 4 Milliarden Jahre langen Geschichte entwickelt und dabei auch immer wieder verändert. Das wirkte sich zum Beispiel auf die Zusammensetzung der Atmosphäre und damit auf das Klima aus. So vermutet man, dass es im späten Proterozoikum, in einer Zeit zwischen 750-580 Mill. Jahren, mehrfach zu Gesamtvereisungen der Erde gekommen ist (Schneeballerde). Als Ursache wird der Zerfall des damaligen Superkontinents Rodinia angesehen. Die Aufteilung in kleinere Kontinente soll zu einer Erhöhung der Niederschläge geführt haben, dass im Regenwasser gelöste Kohlenstoffdioxid bewirkte eine chemische Verwitterung von kalkhaltigen Gesteinen und die Einschwemmung von Hydrogencarbonat in die Ozeane. Dort kam es zur Ausbildung von Kalk und zur Bildung von Kalksedimenten auf diese Weise wurde Kohlenstoffdioxid der Atmosphäre entzogen und in der Folge kam es zu einer starken Abkühlung wegen fehlendem Treibhausgaseffekt (Schüring 2001). Aber auch starke vulkanische Tätigkeit und der Ausstoß großer Mengen an Schwefelgasen in die Stratosphäre könnten die Sonneneinstrahlung abgeschwächt haben (Fischer 2017).

Die verschiedenen Teilkreiläufe des Kohlenstoffs auf der Erde

Abfallüberschuss

Abfallüberschuss, die dauerhafte Sedimentation der Abfälle von Lebewesen, führte im Laufe der Erdgeschichte zu Sedimentgesteinen. Bestandteile dieser oft kilometerdicken Sedimente können in erdgeschichtlichen Zeiträumen über geochemische Kreisläufe wieder aufs Neue von Lebewesen genutzt und in Lebewesen eingebaut werden. Auch die Nutzung solcher Sedimente als Brennstoffe und Ausgangsmaterial für die chemische Industrie ist ein Recycling von Abfallüberschüssen aus früheren geologischen Epochen. Bei dieser Nutzung werden aber in für geologische Zeiträume sehr kurzer Zeit große Mengen neuer Abfallstoffe produziert, zum Beispiel nicht abbaubare Kunststoffabfälle und klimawirksames Kohlenstoffdioxid.

Geiseltalsee, ehemaliges Braubkohleabbaugebiet (Google-Earth)

Energiefluss

Bei den Lebensprozessen werden die aufgenommenen Stoffe umgewandelt. Bei dieser Umwandlung in chemischen Reaktionen wird Energie umgesetzt. Gemäß dem zweiten Hauptsatz der Thermodynamik wird dabei immer ein Teil der umgesetzten chemischen Energie irreversibel in Wärmeenergie umgewandelt. Praktisch bedeutet dies eine Energieentwertung, die umgangssprachlich im allgemeinen als „Energieverbrauch“ bezeichnet wird. Für die Aufrechterhaltung der Lebensvorgänge ist deshalb eine ständige Energiezufuhr von außen notwendig. Auf der heutigen Erde kommt diese zugeführte Energie zum großen Teil von der Sonne.

Da die Sonne noch über 6 Milliarden Jahre in gleicher Form Energie liefern wird, werden auf der Erde alle Energieformen, die sich von der Sonnenenergie ableiten lassen, also neben der direkten Solarenergie Wind- und Wasserenergie und Energie aus Biomasse, als regenerative Energien bezeichnet. Den Gegensatz  bilden Energieformen, die durch die Verbrennung von fossilen Brennstoffen (Kohle, Erdöl, Erdgas) bereitgestellt werden, denn diese organischen Abfallstoffe früherer Erdzeitalter sind begrenzt und ihre Ergänzung durch neue organischen Abfallstoffe benötigt geologische Zeiträume, in geschichtlichen Zeiträumen können Sie sich nicht regenerieren.

Mögliche Beispiele

Lebewesen als Konsumenten:

Grundsätzliche Fragen:

Was wird „verbraucht“?

Was bedeutet „Sparsamkeit“, was „Verschwendung“?

Wie hängen Konsum, Produktion und Abfall zusammen?

Wie hängen „Energiekonsum“ und „Stoffkonsum“ zusammen?

  • Konsum von Spitzmaus und Elefant (Abhängigkeit des Stoffumsatzes von der Körpergröße, Bergmann’sche Regel, Kleinheit von Inselarten). „Die Beziehung zwischen dem Energiehaushalt und der Körpergröße der Tiere ist eine der spannendsten, ungelösten Fragen in der vergleichenden Physiologie.“ (Heldmaler,Neuweiler,Rössler 2013)
  • Zucker, der aus Bäumen regnet (Zucker als Abfall Phloemsaft konsumierender Blattläuse, siehe Titelfoto) „Die Blattlaus als Verschwender (?)“ https://www.e-periodica.ch/digbib/view?pid=fng-001:1978:67::208#64
  • Chilesalpeter (die Lagerstätten in der Atacama-Wüste und in anderen Trockengebieten und Inseln sind Reste von abgelagertem, harnsäurereichem Vogelkot)
  • Kreislaufwirtschaft benötigt Energie (Erdwärmeheizung als Modell für Kreislaufwirtschaft, hinterfragen des Begriffes „Energieverbrauch“)
  • Leben und Konsum in einer Raumstation (Für lange Reisen in einem Raumschiff oder lange Aufenthalte in Stationen auf dem Mond und auf dem Mars ist die Frage des Konsums essenziell. Denn die Möglichkeiten, Vorräte mitzunehmen, sind begrenzt. Deshalb beschäftigen sich Wissenschaftler schon seit längerem mit den Möglichkeiten, in dem begrenzten Raum eines Raumschiffes oder einer Raumstation mit bioregenerativen Lebenserhaltungssystemen, also Photobioreaktoren, die biologische Stoffkreisläufe ermöglichen, wodurch das Mitführen von Vorräten und die Produktion von Abfall minimiert wird. Neben Pflanzen spielen dabei vor allem Mikroalgen eine entscheidende Rolle).

Lebensstrategien bzw.  Lebensformen und Konsum

Welche besonderen Lebensformen sind mit bestimmten Formen des Konsums verbunden?

  • Wasserverbrauch von Wüstentieren (z.B. Kängururatte Dipodomys, Oryxantilope, Dromedar, Dunkelkäfer Onymacris)
  • Wie Pflanzen Wasser sparen (Sukkulenz, Verdunstungsschutz, zum Beispiel durch Oberflächenverringerung und Oberflächenverdichtung; physiologische Anpassungen wie C4, diurnaler Säurezyklus)
  • Massenvermehrung (Gradation): Heuschreckenschwärme (wie sie entstehen und sich entwickeln)
  • Konsumstopp: Winterruhe, Winterschlaf, Winterstarre, Austrocknungsresistenz

Der Einfluss von Konsum und Abfall auf Ökosysteme

  • Sauerstoffverbrauch in Gewässern („Umkippen“ von Gewässern, Prinzip der Pflanzenkläranlage)
  • Berge aus Abfall – Gebirge aus Sedimenten und was mit ihnen geschehen ist und geschehen wird oder Erdgeschichte als Konsumentengeschichte
  • Von Erdöl zu Plastik (biogene Abfallstoffe aus früheren erdgeschichtlichen Epochen werden zu anthropogenen Abfallstoffen der Gegenwart)
  • Torf, Kohle, Erdöl, Erdgas
  • Hochmoore: Mehr Abfall als Verbrauch
  • Was wird aus dem Abfall vom Blattfall? – Durch den jährlichen Laubfall fällt in sommergrünen Wäldern jeden Herbst eine große Menge organischen Abfalls an, der schnell aufgearbeitet wird.
  • Primärproduktion und Trophieebenen (Nahrungsketten können umso länger werden, je höher die Primärproduktion ist: Vergleiche von Wüste – Regenwald, tropisches Meer – marines Auftriebsgebiet)

Menschen als Konsumenten

  • Der letzte Baum der Osterinseln (die Osterinseln sind – möglicherweise – ein Beispiel dafür, wie eine menschliche Gesellschaft durch unbedachte Nutzung der natürlichen Ressourcen ihre eigenen Lebensgrundlagen zerstörte und daran zu Grunde ging, Diamond 2011)
  • Der Mensch als Verursacher quartärer Aussterbewellen (anthropogen bedingter Verlust der Biodiversität)
  • Kunststoffe (Plastikmüllstrudel in Pazifik und Atlantik; Mikro- und Nanoplastik in Lebensmitteln; abbaubare Kunststoffe)
  • Verbrauch von Sand und Kies
  • Seltene Erden – die Würze von High Tech (Herkunft, Verbrauch, Recycling)
  • Fleischkonsum

Quellen

Braungart, M., McDonough, W. (2008): Einfach intelligent produzieren. Cradle to cradle. Berlin: Berliner Taschenbuchverlag.

Bauman, Z. (2009): Leben als Konsum. Hamburg: Hamburger Edition.

Diamond, J (20113): Kollaps: Warum Gesellschaften überleben oder untergehen. Frankfurt: Fischer-Taschenbuch.

Gerten, G. (2018): Wasser-Knappheit, Klimawandel, Welternährung. München: C.H. Beck.

Heldmaler,, G., Neuweiler, G., Rössler, W. (2013): Vergleichende Tierphysiologie. Berlin, Heidelberg:  Springer.

Hengeveld, R. (2012): Wasted World – How our consumption challenges the Planet. Chicago: Chicago Univ.Press.

Kattman, U. (Hrsg., 2004): Bioplanet Erde. UB 299 (28.Jg.), Seelze: Friedrich.

Lampel, G. (1978): Die Blattläuse, eine wenig beachtete Insektengruppe. In: Bulletin der Naturforschenden Gesellschaft Freiburg. Band 67, Heft 1, S. 45–68

Looß, M. (1999): Abfall und Recycling. UB 247 (23.Jg.): 4-13, Seelze: Friedrich.

Probst, W. (2009): Stoffkreisläufe. Unterricht Biologie 349 (33. Jg.), S. 2-11, Seelze: Friedrich.

Reichholf, J. H. (1992): Der schöpferische Impuls: eine neue Sicht der Evolution. Stuttgart: DVA

Schmidt-Bleek, F. (1997): Wieviel Umwelt braucht der Mensch? Faktor 10 – das Maß für ökologisches Wirtschaften. München: dtv.

Zuckerkonsum von Kindern

Plastik sammelnde Aqua-Drohne

Algen für Bioplastik

Schneeballerde

Lars Fischer: https://www.spektrum.de/news/machten-schwefeltropfen-die-erde-zur-eiskugel/1457163

Joachim Schüring: Schneeball Erde. (Memento vom 12. Februar 2013 im Webarchiv archive.is) spektrumdirekt, 13. August 2001.

Frühe Evolution und Symbiose

LINK-NAME
Was ist Leben? Wie ist Leben entstanden? Wie hat sich Leben entwickelt? Diese Fragen sind alt, es werden immer wieder neue Antworten gefunden, aber wirklich beantwortet sind sie noch nicht. Hier soll ein Aspekt besonders betrachtet werden, dessen Bedeutung für die Entstehung und erste Entwicklung des Lebens und der Lebewesen auf der Erde erst in den letzten Jahrzehnten allgemein anerkannt wurde, die Symbiose.

Die Einteilung der Lebewesen

Die Vielfalt der Lebewesen wurde traditionell in „Pflanzen“ und „Tiere“ eingeteilt. Schon LINNÉ verteilte alle Lebewesen auf diese beiden „Reiche“. In der makros­kopischen Welt fällt es uns im allgemeinen auch nicht schwer, ein Lebewesen als Pflanze oder Tier zu erkennen. Auch nachdem man mit Hilfe von Mikroskopen die Welt der Mi­kroorganismen immer besser kennenlernte, behielt man lange Zeit diese Eintei­lung bei. So wurden Einzeller zu den Tieren gerechnet, wenn sie kein Chlorophyll ent­hielten und keinen Kohlenstoff assimilieren konnten. Zu den Pflanzen rechnete man die Einzeller mit Chloroplasten. Manche, wie etwa die „Augentierchen“ (Euglena), brachten sowohl Zoologen als auch Botaniker in ihren Systemen unter.

Aber in der ersten Hälfte des 20. Jahrhunderts wurde immer deutlicher, dass der grundlegendste Unterschied zwischen den Lebewesen nicht  „Tier“ oder „Pflanze“ sondern die Organisation der einzelnen Zellen ist. Bei den „Kernlosen“ sind die Zellen wesentlich einfacher gebaut. Sie enthalten keinen Zellkern und es fehlen ihnen viele typische Zellorganelle. Bei den „Kernhaltigen“  sind außer den Zellkernen auch noch andere typische Zellorganelle, insbesondere Mito­chondrien, Plastiden, Zentriolen, Geißeln usw., in den Zellen enthalten und sie sind durch ein komplexes inneres Membransystem kompartimentiert. Die für diese unterschiedlichen Organisationstypen eingeführten Begriffe „Prokaryoten“ und „Eukaryoten“ gehen auf den französischen Mikrobenforscher Edouard Chatton zurück, der die Namen in einer Veröffentlichung von 1937 verwendete (Katscher 2004). Doch erst 25 Jahre später gewannen diese Bezeichnungen auf Grund einer Arbeit von Stanier und van Niel (1962) allgemeine Akzeptanz und wurden auch in Lehrbüchern übernommen.

In den 1970 er Jahren untersuchte der amerikanische Mikrobiologe Carl Woese die Verwandtschaftsbeziehungen innerhalb der Bakterien durch Vergleich der ribosomalen RNA. Dabei fand er heraus, dass es zwei grundlegend unterschiedliche Typen von Prokaryoten gibt, die er zunächst als Bakterien und Archaebakterien bezeichnete. Aufgrund der großen Unterschiede zwischen diesen beiden Gruppen und der teilweisen Ähnlichkeit der Archaebakterien mit den Eukaryoten schlugen er und andere (Woese, Kandler, Wheelis 1990) später vor, eine Dreiteilung der Lebewesen in die drei Domänen Archaea, Bacteria und Eukarya vorzunehmen. Dieses Drei-Domänen-Konzept setzte sich allmählich durch, obwohl es auch starke Gegner gab, zum Beispiel den Evolutionsbiologen Ernst Mayr (1998) und die Wiederentdeckerin der Endosymbiontentheorie Lynn Margulis (1998).

Aus Tiefsee-Geothermalquellen wurden 2010 Sedimente entnommen, in denen man in den folgenden Jahren Archäen nachweisen konnte, die sich deutlich von den bisher bekannten Archäen unterscheiden. Vergleichende Untersuchungen der Genome von Lokiarchaeum und von Eukaryoten deuten auf einen gemeinsamen phylogenetischen Ursprung, eine Monophylie, hin. Das würde bedeuten, dass die Eukarya eine Schwestergruppe der Lokiarchaeota innerhalb der Archaea, sind, dass es also aus kladistischer Sicht nur zwei Domänen Bacteria und Archaea gibt (Spring et al. 2015; Zaremba-Niedwiedzka et al. 2017).

Einteilung der Lebewesen. A, nach Zellen ohne Kern und Zellen mit Kern; B die Kernlosen bestehen aus zwei sehr unterschiedlichen Gruppen; C drei Domänen; D die Kernhaltigen sind Teil der Archäen (Grafik W.Probst)

Urzelle oder Ursuppe?

Allen Lebewesen gemeinsam sind eine Zellstruktur, DNA, der genetische Code sowie mRNA, tRNA und eine durch Ribosomen vermittelte Übersetzung (Translation) des Nukleinsäurecodes in Proteine. Dies spricht dafür, dass alle Lebewesen von einem gemeinsamen Vorfahr abstammen (last universal common ancestor LUCA). Wenn sich alle heute lebenden Arten auf  eine Ursprungsart zurückführen lassen, könnte man Rückschlüsse auf die Eigenschaften dieses Urahnen ziehen, wenn man in den Genomen Nukleinsäurenabschnitte finden würde, die allen heutigen Lebewesen gemeinsam sind.  Eine Analyse von 6,1 Mill. Protein-codierender Gene von sequenzierten prokaryotischen Genomen hat zu der Schlussfolgerung geführt, dass LUCA ein anaerober, CO2– und N2-fixierender, H2-abhängiger thermophiler Prokaryot war und danach an einer an CO2, H2 und Eisen reichen Hydrothermalquelle lebte (Weiss et al. 2016). Diese Ergebnisse sind jedoch nicht ganz unumstritten, da nicht immer eindutig geklärt werden kann, welche Gene wirklich ursprünglich sind und welche durch horizontalen Gentransfer später erworben wurden.

Die Bedeutung des horizontalen Gentransfers bzw. des Austauschs und der Aufnahme von Nukleinsäuremolekülen durch frühe, zellulär organisierte Lebewesen  könnte  so stark gewesen sein, dass die Gene in einem Urzustand des Lebens noch nicht sehr eng an bestimmte zelluläre Lebewesen gekoppelt sondern eher Allgemeingut waren. In einer solchen „Ursuppe“ existierten zelluläre Elemente (Protocyten) neben freien RNA- und DNA-Molekülen (Ribozyme, Viroide) und Virus-ähnlichen Partikeln (Virionen, von Proteinhüllen umgebene Nukleinsäuremoleküle).  Zwar wurde lange Zeit angenommen, dass Viren erst entstehen konnten, nachdem es zelluläres Leben gab, da sie auf den Proteinsyntheseapparat von Zellen angewiesen sind. Aber die Entdeckung von Riesenviren (Mimivirus) hat diese Ansicht ins Wanken gebracht. Diese 2003 beschriebenen bakteriengroßen Viren aus Amöben haben zwar auch keine eigenen Ribosomen aber doch ein sehr komplexes Genom, das auch Gene enthält, die man vorher nur von zellulären Organismen kannte (La Scola et al. 2003).

„Ursuppe“ aus zellulären Elementen (Protocyten) neben freien RNA- und DNA-Molekülen (Ribozyme, Viroide) und Virus-ähnlichen Partikeln (Virionen, von Proteinhüllen umgebene Nukleinsäuremoleküle) und Proteinen, strukturiert durch anorganische Kompartimente (Grafik W.Probst)

Ein Austausch und eine Aufnahme von Nukleinsäureabschnitten durch Zellen und Virionen hätte zunächst die Ausbildung spezifischer Zelltypen, die in „darwinschen Wettbewerb“ miteinander treten konnten, verhindert. Der heute noch weitverbreitete horizontale Genaustausch bei Bakterien und Archäen wäre dann ein Relikt dieses Anfangszustandes.

Nach dieser Vorstellung wäre es auch möglich, dass Bakterien und Archäen sich nicht auf eine gemeinsame Protocyte zurückführen lassen, sondern dass ihre Wurzeln auf unterschiedliche Vorläuferzellen der Ur-Lebensgemeinschaft zurückgehen.

Entwicklung von Archäen und Bakterien ohne LUCA (Grafik W.Probst)

LECA und Mitochondrien

Die meisten neueren Untersuchungen deuten drauf hin, dass die erste eukaryotische Zelle (last eukaryotic common ancestor LECA) durch die Aufnahme eines α-Proteobakteriums durch ein Archaeum, vermutlich aus der Asgard-Gruppe (Eme et al. 2017, Zaremba-Niedzwiedzka et al. 2017), entstanden ist. Für diesen symbiotischen Weg zur ersten eukaryotischen Zelle gibt es zwei unterschiedliche Hypothesen.

Zwei Wege zur eukaryotischen Zelle (Grafik W.Probst)

Nach der traditionellen Vorstellung haben sich in der Archäenzelle als Voraussetzung für die Aufnahme des Proteobakteriums zunächst ein Großteil der für die Eukaryotenzellen typischen komplizierteren Innenstrukturen entwickelt, insbesondere das Cytoskelett, die Kernmembran und die Fähigkeit zur Phagocytose. Dann wurden α-Proteobakterien zunächst als Nahrung aufgenommen. Einige Bakterien widerstanden der Verdauung und wurden zu Endosymbionten, gut geschützt in der Wirtszelle, die vor allem von dem überschüssigen ATP ihrer Mieter profitierte. Die Endosymbionten gaben ihre Selbstständigkeit immer mehr auf, indem Gene aus ihrem Genom in das Wirtszellengenom verlagert wurden (Endosymbiontischer Gentranfer EGT). So entwickelten sich aus den endosymbiontischen Bakterien allmählich Organelle. Nach dieser Vorstellung betrieben die aufgenommenen α-Proteobakterien bereits eine aerobe Atmungskette, bei der als Endprodukte außer ATP CO2 und H2O gebildet wurden.

Eine Alternative Vorstellung geht davon aus, dass die symbiontische Zusammenarbeit von α-Proteobakterien und Archäen unter anaeroben Verhältnissen begann und dass die Archäen noch keine Eukaryoten-Innenstrukturen hatten. In einer sauerstofffreien Umgebung nutzten methanogene Archäen von zumindest fakultativ anaeroben α-Proteobakterien produziertes CO2 und H2 für die Energiebereitstellung durch Reaktion dieser Ausgangsstoffe zu Methan. Je größer die Berührungsflächen der beiden verschiedenen Prokaryoten-Zellen, desto effektiver konnte der Stoffaustausch sein. Dies führte schließlich dazu, dass das α-Proteobakterium ganz von dem Archaeum umschlossen wurde. Die weitere Entwicklung des Archaeums zur Eucyte und des Endosymbionten zum Mitochondrium verlief parallel.

Es spricht vieles dafür, dass sich das intrazelluläre Membransystem einschließlich der Kernmembran dabei vom Endosymbionten ausgehend ausgebildet hat, und zwar durch Abschnürung von Vesikeln von der äußeren Zellmembran des gramnegativen Bakteriums (Gould, Garg, Martin 2016). So entstanden allmählich die verschiedenen membranumschlossenen Kompartimente der Eucyte: die doppelte Kernmembran, das Endoplasmatische Retikulum, der Golgi-Apparat und verschiedene Membranbläschen wie Lysosomen und Peroxisomen. Ein Argument für diesen Weg ist, dass die umhüllende Zellmembran der Eukaryoten, obwohl ursprünglich aus einer Archäenzelle hervorgegangen, in ihrem Aufbau mehr einer Bakterienzellmembran entspricht. Bei Archäen sind die Fettsäuren nicht – wie bei Bakterien oder Eukaryoten – verestert. Sie bilden Glyceroldiether oder sogar Bis-Glycerol-Tetraether (einschichtige Membran, Monolayer) und statt einfacher, unverzweigter Fettsäuren kommen oft verzweigte Ketten vor. Der Austausch dieser Glycerolether gegen Glycerolester könnte dadurch zustande gekommen sein, dass die äußere Zellmembran allmählich durch den Einbau von Membranvesikeln des Endosymbionten umgebaut wurde.

Eine weitere Stütze dieser Entstehungshypothese der Eukaryoten bilden die sogenannten Hydrogenosomen, ATP-bildende Organellen, die in anaerob lebenden Protisten und anderen niederen, in sauerstofffreiem Milieu existierenden Lebewesen vorkommen. Ihre Homologie mit Mitochondrien hat man erst durch Genomanalysen festgestellt. Die meisten Hydrogenosomen enthalten zwar keine DNA, aber in den Kernen der zugehörigen Organismen konnte man Mitochondriengene nachweisen. Anders als bei Mitochondrien dienen bei Hydrogenosomen zur ATP-Bildung nicht Sauerstoffmoleküle sondern Wasserstoffionen (Protonen) als Elektronenakzeptoren. Dabei wird CO2, H2 und Acetat freigesetzt.

ATP-Bildung in Hydrogenosomen (aus Wikipedia)

Nach der ersten Entstehungshypothese müsste man annehmen, dass sich die Hydrogenosomen durch Reduktion aus aeroben Mitochondrien entwickelt haben. Geht man davon aus, dass es sich um den ursprünglichen Zustand handelt und dass sich die Mitochondrien aus Hydrogenosomen entwickelt haben, wäre dies eine Stütze der zweiten Entstehungshypothese.

Für beide Vorstellungen gilt, dass im Laufe der Endosymbiose immer mehr Gene aus dem α-Protobakterium in das Wirtszellengenom übertragen wurden (EGT). So entstand schließlich das Mitochondrium, ein Zellorganell, das nur noch wenige eigene Gene  – bei menschlichen Mitochondrien 37 (Archibald 2014) – und einen stark reduzierten Proteinsynthese-Apparat besitzt. Die meisten Mitochondrien-Proteine werden im Cytosol produziert und über spezielle Membranproteine in die Mitochondrien transportiert.

Plastiden

Auch für die Chloroplasten und alle verwandten, insgesamt als Plastiden bezeichneten  Zellorganelle ist heute unbestritten, dass sie durch Endocytosymbiose entstanden sind. Dabei kann man zwischen primärer und sekundärer Endocytosymbiose unterscheiden. Bei der primären Endocytosymbiose wurden Cyanobakterien von eukaryotischen Zellen aufgenommen, bei der sekundären Endocytosymbiose bereits Plastiden enthaltende eukaryotische Zellen. Man kann drei Organismengruppen unterscheiden, deren Plastiden auf primäre Endocytosymbiose zurückzuführen sind:

  • die Chlorophyta mit Chloroplasten (Grünalgen einschließlich der grünen Pflanzen)
  • die Rhodophyta mit Rhodoplasten (Rotalgen)
  • die Glaucophyta mit blaugrünen Plastiden (übersetzt „Blaugraue Algen“, nicht zu verwechseln mit dem alten Begriff „Blaualgen“ für Cyanobakterien; kleine Gruppe einzelliger Algen)

Die Plastiden der Glaucophyta sind den Cyanobakterien noch sehr ähnlich. Sie werden deshalb auch als Cyanellen bezeichnet. Wie die Zellen der Cyanobakterien enthalten sie Phycobilisomen als Photosynthese-Antennen. Zwischen den beiden Zellmembranen existiert noch eine dünne Peptidoglycanschicht, die typische Zellwandsubstanz der Bakterien. Das Genom ist allerdings durch EGT schon sehr stark verkleinert auf etwa ein Zehntel der Größe eines frei lebenden Cyanobakteriums.

Phycobilisom – Lichtsammelkomplex in den Photosynthesemembranen von Cyanobakterien, Glaucophyta und Rhodophyta (W.Probst nach G.Richter aus Kadereit 2014)

Die Plastiden der Rhodophyta enthalten ebenfalls Phycobilisomen als Fotosynthese-Antennen aber keine Peptidoglycanschicht. Charakteristisch sind  als zusätzliche Pigmente Phycobiline (offenkettigen Tetrapyrrole) wie Phycocyan und Phycoerythrin, die für die häufig rötliche Färbung der Rotalgen verantwortlich sind.

Rhodoplast der Rotalgen mit Phycobilisomen auf den Thylakoiden; rechts einzellige (oben) und vielzellige (unten) Beispiele für Rhodophyta (W. Probst nach versch. Vorlagen)

Die Chlorophyta enthalten Plastiden ohne Phycobilisomen und Peptidoglycanschicht. Charakteristisch für ihre Chloroplasten sind geldrollenartig gestapelte Doppelmembran-Pakete (sogenannte Grana).

Wichtigstes Fotosynthese-Pigment in den Plastiden aller drei Gruppen ist Chlorophyll a. Bei den Chlorophyta kommt außerdem Chlorophyll b vor.

Aufgrund von Fossilfunden und molekulargenetischen Daten vermutet man, dass die endosymbiotische Aufnahme von Cyanobakterien durch eukaryotische, mitochondrienhaltige Einzeller vor etwa 1,5 Milliarden Jahren stattfand (Parfrey, L. W. et al. 2011). Man nimmt an, dass die Cyanobakterien durch Phagocytose als Nahrungspartikel aufgenommen wurden. Dabei werden die aufzunehmenden Nahrungspartikel von einer Phagocytose-Membran umhüllt, in welche Verdauungsenzyme abgegeben werden (Endosomen). Die heutigen Plastiden haben nur die zwei auf die Cyanobakterien zurückgehenden Außenmembranen. Von der „Verdauungsmembran“ der eukaryotischen Zelle ist nichts übrig geblieben.

1 eukaryotische Zelle und Cyanobakterium; 2 beginnende Phagocytose; 3 Cyanobakterium in Endosom; 4 auf dem Weg zum Organell: Endosomenmembran verschwunden, Cyanobakterien-DNA durch EGT reduziert (Grafik W. Probst)

Auch bei den Plastiden ist vom ursprünglichen Genom des Cyanobakteriums nur ein Bruchteil im Organell zurückgeblieben. Von 2000-12.000 Genen bei Cyanobakterien sind in Plastiden noch 60-200 nachzuweisen (Archibald 2014 nach Dragan et al. 2013). Umgekehrt findet sich aber eine beachtliche Anzahl von Cyanobakterien-Genen in den Zellkernen der Plastiden-haltigen Eukaryoten. Bei einer Untersuchung der Modell-Landpflanze Acker-Schmalwand konnten Martin et al. (2002) etwa 4500 der 25.000 Gene der Pflanze auf einen cyanobakteriellen Ursprung zurückführen. Dabei muss natürlich berücksichtigt werden, dass bei den Genomen der Pflanzen Verdopplungen von Teilen oder ganzen Genomen eine wichtige Rolle gespielt haben. Dabei wurden auch die von Cyanobakterien stammenden Gene verdoppelt. Überraschend war, dass nur etwa 50 % dieser Gene für Proteine zu codieren scheinen, die mit Funktionen im Chloroplasten zu tun haben. Ähnliche Verhältnisse konnten später auch für andere Plastiden-haltige Eukaryoten festgestellt werden. Daraus lässt sich erkennen dass der Vorgang der Endocytosymbiose und der damit verbundene endosymbiontische Gentransfer (EGT) weit über die Photosynthesefunktion hinausgehende Folgen hatte. Das Ergebnis waren völlig neue Organismen!

Aufgrund der deutlichen Unterschiede der Plastiden von Glaucophyta, Rhodophyta und Chlorophyta liegt die Vermutung nahe, dass ihrer Entstehung drei getrennte Endosymbiosen zugrunde liegen. Durch molekulargenetische Untersuchungen konnte diese ursprüngliche Annahme jedoch nicht bestätigt werden. Die Restgenome aller drei Plastiden-Typen zeigen große Übereinstimmung. Außerdem treten bestimmte für die Chloroplastenmembran-Durchlässigkeit wichtige Proteine, die von den Kernen der Algenzellen gebildet werden, bei allen drei Gruppen auf. Man nimmt deshalb an, dass es einen gemeinsamen Vorfahr gab und dass die Endosymbiose zur Bildung der Chloroplasten nur einmal stattgefunden hat (Archibald 2014 nach Martin et al. 1998, Turner et al. 1999, McFadden,van Dooren 2004). Glaucophyta, Rhodophyta und Chlorophyta werden deshalb in der phylogenetischen Systematik als Monophylum angesehen und als Archaeplastida bezeichnet.

Sekundäre Plastiden

Schönaugengeißler (Euglena viridis) und einer seiner Chloroplasten (W. Probst nach versch. Vorlagen)

„Augentierchen“ (besser Augengeißler, Euglena viridis), einzellige, schnell schwimmende grüne Algen, die man in Tümpeln und Pfützen finden kann, faszinierten schon die ersten Mikroskopiker. Da ihre Chloroplasten Chlorophyll a und b enthalten, wurde lange Zeit angenommen, dass sie zu den Grünalgen (Chlorophyta) gehören. Erst eine gründliche Untersuchung durch die Algenforscherin Sarah Gibbs führte zu der erstaunlichen Erkenntnis, dass die Chloroplasten von Euglena aus einer endosymbiontischen Grünalge hervorgegangen sind (Gibbs 1978), die Augentierchen selbst aber in eine völlig andere Verwandtschaftsgruppe gehören. Anlass für die genaue Untersuchung war, dass die Chloroplasten – wie schon länger bekannt – nicht von zwei sondern von drei Membranen umgeben waren.

Bei verschiedenen anderen Algen kommen sogar Plastiden mit 4 Membranhüllen vor. In solchen von vier Membranen umgebenen Plastiden von Schlundgeißlern (Cryptophyta) wurden zwischen den zwei äußeren und den zwei inneren Membranen Nukleinsäure- haltige Körper entdeckt, die man als Reste von ehemaligen Zellkernen der endosymbiontischen Eukaryoten identifizieren konnte und die man deshalb als „Nucleomorphe“ bezeichnet. Bei der zweiten Endosymbiose kam es – genauso wie bei der ersten – zu einem endosymbiontischen Gentransfer. Bei vielen Algen wie Euglena, Kieselalgen und großen Braunalgen (Tangen) ist der Kernrest der aufgenommenen eukaryotischen Alge vollständig verschwunden, d. h. die Gene wurden vollständig in den Wirtskern integriert, aber an den drei oder vier Hüllmembranen der Plastiden kann man erkennen, dass diese das Ergebnis von zwei Endosymbiosen sind.

Schlundgeißler (Cryptophyceae) mit 4 Hüllmembranen um seine Plastiden und einem Kernrest (Nucleomorph) zwischen den beiden äußeren und den beiden inneren Membranen (W. Probst nach versch. Vorlagen)

Die Chomatophoren der Schlundgeißler haben sich aus endosymbiontischen Rotalgen entwickelt. Dies gilt auch für andere Algen mit bräunlichen oder gelblichen Chromatophoren aus der Verwandtschaftsgrupp der Heterokontophyta, zum Beispiel für die Kieselalgen, die Goldalgen und die Braunalgen.

Eine  weitere Algengruppe mit sekundären Chloroplasten, die auf Grünalgen zurückgehen, sind die Chlorarachniophyta, amöboide Eukaryoten aus der Gruppe der Rhizaria. Ihre Chloroplasten sind ebnfalls von vier Hüllen umgeben und sie enthalten Nukleomorphe. Auch sie wurden früher zu den Grünalgen gerechnet. Sie sind zwar zur Photosynthese fähig, aber wie chlorophyllfreie Amöben ernähren sie sich auch durch Phagocytose von Bakterien und kleinen Einzellern.

Bei Dinoflagellaten kennt man auch tertiäre Endocytobiosen, bei denen eine einzellige Alge aus der Gruppe der Cryptophyta als Endosymbiont aufgenommen wurde.

Auf dem Weg zur Chloroplastenbildung

Die Schalenamöbe Paulinella chromatophora  hat eine ellipsoide oder birnenförmige aus spiralig angeordneten Silikatplatten zusammengesetzte Schale. Sie lebt zwischen Wasserpflanzen oder im oberflächlichen Sediment von Süßgewässern. In ihrem Inneren enthält sie zwei wurstförmige blaugrüne Körper, die man zunächst als Chromatophoren bezeichnete. Durch molekulargenetische Analysen konnten sie als Abkömmlinge Blaugrüner Bakterien der Gattungen Synechococcus  bzw. Prochlorococcus identifiziert werden. Die Aufnahme dieser Endosymbionten, die mit den Vorfahren der Plastiden nicht näher verwandt sind, liegt bei weitem nicht so lange zurück wie bei den Plastiden. Die Endosymbiose ist zwar schon weit fortgeschritten, sodass weder Paulinella noch ihre Chromatophoren für sich alleine lebensfähig sind. Sie enthalten noch 867 Proteine codierende Gene, was etwa einem Viertel des Genoms von frei lebenden Synechococcus-Arten entspricht. Die Genanalyse des Wirtsgenoms zeigte, dass hier schon  Endosymbionten-Gene enthalten sind. Es konnte auch eindeutig nachgewiesen werden, dass vom Kern codierte Proteine in die Chromatophoren transportiert wurden. Man kann sagen, dass diese Endosymbionten bereits auf dem Weg zum Organell sind. Sie werden deshalb von manchen Forschern auch schon als Chloroplasten oder Plastiden bezeichnet. Aufgrund der genetischen Untersuchungen vermutet man, dass die Endosymbiose von Paulinella etwa 100 Millionen Jahre alt ist (Archibald 2014).

Der zu den Glomeromyceten zählende Pilz Geosiphon pyriforme ist anders als die übrigen Vertreter dieser Pilzklasse kein Mykorrhizapilz, aber er enthält endocytosymbiontische Blaugrüne Bakterien der Gattung Nostoc. Bisher kennt man keine andere Pilzart mit endosymbiontischen Cyanobakterien. Der photosynthetisch aktive Symbiosepartner wächst in blasenförmigen Erweiterungen der Pilzhyphen, die etwa 1 x 1,5 mm groß sind. Geosiphon ist ohne seine Endosymbionten nicht lebensfähig, der Endocytosymbiont Nostoc punctiforme kann dagegen auch frei lebend gedeihen. Frei lebende Nostoc-Fäden aus wenigen Zellen werden von den Pilzhyphen in einem bestimmten Entwicklungsstadium des Pilzes über Endocytose aufgenommen. Nach der Aufnahme wachsen die Pilzhyphen zu den makroskopisch erkennbaren Blasen aus, in denen sich die aufgenommenen Nostoczellen vermehren. Außer normalen Zellen bildet Nostoc auch Heterocysten aus, die zur N2-Fixierung in der Lage sind – also eine „Stickstoffsymbiose“ wie bei Hüllsenfrüchtlern und anderen Pflanzen. Der Pilz erhält von den Blaugrünen Bakterien einen Teil des gebildeten Zuckers und des gebundenen Stickstoffs, dafür liefert der Pilz seinem Endosymbionten Wasser, Phosphat und Kohlenstoffdioxid und alle weiteren benötigten anorganischen Stoffe. Außerdem  schützt er Nostoc vor Stress durch giftige Schwermetalle. Geosiphon bildet – wie viele Glomeromyceten – auch noch eine Symbiose mit einem Bakterium, über die aber bisher nur wenig bekannt ist. Zum anderen bildet der Pilz enge Gemeinschaften mit Hornmoosen und mit dem Lebermoos Blasia pusilla, die beide ihrerseits mit Nostoc in einer extrazellulären Symbiose leben. Glomeromyceten waren vermutlich als Symbiosepartne für die Besiedelung terrestrischer Lebensräume durch die ersten Pflanzen sehr wichtig, möglichrweise sogar Voraussetzung (Wang et al. 2010). Schüßler (2011) vermutet, dass es sich bei der Endosymbiose von Geosiphon und der Arbusculären Mykorrhiza von den meisten heute bekannten Glomeromyceten um eine parallele Entwicklung mit ähnlichen Austauschvorgäng handelt. Bei Gloeosiphon ist der Photosynthese betreibende Partner (Cyanobakterium) innen, im anderen Fall (Pflanze) außen.

Die Kieselalge Rhopalodia gibba besitzt – wie alle Kieselalgen – sekundäre Plastiden, die auf Rotalgen-Endosymbionten zurückgehen. Außerdem enthalten die Zellen dieses Einzeller aber einen weiteren Endosymbionten, der zunächst als „Sphaeroid“ beschrieben wurde. Man konnte nachweisen, dass es sich dabei um ein endosymbiontisches Cyanobakterium aus der Gattung Cyanothece handelt. Dieser Endosymbiont führt allerdings keine Photosynthese mehr durch, aber er kann molekularen Stickstoff assimilieren. Sein Genom enthält mit 2,6 Millionen Basenpaaren noch etwa die Hälfte einer frei lebenden Cyanobakterienart der Gattung Cyanothece (Archibald 2014). Die genetischen Verhältnisse dieser Kieselalge sind dementsprechend recht kompliziert. Im Zellkern findet man

  • Gene der Rotalge, von der der Chloroplast abstammt,
  • von dem Cyanobaktium, das zum primaren Chloroplasten der Rotalge wurde und
  • von dem Genom des weiteren stickstoffbindenden Cyanobakteriums.

Außerdem enthalten Chloroplast und Cyanobakterienendosymbiont noch eigene Genomreste. Diese verschiedenen Gene und ihre Produkte  wirken bei dem effektiven Ablauf des Zellstoffwechsels zusammen.

Pflanzentiere und Kleptoplasten

Alle Photosynthese betreibende Algen und alle grünen Pflanzen verdanken ihre Fähigkeit zur Kohlenstoffassimilation ursprünglich endosymbiontischen Cyanobakterien. Aber darüber hinaus ist es im Laufe der Evolution immer wieder zu einer Kooperation zwischen Kohlenstoff-heterophen und Kohlenstoff-autotrophen Lebewesen gekommen. Die Autotrophie durch Endosymbiose ist eine Fortsetzungsgeschichte.

Schon im 19. Jahrhundert wurden ver­schiedene Symbiosen von Algen mit Nie­deren Tieren und Pilzen entdeckt. Karl Brandt (1881 nach Sapp 1994) be­schrieb die endosymbiontischen Mikroalgen in Einzellern, Hohltieren, Mollusken und Würmern. Er nannte die grünen Vertreter „Zoochlorellen“ und die gelbbräunlich ge­färbten „Zooxanthellen“. Keeble untersuchte und beschrieb 1910 als erster die grünen, darmlosen wurmähnlichen Tiere (Gattung Symsagittifera früher Convoluta) der bretonischen Atlantikküste und nannte sie „plant animals“. Sie werden heute der an der Basis des Tierreiches stehenden Gruppe der Acoelomorpha zugeordnet.

Titel von Frederik Keebles Monografie über die „Pflanzentiere“

Keebles Zeicchnung der beiden Acoelomorpha Symsagittifera roscoffensis und Convoluta convoluta,  früher zuden Strudewürmern gerechnet

Während es sich bei den „Zoochlorellen“ tatsächlich um Grünalgen handelt, allerdings wohl um eine polyphyletische Gruppe, stammen die  „Zooxanthellen“ aus ganz unterschied­lichen Verwandtschaftsgruppen der „Protisten“. Sie ähneln sich, weil sie ihre Gestalt als Endosymbionten erheblich vereinfacht haben. Eine be­sonders verbreitete endosymbiontische Alge gehört zu den Dinoflagellaten (Gattung Symbiodinium), andere werden den Kieselalgen, den Goldalgen und den Haftfaden­geißlern zugeordnet. Bei tropischen Foraminiferen und bei Schwämmen konnte man sogar Rotalgen als Endocytobionten nachweisen (Reisser 1992).

Nehmen die Partner nur über die äußere Oberfläche Kontakt auf, so spricht man von Exosymbiose. Ein gutes Beispiel dafür ist die Flechtensymbiose. Kolonisiert der klei­nere Part­ner den größeren, indem er in sein Körperin­neres ein­dringt, so spricht man von Endosymbiose (Acoelomorpher Symsagittifera roscoffensis und Zoochlorelle Tetraselmis convolutae), wenn er so­gar in die Zel­len des Partners eindringt, von Endocytosymbiose (Paramecium bursaria und Chlorella). Gerade dieser letzte Fall ist bei einzelligen Algen be­sonders häufig. Verbreitet sind solche Endocytosymbiosen nicht nur bei Einzellern wie Wimpertierchen, Foraminiferen und Wurzelfüßern, sondern auch bei Nesseltieren (einschließlich der Korallen), Niederen Würmern und marinen Schnecken.

Schlundsackschnecken Elysia viridis in der Flensburger Förde, 5.7.2011 (Foto J. Langmark)

Eine besondere Art der „sekundären Kohlenstoffautotrophie“ kennt man von der Schneckenordnung der Schlundsackschnecken (Ordnung Sacoglossa). Diese Gruppe mariner Hinterkiemer ernährt sich vorwiegend von  siphonalen Algen, also Fadenalgen, deren Zellfäden nicht durch Querwände unterteilt sind. Die Schnecken stechen die Algen mit einem stilettartig spe­zialisierten Zahn an. Nach dieser Punktation saugen sie den Zellsaft durch ihren muskulösen Pharynx ein. Auf diese Weise können große Zellsaftmengen durch einen Einstich aufgesaugt werden. Die grüngefärbte Meeresschnecke Elysia chlorotica saugt an der Schlauchalge Vaucheria litorea. Sie verdaut einen Großteil des Zellsaftes und integriert die Plastiden durch Phagocytose in die Epithelzellen ihres Verdauungstraktes. Durch Versuche in Aquarien konnte man feststellen, dass die Schnecken ohne Nahrung nur durch Belichtung 8-9 Monate überleben können. In diesem Zusammenhang hat man von „Chloroplastensymbiose“ gesprochen, besser wäre wohl die Bezeich­nung Kleptoplastie (altgriech. kleptein = stehlen), da diese Organelle tatsächlich von den Algen gestohlen oder ausgeborgt worden sind. Zu einem Gentransfer von den Plastiden in die Zellkerne von Schneckenzellen kommt es in diesem Falle allerdings nicht.

Stammbaum der Photobionten und ihren direkten bzw. indirekten Symbiosen mit Blaugrünen Bakterien. Die breiten farbigen Verbindungsbahnen deuten die Verwandtschaftsbeziehungen der Wirtzellen bzw. -organismen an, die Pfeile zeigen die Herkunft der Plastiden. Nur der unterste braune Pfeil markiert die Endocytosymbiose, die zu den Mitochondrien führte. Die verschiedenen Farben markieren die großen Verwandtschaftsgruppen Sar, Archaeplastida, Excavata und Opisthokonta (Grafik W. Probst).

„Verdauungsendosymbiosen“

Viele von Pflanzensäften lebende Insekten (Wanzen, Zikaden, Blattläuse) kooperieren zur besseren Nahrungsnutzung mit endosymbiontischen Bakterien. Eine besonders enge Symbiose besteht zwischen Blattläusen und den endocyto­biontischen Bakterien der Gattung Buchnera, die in speziellen, großen Darmzellen leben, die als Bakteriocyten bezeichnet werden. Die Endosymbionten werden von Generation zu Generation über die Eier weitergegeben. Buchnera ist verwandt mit Escherichia coli, aber im Gegensatz zu diesem weit verbreiteten Darmbakterium ist ihr Genom wesentlich kleiner. Dafür sind in einer Zelle über 100 Kopien enthalten. Eine vollständige Genomanalyse von Buchnera ergab, dass keine Gene für Zellober­flächen-Lipopolysaccharide und Phospholipide vorhanden sind. Ebenso fehlen die meisten Regulatorgene und Gene, die der Verteidigung der Zellen nach außen die­nen. Das enge Zusammenleben mit den Wirten wird auch dadurch deutlich, dass von Buchnera alle für seinen Wirt essentiellen Aminosäuren gebildet werden. Dafür sind mindestens 55 Gene verantwortlich. Umgekehrt werden von dem Bakterium keine für den Wirt nicht essentiellen Aminosäuren produziert. Die Blatt­läuse bilden statt des insektenüblichen stickstoffhaltigen Exkrets Ammoniak Glutamin, das von den Bakterien diekt als Ausgangsstoff für die Produktion der essentiellen Ami­nosäuren verwendet wird. Diese Komplementari­tät zeigt, dass die Symbiose schon sehr lange erfolgreich arbeitet.  Da Buchnera sogar seine Außenmembran vom Wirt erhält, kann man sagen, dass bei dieser Symbiose ein Stadium erreicht ist, das Buchnera schon fast als ein Zellorganell erscheinen lässt.

Noch komplizierter ist die Doppelendocytobiose in Darmzellen von Motten-Schildläu­sen (Aleyrodoidea). Durch Genanalysen entdeckte man, dass in den  Darmzellen-Bakterien ein weiteres endosymbiontisches Bakterium lebt (McCutcheon, von Dohlen 2011).

Viele ähnliche Beziehungen kommen bei Holz bzw Zellulose fressenden Insekten wie Tabakskäfer, Borkenkäfer und Termiten vor. Auch blutsaugende Egel, Zecken und Läuse bessern die Inhaltsstoffe ihrer relativ einseitigen Nahrung durch symbiontische Darmbakterien auf. Sie können in besonderen Darmzellen, in Darmaussackungen oder auch frei im Darmlumen vorkommen. Aber auch für Säugetiere einschließlich des Menschen ist das Darm-Mikrobiom von großer Bedeutung und erfüllt in vielen Fällen die Definition der mutualistischen Symbiose. Die für die menschliche Ernähung so wichtig Milchproduktion de Rinder ist abhänig von den endosymbiontischen Darmmikroben dieser Herbivoren.

Gibt es Monophylie?

Es wird immer deutlicher, dass Endosymbiosen und auch Endocytosymbiosen im Laufe der Stammesgeschichte der Lebewesen eine große Rolle gespielt haben. Wie erste Untersuchungsergebnisse zeigen, sind dabei viele Gene von den Endosymbionten auf ihre Wirte übertragen worden. Die von der synthetischen Theorie der Evolution verwendete Bezeichnung „Gendrift“ für einen Evolutionsfaktor gewinnt dadurch eine ganz neue Bedeutung. Allerdings handelt es sich bei der hier betrachteten „Gendrift“ nicht um ein zufälliges Ereignis, sondern um die Folge einer auf kooperativen Stoffwechselvorgängen beruhenden engen Kooperation zwischen verschiedenen Organismen. Die moderne phylogenetische Systematik (Kladistik) versucht, das System der Lebewesen aufgrund einer auf genetischen Grundlagen beruhenden Stammbaum-Rekonstruktion aufzustellen. Taxonomische Einheiten sollen eine Monophylum darstellen, d. h., sie sollen sich auf eine Ursprungsart zurückführen lassen, die außer den Vertretern des Taxons keine anderen Nachkommen hat. Diese Methode – so schwierig sie auch im Detail sein mag – ist in sich logisch, solange Gene nur vertikal weitergegeben werden. Sobald es aber häufiger zu einer horizontalen Genweitergabe kommt, entstehen Probleme. Denn nun geht es nicht nur um gemeinsame Nachfahren sondern auch um gemeinsame Vorfahren. Ich komme zurück auf unsere einleitende Betrachtung der Großeinteilung der Lebewesen. Nach neuesten Erkenntnissen sind die Eukaryoten ein Teil der Archäen, allerdings nur, soweit es um die Wirtszelle geht. Die für die Entstehung und Weiterentwicklung sehr wichtigen Mitochondrien und Plastiden kommen aus der Domäne Bakterien. Die Eukaryoten haben also mindestens einen weiteren gemeinsamen Vorfahr im Vergleich zu den übrigen Archäen, soweit es sich um Plastiden-haltige Eukaryoten handelt sogar mindestens zwei weitere. Durch die Kombination ist wirklich etwas Neues entstanden, dem man mit gewissem Recht eine eigene Domäne zuerkennen könnte. Nach kladistischen Taxonomieregeln müsste das aber bedeuten, dass man die im übrigen ziemlich gut definierten Archäen nicht mehr als eine systematische Einheit ansehen könnte, da es sich um kein Monophylum handelt. Die sogenannte Asgardgruppe müsste als eigene, den übrigen Archäen und den Bakterien gleichrangige Einheit angesehen werden. Da die Eukaryoten wahrscheinlich sogar aus der Mitte der Asgardgruppe entstanden sind, wäre unter Umständen eine weitere Aufspaltung notwendig. Ich denke, phylogenetische Taxonomen müssten hier zu Kompromissen finden. Das gilt nicht nur für dieses basale Beispiel, sondern für viele ähnliche Fälle.

Stammbau ohne und mit horizontalem Gentransfer (Grafik W. Probst)

Quellen

Archibald, J. (2014): One plus one equals one. Symbiosis and the evolution of complex life. Oxford: Oxford University Press

De Bary (1879): Die Erscheinung der Symbiose. Straßburg: Trübner

Delwiche, C. F. (1999): Tracing the Thread of Plastid Diversity Through the Tapestry of Life. The American Naturalist 154, Supplement: .Evolutionary Relationships Among Eukaryotes, pp 164-177. doi:10.1086/303291  

Delwiche, C., F., Cooper, E., D. (2015): The evolutionary origin of terrestrial flora. Current Biology 25, S. R899-R910

Eme, L., Spang, A., Lombard, J., Stairs, C. W. & Ettema, T. J. G. (2017): Archaea and the origin of eukaryotes. Nat. Rev. Microbiol. 15, pp 711–723

Gibbs, S. P. (1978): The chloroplasts of Euglena may have evolved from symbiotic green algae. Canadian Journal of Botany 56 (22), pp 2883–9. doi:10.1139/b78-345

Gould, S. B., Garg, S. G., Martin, W. F. (2016): Bacterial Vesicle Secretion and the Evolutionary Origin of the Eukaryotic Endomembrane System. Trends Microbiol., 24 (7); pp 525-534. doi: 10.1016/j.tim.201603.005. Epub 2016 Mar 31

Kadereit, J. W., Körner, C., Kost, B., Sonnewald (2014): Strasburger Lehrbuch der Botanik, 37. A., Berlin/Heidelberg: Spektrum

Katscher, F. (2004): The history of the terms Prokaryotes and Eukaryotes. Protist, Vol. 155, pp 257–263, http://www.elsevier.de/protist

Keeble, F. (1910): Plant animals. A study in symbiosis. Cambridge: Univ. Press.

Klemmstein, W. (2017): Viren – ein Perspektivenwechsel. Unterricht Biologie 429,41.Jg., S.2-11

Kremer, B.P., Hauck, A. (1996): Algen in Symbiose – ein klassischer Fall für Zwei. Praxis der Naturwissenschaften 45 (1): 19-22

La Scola, B. et al. (2003): A giant virus in amoebae. Science 299 (5615), pp 2033

Lee, R. L. (2008):  Phycology. 4th ed..Cambridge (UK): Cambridge Univ. Press

Margulis, L. (1998): Symbiotic planet. A new look at evolution. Amherst (USA, Mass.): Sciencewriters

Margulis, L. ,Sagan, D. (2002): Aquiring genomes. A theory of the origin of species. Basic Books

Martin, W. et al. (2002): Evolutionary analysis of Arabidopsis, cyanobacterial, and chloroplast genomes reveals plastid phylogeny and thousands of cyanobacterial genes in the nucleus. PNAS 99 (19), pp 12246–12251 http://www.pnas.org/content/99/19/12246.full

Mayr, E. (1998): Two empires or three? PNAS 95 (17), pp 9720-9723, http://www.pnas.org/content/95/17/9720.full

McCutcheon, J.P., von Dohlen, C. D. (2011): An Interdependent Metabolic Patchwork in the Nested Symbiosis of Mealybugs. Current Biology 21 (16), pp1366-1372 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3169327/

Probst, W. (2002): Leben heißt zusammenleben. Unterricht Biologie 280, Jg.26, S. 4-14

Reisser, W. (1992): Algae in Symbiosis: Plants, Animals, Fungi, Viru­ses, Interactions Explored. Bri­stol:  Inter Press Limited

SAPP, J. (1994): Evolution by Association. New York/Oxford: Oxford University Press

Sapp, J. (2005): The Prokaryote-Eukaryote Dichotomy: Meanings and Mythology. Microbiol. Mol. Biol. Rev. 69 (2), pp. 292-305

Schüßler, A. (2011): The Geosiphon pyriformis symbiosis – fungus „eats“ cyanobacterium. http://www.geosiphon.de/geosiphon_home.html

Spring, A. et al. (2015): Complex archaea that bridge the gap between prokaryotes and eukaryotes. Nature 521, pp 173-179

Stanier, R. Y., van Niel, C.B. (1962): The concept of a bacterium. Arch. Mikrobiol. 42, pp 17–35

Turner, S. et al. (1999): Investigating deep phylogentic relationships among cyanobacteria and plastids by Small Subunit rRNA squence analysis. Journal of Eukaryotic Microbiology 4, pp 327-338

Wang, B. et al. (2010): Presence of three mycorrhizal genes in the common ancestor of land plants suggests a key role of mycorrhizas in the colonization of land by plants. New Phytol. 186(2), pp 514-525. http://onlinelibrary.wiley.com/doi/10.1111/j.1469-8137.2009.03137.x/epdf

Wegener-Parfrey, L. u.a. (2011). Estimating the timing of early eukaryotic diversification with multigene molecular clocks. PNAS 108, S. 13224-13226, http://www.pnas.org/content/108/33/13624.full

Weiss, M. C. et al. (2016): The physiology and habitat of the last universal common ancestor. Nature Microbiol. 16116. http://www.molevol.hhu.de/fileadmin/redaktion/Fakultaeten/Mathematisch-Naturwissenschaftliche_Fakultaet/Biologie/Institute/Molekulare_Evolution/Dokumente/Weiss_et_al_Nat_Microbiol_2016.pdf

Woese, C. R., Fox, G.E. (1977):  Phylogenetic structure of the prokaryotic domain: the primary kingdoms. PNAS 74(11), pp 5088–5090. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC432104/

Woese, C.R., Kandler, O., Wheelis, M.L. (1990): Towards a natural system of organisms: proposal for the domains Archaea, Bacteria, and Eucarya. PNAS 87(12), pp 4576-4579 https://www.ncbi.nlm.nih.gov/pubmed/2112744?dopt=Abstract

Zaremba-Niedzwiedzka,K. et al. (2017): Asgard Archaea illuminate the origin of eukaryotic cellular complexity. Nature 541 (Jan.2017), pp 353-358

https://www.arcella.nl/paulinella-chromatophora

http://www.geosiphon.de/geosiphon_home.html

https://microbewiki.kenyon.edu/index.php/Aphids_and_Buchnera

Kompartimentierung – aufgeteilt und doch verbunden (zu UB 340)

LINK-NAME

Grenzen und Ordnung

Ein Schulhof in der großen Pause: Kinder und Jugendliche scheinen ungeordnet durcheinander zu laufen. Einige bilden Gruppen, die stehen oder sich langsam bewegen, andere rennen kreuz und quer, wieder andere gehen gemächlich einzeln oder zu zweit, sitzen auf Banketten oder auf dem Boden. Schaut man dem Treiben länger zu, erkennt man Regeln und Strukturen. Es gibt die sich lebhaft unterhaltenden Gruppen älterer Schüler, ebenso Mädchenzirkel oder auch einen handgreiflichen Streit mit Zuschauern, Pärchen und Einzelgänger, jüngere und ältere Schüler und Schülerrinnen, die sich räumlich streng getrennt aufhalten. Man kann feststellen, dass es eine unsichtbare, aber allen bekannte Kompartimentierung des Schulhofes gibt, die dem bunten Treiben deutliche Grenzen setzt. Dabei kann man zwischen räumlichen (Klassenraum, bestimmter Bereich des Pausenhofes, Lehrerzimmer…) und nicht räumlichen Kompartimenten (Jahrgänge, Klicken) unterscheiden.

Betrachtet man das Innere  einer Zelle mit einem starken Lichtmikroskop, kann man auch scheinbar Ungeordnetes beobachten, nicht zuletzt die zitternde Bewegung kleiner Cytoplasmabestandteile, die Robert Brown 1827 als „Molekularbewegung“ erklärt hat. Die exakte Beobachtung durch immer besser auflösende bildgebende Verfahren, Färbungen und Markierungen  hat  jedoch gezeigt, dass die „Protoplasten“ ein in viele definierte Kompartimente aufgeteiltes  sehr komplexes System darstellen.

Immer wenn Wechselwirkungen und Austauschvorgänge eingeschränkt werden, entstehen abgegrenzte Bereiche, in denen mehr solche Austauschvorgänge stattfinden, als in den Bereichen außerhalb des Kompartiments. Die Einschränkungen können auf verschiedene Weise stattfinden. Neben physischen Barrieren können dies auch Bindungen sein, die freie Beweglichkeit verhindern: Man kann einen Hund am Streunen hindern, indem man ihn in einen Käfig sperrt, aber auch indem man ihn an eine Kette legt. Schließlich ist auch in der Biologie eine Kompartimentierung nicht nur räumlich zu denken.  Auf molekularer Ebene gibt es bestimmte Markierungen von Molekülen  oder Zellorganellen,  die Kontakte und Wechselwirkungen begrenzen, z.B. bei der selektiven Wirkung von Hormonen oder Neurotransmittern. Andere nichträumliche Kompartimente sind biologische Arten und die Unterscheidung zwischen „eigen“ und „fremd“.

Im Zustand maximaler Unordnung oder maximaler Entropie gibt es keine Barrieren. Demgegenüber bedeutet Kompartimentierung Ordnung, aber auch unterschiedlich intensive Wechselwirkungen, Hierarchien, Netze, Transportsysteme, Informationen, Informationsverarbeitung, Steuerung und Regelung. Solche Ordnung durch Abgrenzung ist charakteristisch für den gesamten Kosmos. Hier soll es jedoch um die Kompartimente des Lebens und der Lebewesen gehen. Leben wie wir es kennen, ist an einzelne Lebewesen, an Individuen gebunden, die von ihrer Umwelt deutlich abgegrenzt sind. Individuen sind die „Grundkompartimente“ des Lebendigen. Aber jeder Organismus ist auch in seinem Inneren in mehr oder weniger abgeschlossene Reaktionsräume unterteilt. Ebenso geht die Kompartimentierung auf Ebenen oberhalb des Individuums weiter.

In der Regel geht man von einer Komplexitätszunahme dieser Grundkompartimente im Laufe der Evolution aus. Prokaryoten sind weniger kompartimentiert als Eukaryoten, Einzeller weniger als Vielzeller usw. Gleichzeitig bedeutet diese Komplexitätszunahme immer auch eine Überschreitung von vorher bestehenden Grenzen: Eukaryoten sind ein Symbioseprodukt verschiedener Prokaryoten, Vielzeller sind Aggregationen von Zellen, zwischen denen mehr Stoff- und Informationsaustausch stattfindet, als zwischen Einzellern. Seltener ist auch eine Reduktion der Kompartimentierung im Laufe der Evolution möglich, z.B. bei manchen Parasiten.

„Vernetzung“ ist  nur möglich, wo es abgegrenzte Bereiche gibt, aber eben auch nur, wo diese Grenzen ausreichend offen sind. In Science-Fiction Entwürfen werden immer wieder Visionen entwickelt, in denen durch neuartige und umfassende Vernetzungen „Superintelligenzen“ entstehen (vgl. z. B.  Stanislaw Lems „Solaris“, Crightons „Die Beute“ oder Schätzings „Der Schwarm“. Aber auch in der realen Biologie gibt es Beispiele für „extended organisms“ wie Polypenstöcke, Termiten- und Ameisenkolonien und natürlich alle Formen von Symbiosen.

Lebensentstehung

Schon die Entstehung des Lebens aus unbelebten Vorstufen ist mit zusätzlicher Kompartimentierung verknüpft. Die meisten Vorstellungen von der Biogenese gehen  davon aus, dass diese Abgrenzung bereits durch Membranen stattgefunden hat, deren Grundaufbau den heutigen Biomembranen ähnelte. Andere Vorstellungen nehmen an, dass die Grenzbereiche selbst Ausgangspunkt der Lebensentstehung waren, z. B. dass sich Lebensmoleküle an mineralische Oberflächen festgeheftet haben und dadurch ein geordneter Ablauf von Stoffwechselreaktionen möglich wurde (vgl. z. B. Wächtershäuser 2000).

Das „Genkonzept“ von der Entwicklung des Lebendigen sieht in den Nucleinsäuren die „Startmoleküle“ des Lebens. Am Anfang standen RNA-Moleküle, die auch als Enzyme wirken können. Aus der Kooperation solcher Nucleinsäuren mit einer zweiten Molekülklasse, den Proteinen, soll sich dann LUCA (Last Universal Common Ancestor), der letzte gemeinsamen Vorfahr aller Lebewesen, entwickelt haben. Eine Suche nach den Genresten von Luca war jedoch bisher nicht sehr erfolgreich. Deshalb wurde die  Vorstellung entwickelt, dass es eine Lebensgemeinschaft von Urlebewesen gab, die zwar gegeneinander abgegrenzt waren, und dadurch jeweils einen eigenen Stoffwechsel hatten, aber ihre Gene teilten. Der bis heute weitverbreitete horizontale Genaustausch bei Prokaryoten wäre dann Rest dieses Urzustandes, eines Zustandes, indem es das Kompartiment „Art“ noch nicht gab (Whitfield 2004).

Die inneren Kompartimente der Eucyten

Charakteristisch für die Zellen der Eukaryoten ist, dass sie stark differenzierte innere Membransysteme ausgebildet haben. Die meisten dieser Membransysteme sind entweder unmittelbar miteinander verbunden oder sie stehen über den Austausch von Vesikeln miteinander in Verbindung, Membran umschlossenen Blasen, die sich von Membranen abschnüren oder sich mit Membranen vereinigen können . Zu diesen Membransystemen gehören

  • Kernhülle und Endoplasmatisches Retikulum (ER)
  • Golgiapparat (Dictyosomen)
  • Lysosomen
  • Vakuolen
  • Peroxisomen bzw. Microbodies
  • Plasmamembran (als Abschluss des Zellkörpers nach außen)

Nicht mit den übrigen Membransystemen in Verbindung stehende Kompartimente, die durch Doppelmembranen vom Zytoplasma abgegrenzt sind:

  • Plastiden
  • Mitochondrien

Eine Erklärung für die Sonderstellung dieser beiden Zellorganelle ergibt sich aus ihrer stammesgeschichtlichen Entstehung aus Endosymbionten. Während die Innenmembran der Mitochondrien stark aufgefaltet ist, enthalten die Plastiden insbesondere die grünen Chloroplasten in ihrem Inneren ein weiteres Membransystem aus sogenannten Thylakoiden, das durch Abschnürung aus der inneren Plastidenmembran entsteht, aber im Endzustand nicht mehr mit ihr verbunden ist. In als Grana bezeichneten Thylakoidstapeln sind die Pigmente und Enzyme der Photosynthese untergebracht. Plastiden sind über dünne, von beiden Membranen umgebene ?lasmakanale, den sogenannten Stromuli untereinander und auch mit Zellkern und Mitochondrien verbunden (Krupinska et al. 2010).

Das zweite Kompartimentierungssystem der Zellen besteht aus fädigen Proteinstrukturen: Aktinfilamenten, Mikrotubuli und intermediären Filamenten. Alle drei stellen Polymere aus kleineren Proteinmolekülen dar (Abb.  ). Sie bilden in der Zelle ein netzartiges Gerüst, das auch an der Zellmembran verankert ist. Aktinfilamente sind, oft in Verbindung mit dem Motorprotein Myosin, für Bewegungen der ganzen Zelle – besonders augenfällig bei Muskelzellen – sowie unterschiedliche Viskositätszustände des Cytoplasmas zuständig. Sie können äußere Gestaltänderungen der Zellen bewirken. Mikrotubuli bewegen Zellorganelle durch das Cytosol und Chromosomen bei der Mitose. Sie sind die bewegenden Strukturen von Cilien und Geiseln. Intermediäre Filamente sind sehr stabile seilartige Fadenstrukturen, die z.B. für die Stabilität des Zellkerns und der Nervenfasern und für die Zerreiß- und Zugfestigkeit von Epithelien verantwortlich sind.

Kompartimente bei Prokaryota

Das innere Membransystem der Eucyten ermöglicht die vielfältigen nebeneinander ablaufenden Reaktionen in der Zelle, in dem es Reaktionsräume, Speicherräume und Entsorgungsräume gegeneinander abgrenzt. In Procyten ist das innere Membransystem im Allgemeinen nicht so stark ausgeprägt, wenngleich auch die Zellen vieler Prokaryoten reichlich innere Membranen enthalten, die aus Einstülpungen der Zellmembran hervorgehen. Bei den Cyanobakterien tragen diese intracytoplasmatischen Membranen (ICM) die Pigmente und Enzyme für die Photosynthese, bei aeroben Bakterien sind die Enzyme für die Zellatmung an inneren Membranen verankert. Dafür, dass auch in Prokaryoten viele Stoffwechselreaktionen parallel stattfinden können, ohne sich gegenseitig zu behindern, sind neben Membranabgrenzungen Proteinstrukturen verantwortlich, die im Cytosol oder an der Zellmembran relativ fest verankert sind und Stoffwechselpartner an sich binden.

Es gibt Hinweise, dass die stärkere Kompartimentierung der Eucyten mit dem steigenden Sauerstoffgehalt der Atmosphäre zusammenhängt. Nach Acquisti et al. (2007) sind sauerstoffreiche Membranproteine bei einer reduzierenden Umgebung weniger stabil als sauerstoffarme. Gerade für Signal übertragende Transmembranproteine sind solche sauerstoffreichen Domänen aber charakteristisch. Mit der Erhöhung des atmosphärischen Sauerstoffgehaltes  konnte der Einbau solcher Proteine in Biomembranen zunehmen. Dies betrifft insbesondere die für die Signalübertragung durch Membranen nötigen Proteine mit relativ großen auf der Außenseite der Membran liegenden Rezeptorstrukturen.

Struktur und Funktion von Biomembranen

Schon bevor man Biomembranen im Elektronenmikroskop sichtbar machen konnte, ließen bestimmte chemische und physikalische Eigenschaften darauf schließen, dass Lipide ein wichtiger Bestandteil dieser Membranen seien. So beobachtete man, dass fettlösliche Substanzen von den Zellen viel leichter aufgenommen wurden, als wasserlösliche. Außerdem stellte man fest, dass Zellmembranlipide auf Wasser einmolekulare Schichten bilden, um die Zelle aber in einer Doppelschicht vorliegen müssen (Gorter, Grendel 1925 nach Helmich 2001/2005). Dass Zellmembranen auch für Wasser und anorganische Ionen in gewissem Umfang durchlässig sind, kann man sich nur erklären, wenn man annimmt, dass in die Lipiddoppelschicht auch Proteinmoleküle eingelagert sind. Eine der ersten Vorstellungen vom Aufbau der Membranen ging von einer Lipiddoppelschicht, vorwiegend aus Phospholipiden, aus, auf der Proteine aufgelagert sein sollten. In einer Weiterentwicklung dieses Modells gingen Singer und Nicolson 1972 davon aus, dass die Proteinmoleküle in der Lipidschicht wie Eisberge im Meer schwimmen. Einige Proteinmoleküle durchdringen die Lipidschicht (Tunnelproteine, Kanalproteine), sie können passiven oder aktiven Stofftransport und Signalübertragung durch die Membran vermitteln.

Die Vorstellung einer Membran als Flüssigkeitsfilm mit frei beweglichen Proteinen stimmt jedoch nicht ganz, die Proteine sind in ihrer Beweglichkeit durchaus eingeschränkt, dabei kann z. B. das Cytoskelett an der Membraninnenseite eine Rolle spielen, das Bereiche mit bestimmten Proteinmolekülen „einzäunt“. Gleichzeitig wirken bestimmte Proteine wie „Zaunpfosten“ (Fence-and-Picket-Modell, Suzuki 2005). Diese abgegrenzten Bezirke können aber von bestimmten Proteinen auch übersprungen werden (Abbot 2005). Eine andere Modellvorstellung geht davon aus, dass es in den Membranen floßartige Lipidschollen („lipid rafts“) gibt, die zähflüssiger sind und mit ihren Proteinen in dem Lipidfilm driften. Dabei können einzelne Proteine von diesen Flößen aufgenommen oder abgegeben werden (Simons, Ikonen 1997).

Der Aufbau der Lipiddoppelschicht ist für deren Flüssigkeit von Bedeutung. Ungesättigte Fettsäuren in den lipophilen Schwänzen der Phospholipide haben einen Knick, der die Moleküle am dichten Zusammenrücken hindert, und fördern dadurch die Fluidität. In die Lipiddoppelschichten eingebaute Cholesterinmoleküle vermindern bei mäßigen Temperaturen die Membranflüssigkeit, weil sie die Beweglichkeit der Phospholipide einschränken. Bei niedriger Temperatur stören sie jedoch die regelmäßige, dichte Packung und verhindern dadurch, dass die Membranen „kristallisieren“.

Die wichtigsten Funktionen der Membranproteine sind:

  • Transport (passiv, aktiv)
  • Enzymaktivität
  • Signalübertragung
  • Verbindung von Zellen
  • Zellerkennung
  • Verankerung am Cytoskelett und an der extrazellulären Matrix

Neben Proteinen sind für die Zellerkennung auch Membran gebundene Kohlenhydrate von großer Bedeutung (Glykoproteine und Glykolipide).

Vom Einzeller zum Vielzeller

Auch Vielzeller entstehen normalerweise aus einer Zelle. Nach den Mitosen bleiben die Zellen jedoch verbunden und geben damit einen Teil ihrer Selbständigkeit auf. Während sie zunächst noch weitgehend identisch und damit „totipotent“ sind, differenzieren sie sich im Laufe der weiteren Entwicklung und damit können nur noch bestimmte Zelltypen aus ihnen hervorgehen („multipotent“). Schließlich sind sie überhaupt nicht mehr teilungsfähig. Damit ist der natürliche Tod der Zellen der Vielzeller vorprogrammiert.

Dieser Übergang von Einzellern zu Vielzellern , der vor etwa einer Milliarde Jahre stattfand, konnte nur funktionieren, wenn weitere Probleme gelöst wurden. Bei Einzellern läuft die natürliche Selektion zwischen den einzelnen Zellen ab. Sie sind die Einheiten der Selektion. Bei Vielzellern darf es keine Selektion zwischen den Körperzellen geben. Das kann nur gelingen, wenn es einen Erkennungsmechanismus von „eigen“ und „fremd“ gibt. Ein solches Selbsterkennungssystem kann als der Anfang eines Immunsystems aufgefasst werden.

Dieses Selbsterkennungssystem ist bei „niederen“ Vielzellern noch nicht sehr ausgeprägt. Deshalb funktioniert z.B. das Propfen bei Pflanzen – sogar zwischen Individuen verschiedenen Arten – meist sehr gut. Auch bei koloniebildenden Tieren ist das Erkennungssystem im Allgemeinen so, dass es zwischen den Einzelindividuen einer Kolonie nicht unterscheidet. Relativ gut untersucht sind die Verhältnisse bei dem koloniebildenden Manteltier Botryllus schlosseri. Das genetisch verankerte „Selbsterkennungssystem“ dieser Seescheide erlaubt nur die Fusion von genetisch nahe verwandten Kolonien. Von manchen Forschern wird daraus gefolgert, dass der ursprüngliche  Sinn des Immunsystems die Verhinderung solcher Zellinvasionen war, die eine Konkurrenz unterhalb des Individuums bewirken würden. Evolutionsbiologisch gesehen könnte man sagen, das Selbsterkennungssystem sorgt bei Vielzellern dafür, dass  der Gesamtorganismus und nicht einzelne Zellen oder Zelllinien die Einheit der Evolution sind.

Diese Sicht  könnte auch ein neues Licht auf das Wirkungsgefüge von Krebsbildungen werfen. So weiß man heute, dass spezielle Krebsstammzellen für die Krebsbildung und die Metastasenbildung entscheidend sind (Clarke, Becker 2007). Weissmann (Ainssworth 2006) sieht gewisse Parallelen zwischen Krebszellen und den Gewinner-Stammzellen von Botryllus. Er meint, wenn man die Gene der Botryllus-Übernahme-Zellen entschlüsseln würde, würde man wahrscheinlich Ähnlichkeiten bei den Genen finden, die Krebszellen ihre tödliche Entwicklung ermöglichen.  Aus dieser Sichtweise könnte man Krebs als ein Relikt bzw. einen Atavismus aus der Zeit des Übergangs von Einzellern zu Vielzellern ansehen.

Zellen und Gewebe

Die Plasmamembran ist die äußere Grenze einer Zelle, aber die meisten Zellen bilden weitere Strukturen aus, die außerhalb der Plasmamembran liegen. Pflanzenzellen z. B. sind von einer festen Zellwand aus Zellulose umgeben. Bei Pilzen besteht diese Zellwand aus Chitin. Die Zellen vielzelliger Tiere besitzen zwar keine den Pflanzenzellen vergleichbare Zellwände, sie verfügen aber über eine hoch entwickelte extrazelluläre Matrix, die vorwiegend aus von der Zelle abgesonderten Proteinfasern (Kollagene, elastische Fasern) und einer Grundsubstanz aus Glykosaminglykanen, Proteoglykanen und  Adhäsionsproteinen (Glykoproteinen) besteht. Diese extrazelluläre Matrix ist mit Proteinen der Zellmembran verbunden (Integrine) und über diese in die Membran integrierten Proteinmoleküle ist auch ein Signalaustausch von der extrazellulären Matrix in das Cytosol der Zelle hinein möglich.

In einem Verband aus vielen Zellen (Gewebe) kann die extrazelluläre Matrix koordinierende Signale übertragen. Dies spielt eine wichtige Rolle bei der embryonalen Gewebe- und Organentwicklung, aber auch bei der Tumorbildung. Dabei spielt die Basallamina als besondere Ausbildung der Extrazellulären Matrix, die Zellen und Epithelien von umgebenden Bindegeweben trennt, eine wichtige Rolle.

In vielzelligen Tieren und Pflanzen sind viele Einzelzellen zu funktionsfähigen Geweben und Organen verbunden. Durch spezielle Plasmaverbindungen können nicht nur kleine Moleküle, Wasser und Ionen sondern auch Proteine und RNA-Moleküle ausgetauscht werden. Für den Transport dieser größeren Moleküle sind Cytosklelettfasern verantwortlich. Bei Pflanzen nennt man diese Verbindungen Plasmodesmen. Bei Tieren gibt es verschiedenen Typen von Zellverbindungen. Besonders häufig sind solche Zellverbindungen in Epithelgeweben, welche die inneren und äußeren Oberflächen eines Tierkörpers auskleiden. Gap Junctions (Kommunikationskontakte) bilden winzige Cytoplasmakanäle zwischen benachbarten Tierzellen. Durch diese Kanäle können Salze, Zucker, Aminosäuren und andere kleine Moleküle bis zu einem Molekulargewicht von 2.000 diffundieren. Weitere Zellverbindungen sind Tight Junctions oder Verschlusskontakte, die Epithelzellen gürtelartig verbinden und verhindern, dass extrazelluläre Flüssigkeit durch ein Epithel hindurchsickert. Im Gehirn bilden die dichten Tight Junctions  zwischen den Endothelzellen der Blutkapillaren die Blut-Hirn-Schranke. Desmosomen und Adhärenz-kontakte („Haftkontakte“) wirken nietenartig und verbinden verschiedene Zellen zu einer Gewebeschicht.

Von Geweben zu Organen

Gewebe setzen sich aus einheitlichen Zellen zusammen, verschiedene Gewebe sind im Tierkörper zu Organen zusammengefasst. Die verschiedenen Organe stehen zwar in enger Wechselwirkung miteinander, durch die  starke Abgrenzung dieser Einheiten sind aber verschiedene Funktionen wie Verdauung, Atmung, Blutkreislauf oder Exkretion erst möglich. Solche Organe bilden als Ganzes relativ abgeschlossene Systeme im Organismus und erst dadurch wird z. B. die Organtransplantation möglich.

Größere Organismen benötigen zum Stofftransport spezielle Transportsysteme. Bei Pflanzen handelt es sich dabei überwiegend um Durchflusssysteme, bei Tieren um Kreislaufsysteme. Auch diese Systeme müssen vom übrigen Körpergewebe mehr oder weniger abgeschlossen sein, um einen wirkungsvollen Stofftransport zu ermöglichen. Aber auch offene Kreislaufsysteme, wie es z. B. für die große Gruppe der Insekten charakteristisch sind, können sehr effektiv arbeiten.

Ein besonders wichtiges, stark kompartimentiertes Stoffwechselorgan des menschlichen Körpers und des Körpers der Wirbeltiere ist die Leber. Beim Menschen liegt sie im oberen Teil der Bauchhöhle unmittelbar unter dem Zwerchfell Sie ist mit einer Masse von rund 2 Kilogramm die größte Körperdrüse. Pro Minute wird sie  von einem Liter Blut durchflossen.

Die diffizile Kompartimentierung der Leber gestattet, dass mehr als 500 verschiedene Stoffwechselvorgänge hier stattfinden können. Zunächst sorgen zwei Zufluss- und zwei Abflusssysteme dafür, dass sich in den Hepatocyten die richtigen Konzentrationsgefälle einstellen können, die für die Umbaureaktionen Voraussetzung sind:

  • Die Pfortader stellt die Verbindung zum Darm her und sorgt dafür, dass die vom Darm resorbierten Nährstoffe zur Leber gelangen.
  • Über die Leberarterie werden den Hepatocyten Sauerstoff und Signalstoffe, aber auch Aufbaustoffe zugeführt.
  • Über die Lebervene werden Abfallstoffe zur Ausscheidung durch die Niere und CO2 zu Abgabe in der Lunge abtransportiert.
  • Auch mit Gallenflüssigkeit werden Abfallstoffe über die Gallengänge und die Gallenblase zum Dünndarm abtransportiert., z.B. die Abbauprodukte des Häms, die gelben Bilirubine.

Die Leber besteht aus einem größeren rechten und einem kleineren linken Lappen, die sich jeweils in Tausende Leberläppchen unterteilen. In der Mitte jedes dieser Läppchen von etwa 1 mm Durchmesser liegt eine kleine Zentralvene, die das Blut zur Lebervene leitet. Zwischen den Läppchen liegen Bindegewebsfelder, durch die sich je ein feiner Ast der Leberschlagader und der Pfortader zeiht, deren Blut durch das Leberläppchen zur Sammelvene sickert, sowie ein Gallenkanälchen, das im Läppchen produzierte Gallenflüssigkeit in zum Blutstrom entgegen gesetzter Richtung zur Gallenblase abtransportiert. Das kleinste Kompartiment des Organs Leber ist die Leberzelle (Hepatozyt). Die Leberzellen sind lamellenartig angeordnet und lassen Kanälchen frei, durch die das Blut sickern kann (Sinusoide).

In den Leberzellen werden viele Eiweißmoleküle aufgebaut, außerdem werden Giftstoffe und Stoffe, die aus dem Körper befördert werden, sollen für die Ausscheidung vorbereitet. Die Glucose aus der Verdauung der Kohlenhydrate kann in den polymeren und damit osmotisch unwirksamen Speicherstoff Glykogen umgewandelt werden, der zum Teil in der Leber selbst gespeichert werden kann. Verschiedene Lipide werden in der Leber aus ihren Bestandteilen aufgebaut und umgebaut, u. a. das Cholesterin.

Bei dem Abbau und Umbau von stickstoffhaltigen Proteinen wird mehr Stickstoff frei als für den neuen Eiweißaufbau benötigt wird. Dieser überschüssige Stickstoff wird in der Leber in Harnstoff umgewandelt, ein Sekretionsprodukt, das an die Lebervene abgegeben, von den Nieren herausgefiltert und mit dem Urin ausgeschieden wird. Auch die Gallenflüssigkeit wird in der Leber produziert und durch besondere Gallengänge zur Gallenblase befördert, von der aus sie über den Gallengang in den Dünndarm ausfließt. Sie besteht aus Gallensäuren bzw.-salzen, Lipiden, Cholesterin und Farbstoffen. Diese Farbstoffe sind Abbauprodukte des Hämoglobins, die sogenannten Bilirubine. Sie sind sowohl für die Gelbfärbung der Gallenflüssigkeit und des Urins als auch für die Braunfärbung des Stuhls verantwortlich. Die Gallensäuren sind Abbauprodukte des Cholesterins. Sie helfen als Emulgatoren bei der Fettverdauung im Dünndarm. Wird der Abfluss der Gallenflüssigkeit verhindert – z.B. durch Gallensteine oder eine Leberentzündung – kann der Bilirubinüberschuss im Blut eine Gelbsucht bewirken.

Durch Schädigungen, wie sie z. B. durch reichlichen Alkoholkonsum hervorgerufen werden können, kann es zur sogenannten Leberzirrhose kommen. Dabei handelt es sich um eine teilweise Zerstörung der Leberzellen. Abgestorbene Hepatozyten werden durch Bindegewebe ersetzt, welches das Organ durchzieht und noch funktionsfähige Zellen isoliert. Diese isolierten Inseln sind von den Zufuhr- und Abfuhrsystemen mehr oder weniger abgetrennt und können deshalb die vielseitigen Stoffwechselaufgaben nicht mehr erfüllen. Dadurch, dass weniger Pfortaderblut aufgenommen werden kann, kommt zu einem Rückstau. Durch die Gefäßwände wird Wasser in die Leibeshöhle filtriert. Der Abtransport der Gallenfarbstoffe über die Gallenblase wird behindert, wodurch es zu gelbsuchtartigen Zuständen kommt usw.

Kompartimente oberhalb des Individuums

Auch oberhalb der Organisationsebenen Zelle, Gewebe, Organ, Organismus ist die Biosphäre in viele Kompartimente gegliedert, wie Populationen, Arten, Biozönosen, Ökosysteme, Biome, Reviere, Areale usw. Dabei wird hier noch deutlicher, dass es neben räumlich definierbaren Kompartimenten auch Kompartimente gibt, die sich aus den besonderen Eigenschaften ihrer Bestandteile ergeben: Populationen und Arten sind durch den gemeinsamen Genpool und die Fähigkeit zum Genaustausch (Sexualität) gekennzeichnet. Räumlich kann sich eine Population aber über den ganzen Erdball erstrecken. Reviere und Areale können sich räumlich vielfach überlappen und überdecken. Derselbe geographische Raum kann z.B. viele Reviere verschiedener Arten enthalten. Ein geographischer Raum mit vielen gemeinsamen Artarealen wird als Floren- oder Faunenregion bezeichnet.

Besonders einschneidend ist die Grenze, die einen Organismus bzw. ein Individuum gegen seine Umwelt abgrenzt. Kreislaufsysteme überschreiten diese Außengrenze ebenso wenig, wie Zellen mit dem speziellen genetischen Programm, das nur für dieses Individuum gilt.  Ein  spezielles Signalsystem sorgt für  die Koordination aller Zellen, Gewebe und Organe innerhalb des Individuums, nur wenig davon dringt  nach außen. Innerhalb des Organismus wird durch aufeinander abgestimmte Stoffwechselvorgänge ein stoffliches Gleichgewicht aufrecht erhalten, das man mit einem eigenen Begriff „Homöostase“ kennzeichnet und das die Grenzen des Organismus nicht überschreitet.  Wenn die genannten individuellen Schranken überschritten werden, nehmen wir das als etwas Besonderes wahr: Bei Säugetieren ist der Kreislauf des Muttertieres mit dem Embryo verbunden, bei Kolonie  bildenden oder Staaten bildenden Tieren  sind die Individualgrenzen ebenfalls mehr oder weniger stark aufgelöst.

Auch der Sexualvorgang ist eine besondere Grenzüberschreitung, durch die gleichzeitig ein höheres Kompartiment gebildet wird, die Gemeinschaft aller Individuen, zwischen denen Gene ausgetauscht werden können, die Art. Die individuellen genetischen Programme machen die innerartliche Evolution möglich, die Genpools  der Populationen und Arten sind die Grundlage für die Evolution oberhalb des Artniveaus.

Die Individuen, die zu einer Art gehören, haben in der Regel ähnliche Ansprüche an ihre Umwelt. Im Bezug auf bestimmte Umweltfaktoren spricht man vom „Toleranzbereich“ der Art. Diese verschiedenen Toleranzbereiche beschränken die Verbreitung der Art. Die räumliche Verbreitung, das Artareal, wird aber auch durch erdgeschichtliche Entwicklungen bestimmt. Dazu gehören tektonischen Vorgänge, insbesondere Verschiebungen der Kontinentalplatten, Gebirgsbildungen und Überflutungen (Meerestransgressionen), Klimaeinbrüche und in der Folge auch Konkurrenzbeziehungen zu Arten, zu denen vorher kein Kontakt bestand.

Arten stehen in vielen Wechselbeziehungen mit der Umwelt und mit anderen Arten. Vorwiegend durch geografische und geologische Gegebenheiten werden diese Wechselbeziehungen aber beschränkt und gelenkt. In bestimmten Gebieten und zwischen den darin vorkommenden Arten sind die Wechselbeziehungen vielfältiger als nach außen. Die Folge ist, dass sich die Biosphäre abgestuft in viele Teilräume untergliedern lässt, die allgemein als Ökosysteme bezeichnet werden. Ein solches Ökosystem kann ein kleines Feldgehölz, eine Weidetümpel oder eine Blockhalde an einem Bergsturz sein, aber auch der Amazonas-Regenwald, das Kongobecken,  die circumpolare Tundra oder ein Ozean. Großökosysteme, die sich in viele Teilsysteme untergliedern,  werden auch Biome genannt (Whittaker 1975, Walter 1976, UB 299). Sind sie vorwiegend von den Klimazonen der Erde bestimmt, nennt man sie Zonobiome, in den verschiedenen Höhenstufen der Gebirge unterscheidet man Orobiome, besondere Bodenbedingungen führen zu speziellen Pedobiomen.

Kleine Ökosysteme, die eine Landschaft untergliedern, werden oft auch als „Biotope“ bezeichnet,  obwohl dieser Begriff in der ökologischen Terminologie ursprünglich nur den Lebensraum ohne die Lebensgemeinschaft bezeichnet. Der Begriffswandel lässt sich aus der Naturschutzpraxis erklären: Wenn man ein bestimmtes Ökosystem durch Naturschutzmaßnahmen einrichten will, muss man zunächst die standörtlichen Bedingungen schaffen. So „legt man einen Biotop an“ –  z.B. einen Gartenteich oder eine Natursteinmauer –, der dann durch Bepflanzung oder natürliche Ansiedlung von Arten zum Kleinökosystem wird.  Oft wird mit dem Begriff „Biotop“ auch gleich ein bestimmter ökologischer Wert verbunden.  „Biotopkartierungen“ in der Kulturlandschaft  erfassen in der Regel nur besondere, „ökologisch wertvolle“, „naturnahe“ Landschaftselemente.

Eine andere Kompartimentierung der Landschaft ergibt sich aus den Revieren verschiedener Tierarten. Die Grenzen werden hier vorwiegend durch das agonistische Verhalten der Revierbesitzer errichtet. Aber auch spezielle akustische, optische oder chemische Signale wirken begrenzend.

Grenzen in Naturlandschaften sind oft nicht sehr scharf, sondern durch Übergänge gekennzeichnet, die man mit einem eigenen Begriff erfasst: Ökotone. So ist es oft nicht möglich, die Grenzen zwischen zwei Ökosystemen (oder zwei Pflanzengemeinschaften) genau festzulegen. In Kulturlandschaften sind die Grenzen jedoch in der Regel scharf, da sie durch menschliche Aktivitäten bedingt sind. Sehr gut lässt sich dies von Flugzeug aus oder an den Bildern von Google Earth erkennen. So ist es auch kein Wunder, dass die durch die „Pflanzenoziologie“ gekennzeichneten Pflanzengesellschaften vor allem für Mitteleuropa zu einem sehr differenzierten System ausgebaut wurden. Allerdings wird sich „ein mehr Außenstehender … die Frage aufwerfen, ob die Katalogisierung aller, auch der kleinsten Vegetationseinheiten Mitteleuropas die dafür aufgewendete Mühe lohnt. Dies wäre vom wissenschaftlichen Standpunkt aus durchaus zu bejahen, wenn die derzeitigen Pflanzengesellschaften ähnlich unveränderliche Einheiten wären wie die taxonomischen, aber das sind sie nicht“ (Walter 1973, S.115).

In den heutigen Kulturlandschaften ist die „Überkompartimentierung“ ebenso ein Naturschutzproblem wie die „Unterkompartimentierung“ durch riesige Monokulturen. Von einem durch Ackerflächen umschlossenen Kleinkompartiment „Feldgehölz“ aus ist es z. B. für viele Tiere schwierig, in andere, ähnliche Biotope zu gelangen. Feldhecken begrenzen Kulturflächen, sie sind aber auch Verbindungswege zwischen Ökosystemen. Besonders stark wirkende Grenzen sind Verkehrswege, weshalb man an einigen wenigen Stellen sinnvoller Weise so genannte Biotopbrücken über Autobahnen gebaut hat, um deren Landschaft zerschneidende Wirkung zu mindern.

Das „Basiskonzept „Kompartimentierung“ im Unterricht

„Lebende Systeme zeigen abgegrenzte Reaktionsräume. Dieses Basiskonzept hilft z. B. beim Verständnis der Zellorganellen, der Organe und der Biosphäre“. So steht es in der „Einheitlichen Prüfungsanforderung in der Abiturprüfung Biologie“ nach dem Beschluss der KMK-Konferenz vom 05.02.2004. In Lehrbüchern tritt der Begriff jedoch meistens nur im Zusammenhang mit der „Zellkompartimentierung“ auf, seltener auch im Zusammenhang mit der „Kompartimentierung des Organismus“ (z.B. Biesalski, Grimm 2002).

Damit wird die Intention der „Basiskonzepte“ oder „Erschließungsfelder“ nicht erfüllt. Denn dadurch, dass Basiskonzepte biologische Phänomene umreißen, die in der Regel durch viele, wenn nicht alle Organisationsebenen des Lebendigen hindurchreichen, sollen sie biologische Fachkenntnisse strukturieren und dadurch fassbarer und merkbarer machen.

Wie könnte gerade das Basiskonzept „Kompartimentierung“ helfen, Lernen zu verbessern? Wie könnte es kumulatives und outputorientiertes Lernen fördern?

Die wichtigste Gemeinsamkeit der Kompartimente auf allen biologischen Organisationsebenen ist die selektive Abgrenzung. Dies betrifft den Austausch von Stoffen, von Energie und von Information. Diese Einschränkungen können aber – ähnlich wie eine Zollstation und eine Grenzkontrolle an einer Ländergrenze – zur Steuerung und  Regelung, auch zur gezielten Signalweitergabe genutzt werden.

Damit hat man ein strukturierendes Prinzip für viele biologische Sachverhalte gewonnen, das so unterschiedliche Inhalte, wie „Stoffkreisläufe in Ökosystemen“ und „Intrazelluläre Regelprozesse“ oder „Biomembranen“ und „Vernetzung von Biotopen“ in Beziehung bringen kann. Gleichzeitig kann man neue Inhalte mit diesem Prinzip aufschließen, erklären, besser verstehen und einordnen (Outputorientierung).

Kompartiment Grenze für Abgrenzung durch Grenzüberwindung durch
Membranumschlossenes Zellkompartiment Moleküle, Ionen Lipiddoppelschicht Tunnel- und Carrierproteine, signalübertragende Proteine, lipophile Moleküle
Organ Blut, Lymphe u.a. Körperflüssigkeiten Epithelien Blutgefäße, Lymphe
Organismus Stoffe, Energie, Signale Haut, Epithelien Verdauungssystem, Sinnesorgane, Kommunikationssysteme
Art, Population Gene Kreuzungsbarrieren, Inkompatibilitätsfaktoren Migration, Hybridisierung, horizontaler Gentransfer
Areal (Verbreitungsgebiet) Individuen einer Art (oder einer höheren Verwandtschaftsgruppe) Geographische und geologische Barrieren, Konkurrenzdruck anderer Arten Verschleppung von Individuen durch natürliche oder vom Menschen verursachte Vorgänge
Revier Individuen Agonistisches Verhalten; akustische, optische, chemische Signale Revierkämpfe
Ökosystem Individuen, Stoffe, Energie Geografische Barrieren Tierwanderungen, Transport von Vermehrungseinheiten, Stofftransport über Gewässer, Wettergeschehen wie Luftströmungen
Biom Ökosysteme,  Arten/Populationen, Individuen Klimagrenzen, geographische Barrieren Klimaänderungen, Erosion, Tektonik

Wenn man erkannt hat, dass Grenzen auch etwas mit Austausch zu tun haben, versteht man das in lebenden Systemen  immer wiederkehrende Prinzip der Oberflächenvergrößerung zur Förderung von Austauschprozessen besser. Auch der modulartige Aufbau von Lebensstrukturen kann mit dem Prinzip der Kompartimentierung in Verbindung gebracht werden (Grundorgane der Pflanze, die sich immer wiederholen; Metamerie bei Tieren). So kann dieses Basiskonzept, wie auch andere, helfen, über Querverbindungen  vernetztes Lernen zu erleichtern und doch bei dieser Vernetzung Chaos zu vermeiden. „Alles hängt mit allem zusammen“, ist zwar eine korrekte Beschreibung der Welt, verhilft aber kaum zu einem besseren Weltverständnis.

In diesem Artikel sind wir von den kleinsten Kompartimenten des Lebendigen in den Zellen ausgegangen und haben uns dann über Organe und Organismen zu den Überindividuellen Kompartimenten der Biosphäre emporgearbeitet. Dies muss aber nicht der Weg sein, der sich auch für den Schulunterricht anbietet. Die frühe Behandlung cytologischer und sogar molekularbiologischer Inhalte  führt zwangsläufig dazu, dass die „organismische Biologie“ an Bedeutung verliert. Gerade in den Klassenstufen 5 bis 7 hat die unmittelbare Begegnung mit Tier- und Pflanzenarten, möglichst in ihren natürlichen Lebensräumen, einen besonders animierenden und prägenden Einfluss. Dies ist nämlich der Zeitabschnitt, in dem sich bei mangelnder Förderung das Interesse an der „grünen Biologie“ allmählich verliert. Ziel einer ausgewogenen Allgemeinbildung sollte es aber sein, Interesse und Kenntnis der „Vielfalt des Lebendigen“ in den makroskopischen Dimensionen zu erhalten und zu fördern. Deshalb wäre es durchaus sinnvoll, von Individuen und Arten ausgehend in den unteren Klassen der SI einen deutlichen Schwerpunkt auf Lebensräume und Ökosysteme zu legen und diese „Landschaftsbiologie“ auch mit Unterrichtsabschnitten im Gelände zu vermitteln. Das würde z. B. bedeuten, dass man wichtige heimatliche Lebensräume wie Fließgewässer und Teich, Hecke und Wald, Wiese und Weide aus eigener Anschauung kennen lernt und dass man möglichkeiten der landschaftsgestaltung im eigenen Schulgarten erfährt.. Cytologische und molekularbiologische Inhalte sollten schwerpunktmäßig auf die letzten Klassenstufen verlegt werden. Die in der Makrobiologie gewonnen Vorstellungen  zur Kompartimentierung könnten dann als Modelle für mikroskopische und submikroskopische Vorstellungen dienen. Begriffe wie „Tunnelprotein“, „Fence-and-Picket-Modell“ oder „aktiver und passiver Transport“ bauen  ja ohnehin makroskopischen Vorstellungen auf.

Literatur und URLs

Abbot, A.: Cell biology: Hopping fences. Nature 433, p.680-683, 2005

Acquisti, C., Kleffe, J., Collins, S.: Oxygen content of transmembrane proteins over macroevolutionary time scales. Nature 440, p.47-52, 2007

Ainsworth, C.: Cell biology: The Story of I. Nature 440, p. 730-733, 2006

Alberts, B., Bray, D. Lewis, J., Raff, M., Roberts, K., Watson, J.D.: Lehrbuch der molekularen Zellbiologie. Wiley-VCH, 2001

Archibald, J.: One plus one equals one- symbiosis and the evolution of complex life. Oxford University Press 2014

Biesalski, H.K., Grimm, P.: Taschenatlas der Ernährung. Thieme, Stuttgart, 2.A., 2002

Brenner, K.-U.: Der Körper des Menschen. Weltbild, Augsburg 1990

Campbell, N.A., Reece, J.B. (Hrsg. d. dtsch. Ausg. H. Markl): Biologie. Spektrum, Heidelberg/Berlin, 6. A. 2003

Clarke, M.F., Becker, M.W.: Krebs – sind Stammzellen schuld? Spektrum der Wissenschaft ,  S. 56-63, Januar 2007

Einheitlichen Prüfungsanforderung in der Abiturprüfung Biologie. Beschluss der Kultusministerkonferenz vom 01.12.1989 i. d. F. vom 05.02. 2004

Faller, A.,  Schünke, M.: Der Körper des Menschen. Thieme, Stuttgart 1999

Frey, W., Lösch, R.: Lehrbuch der Geobotanik. Elsevier, München 2.A. 2004

Graf, D.: Nano-Katastrophen (Michael Crighton: Die Beute). UB Kompakt 312 (Jg. 30), S.25-28, 2006

Heinrich, D., Hergt, M.: dtv-Atlas zur Ökologie. dtv, München, 3.A. 1994

Helmich, U. :Biomembranen. http://www.u-helmich.de/bio/cyt/reihe03/membran01.html , 2001/2005

Höffeler, F.: Bildatlas Cytologie. Harri Deutsch, Frankfurt a. M. 2003

Kattmann, U. (Hrsg.): Bioplanet Erde. UB 299 (Jg. 28), 2004

Krupinska, K., Desel, C., Mulisch: Stromuli – Plastidenbrücken im Netzwerk der Zelle. In: Biologie in unserer Zeit 40/3: S. 162–17, 2010,

Pott, R.: Allgemeine Geobotanik: Biogeosysteme und Biodiversität. Springer, Berlin 2005

Probst, W., Schuchardt, P. (Hrsg.): Biologie Ausgabe B. Duden-Paetec, Berlin/Frankfurt a.M. 2007

Probst, W. (Hrsg.): Miteinander- Beziehungennund Wechselwirkungen. UB 280 (Jg. 26), 2002

Probst, W. (Hrsg.): Ameisen und Termiten. UB 306 (Jg. 29), 2006

Rottmann, S.: Hier geht´s an die Nieren. UB 313 (Jg. 30), S.30-37, 2006

Ruppert, W. (Hrsg.): Struktur und Funktion. UB 232 (Jg.22), 1998

Simons, K., Ikonen, E. : Functional rafts in cell membranes. Nature 387, p. 569–572. 1997.

Suzuki, K. et al.: Rapid Hop Diffusion of a G-Protein-Coupled Receptor in the Plasma Membrane as Revealed by Single-Molecule Techniques. Biophysical Journal 88:3659-3680 (2005) http://www.biophysj.org/cgi/content/full/88/5/3659#FIG1

Wächtershäuser, G.: Evolution of the first metabolic cycles. Proceedings of the National Academy of Sciences, Vol. 87, Jan. 1990, p. 200–204

Wächtershäuser, G.: Origin of Life: Life as we don’t know it. Science 289 (5483), 25. August 2000, S. 1307–1308

Walter, H.: Die ökologischen Systeme der Kontinente (Biogeosphäre). G. Fischer, Stuttgart 1976

Walter, H.: Allgemeine Geobotanik. Ulmer, Stuttgart 1973

Whitfield, J.: Born in a watery commune. Nature 427, 19.  Febr. 2004, p.674-676

Whittaker, R.H.: Communities an ecosystems. Macmillan, London/New York, 2.ed. 1975

Extrazelluläre Matrix:

http://www.unifr.ch/anatomy/elearningfree/allemand/bindegewebe/sfa/d-sfa.php

http://www.uni-tuebingen.de/uni/kxm/Courses/documents/GV0607ECM.pdf

Genzyme Deutschland: Einführung in das Krankheitsbild des Morbus Pompe. Neu-Isenburg, 2008. http://www.genzyme.de/thera/pompe/de_p_tp_thera-pompe.asp

Arealkunde

http://weinmannia.botanik.uni-hohenheim.de/Studienunterlagen_Dalitz/PDF/Arealkunde.pdf

Biotopbrücken

http://www.umweltbundesamt.at/umweltschutz/naturschutz/lebensraumschutz/vernetzung/lrv_empfehlungen/

Pilze (zu UB 405)

LINK-NAME
Die Fadengeflechte der Pilze bilden dichte Netzwerke in Böden und durchwachsen die unterschiedlichsten organischen Abfallstoffe. Die große Effektivität, mit der die Pilze diese Netzwerke aufbauen und zum Stofftransport nutzen, werden seit einiger Zeit mit dem Ziel erforscht, auch von Menschen konstruierte Netzwerke – zum Beispiel Stromnetze, Verkehrsnetze und Kommunikationsnetze – zu verbessern (Heaton 2012). Die zweite herausragende Fähigkeiten dieser Fadengeflechte ist die Verdauung unterschiedlichster energiereicher Stoffe. Dazu werden von den verschiedenen Pilzarten sehr viele verschiedene Enzyme gebildet. Mittlerweile wird diese Vielfalt von spezialisierten Chemiefirmen genutzt, um neue Enzyme und Enzymkombinationen für die Anwendungen in Haushalt, Technik und Medizin zu entwickeln. Das Rohmaterial, die Pilze, werden aus allen Ecken der Erde zusammengetragen, in Kultur genommen und in tiefgekühlten Containern aufbewahrt.
Durch ihre Fruchtkörper sind viele Pilze – ganz anders als andere Mikroorganismen – auch ohne optische oder andere Hilfsmittel wahrnehmbar und erfahrbar. Diese „Pilzfrüchte“, die landläufig als „Pilze“ bezeichnet werden, faszinieren nicht nur Wissenschaftler sondern viele Schwammerlsucher und Hobbymykologen. Neben Vögeln, Schmetterlingen und Orchideen gehören Pilze deshalb zu den Organismengruppen mit der größten Fangemeinde. Auf der Homepage der pilzkundlichen Zeitschrift „Der Tintling“ werden allein für Deutschland 91 pilzkundliche AGs und Ausbildungsstätten angeführt.
Doch obwohl Pilze in unserer Umwelt und unserem Leben allgegenwärtig sind, werden sie doch oft übersehen und unterschätzt, manchmal auch falsch beurteilt. Lange Zeit als Pflanzen eingestuft gelten sie seit einiger Zeit als eigenes Reich der Lebewesen und dies wird nicht nur ihrer verwandtschaftlichen Stellung sondern auch ihrer großen Bedeutung für unseren Bioplaneten gerecht.

https://lehrermarktplatz.de/material/18898/vorlagen-fuer-die-gestaltung-einer-pilzausstellung

https://lehrermarktplatz.de/material/16562/grafiken-und-abbildungen-zu-schlauchpilzen-und-staenderpilzen

(vgl. die UB-Hefte 405 „Pilze“ und 406 (UB Schülerkompakt) „Ab in die Pilze“)

Die Funktion der Pilze in Ökosystemen

Funktionen der Pilze im Ökosystem Wald

Funktionen der Pilze im Ökosystem Wald

Die drei großen Reiche vielzelliger Lebewesen, Pflanzen, Tiere und Pilze stehen gleichzeitig in einem (terrestrischen) Ökosystem für die drei Haupternährungsformen:
• Primärproduzenten (Plantae),
• Konsumenten (Animalia) und
• Destruenten bzw. Reduzenten (Fungi).
Dabei kommt Pilzen außerdem als Symbiose- und Kooperationspartner von Pflanzen und Tieren eine besondere Bedeutung zu.

Als Destruenten zersetzen die Pilze alle Arten von organischen Abfällen, besonders auffällig in Wäldern (Laubstreu und Holz) aber auch in Grasländern (Streu, Dung). Seit es üblich geworden ist, in großer Menge Rindenmulch in Garten- und Parkflächen auszubringen, kann man dort besonders viele Pilze beobachten. Das aus einzellreihigen Zellfäden bestehende Mycel der Pilze ist besonders gut dafür geeignet, feste organischen Abfallstoffe zu durchwuchern und die darin enthaltenen Nährstoffe enzymatisch aufzuschließen und aufzunehmen. Ohne Pilze würde den Ökosystemen der Erde so etwas Ähnliches passieren wie einer Großstadt, bei der die Müllarbeiter streiken. Dabei scheiden die Pilzfäden (Hyphen) Enzyme aus, welche die organischen Makromoleküle in ihrer Umgebung in kleinere Bestandteile zerlegen („verdauen“), die dann von den Hyphen aufgenommen werden. Die Speicherung von Kohlenstoff durch Boden- und Streu- bewohnende Pilze und insbesondere durch Mykorrhizapilze wurde bisher vermutlich unterschätzt (Perkins 2013). Pilze sind entscheidend wichtig für die Bildung und Erhaltung der Böden (Moore/Robsen/Trinci 2011).
In flüssigen Substraten kommen Pilze als Zersetzer zwar auch vor, aber hier sind Bakterien noch wichtiger. Unter bestimmten Bedingungen, vor allem bei vorliegen von Zuckermolekülen, kommt hier eine spezielle, meist nicht fädig wachsende Form pilzlicher Destruenten zum Einsatz, die Hefepilze. Sie kommen in unterschiedlichen Verwandtschaftsgruppen vor.

Doch auch als Konsumenten spielen Pilze eine wichtige Rolle. Von besonderer Bedeutung sind parasitische Pilze an Pflanzen. Neben den Baumpilzen, die sich häufig auch parasitisch von lebenden Bäumen ernähren, sind dies vor allem phytopathogene Pilze wie Mehltaupilze, Brandpilze und Rostpilze, letztere z. T. mit komplizierten Wirts- und Generationswechseln (Abb. XX). Für manche Baumarten stellen phytopathogene Pilze eine echte Bedrohung dar, zum Beispiel die Schlauchpilze Ophiostoma ulmi bzw. O. novi-ulmi für Ulmen und Hymenoscyphus pseudoalbidus für Eschen. Manche phytoparasitischen Pilze stimulieren ihre Wirtspflanzen zur Bildung von Pflanzengallen und „Hexenbesen“ (Probst 2012).
Bei Tieren und Menschen kommen pathogene Pilze (Mykosen) vor allem auf der Haut und auf und in Hautbildungen wie Haaren und Nägeln vor, auch innere Oberflächen und Organe können – insbesondere beim schwachem Immunsystem – von Pilzen befallen werden. Nicht selten werden Insekten von parasitischen Pilzen infiziert. Besonders spektakulär sind Pilze, die von in der Erde eingegrabenen Puppen von Nachtschmetterlingen leben (Kernkeulenpilze). Eine ganze Wirbeltierklasse, die Amphibien, werden durch den parasitischen Geißelpilz Batrachochytrium dendrobatidis (s. S. XX) bedroht. Pilzliche Zooparasiten werden zu Nützlingen, wenn sie gefährlichen Krankheitserregern, wie zum Beispiel Malariamücken, schaden (Khamsi 2005).

Die Rolle der Pilze als Predatoren wurde lange unterschätzt. Bisher sind über 120 Pilzarten bekannt, die Nematoden, Rotatorien, Amöben und andere Protozoen mit Hilfe spezieller Einrichtungen ihres Mycels (Schlingfallen, Klebefallen) fangen und verdauen. Die meisten nematophagen Pilze gehören zu den Schlauchpilzen, aber auch bei den Ständerpilzen und bei den Jochpilzen kommen solche Tierfänger vor. Der Schopftintling, ein Ständerpilz, betäubt die Fadenwürmer mit einem Toxin aus Mycelauswüchsen und verdaut sie dann (Lyssek/Rubner in UB 183, 1993).
Es ist nicht verwunderlich, dass Pilze im Laufe der Evolution „gelernt“ haben, Fadenwürmer zu fressen, denn diese Tierchen finden sich in großen Mengen in allen Lebensräumen der Erde. Neben frei lebenden Arten gibt es viele Pflanzenparasiten und auch zahlreiche Tierparasiten. Überall wo Pilze vorkommen, lebt auch eine individuenreiche Nematodenfauna und so ist es nahe liegend, dass Pilze einen Weg gefunden haben, diesen Nährstoffvorrat zu nutzen.

Typisch für „Echte Pilze“ oder „Chitinpilze“, wie das Reich der Fungi auch genannt wird, sind chitinhaltige Zellwände. Als Destruenten und Konsumenten ist Stickstoff für Pilze – anders als für Pflanzen – meist kein begrenzender Faktor. Deshalb können sie es sich leisten, ein stickstoffhaltiges Polysaccharid als Hauptzellwandsubstanz zu nutzen. Dieser besonders robuste Baustoff schützt Pilzhyphen wie Insektenkörper. Möglicherweise dient diese Wandsubstanz ursprünglich auch dazu, überschüssigen Stickstoff loszuwerden.

Symbionten und Kooperationspartner

Zahlreiche Pilzarten leben in mehr oder weniger enger Symbiose mit Tier- oder Pflanzenarten. Als Spezialisten des Stoffabbaus helfen sie ihren Symbiosepartnern dabei vor allem, sonst unzugängliche Stoffquellen aufzuschließen.
Besonders wichtige und weit verbreitete Symbiosen zwischen Pflanzen und Pilzen sind die „Pilzwurzeln“ (Mykorrhiza). Die meisten Pflanzen gehen solche Mykorrhizasymbiosen ein und man vermutet, dass der Übergang der Pflanzen zum Landleben – also die Entstehung von Pflanzen im engeren Sinne (Embryophyta: Moose, Farne, Samenpflanzen) – ohne diese Pilzsymbionten nicht möglich gewesen wäre.
Pflanzen können mithilfe der Fotosynthese ihre Nähr- und Baustoffe selbst produzieren. Aber die dazu notwendigen Elemente Stickstoff, Phosphor, Kalium, Eisen und andere nehmen sie aus dem Boden auf. Den meisten Pflanzen helfen dabei bestimmte Pilze. Bei der Ektotrophen Mykorrhiza bildet das Mycel der Pilze einen dichten Mantel um die Wurzelspitzen und einige Pilzfäden dringen zwischen die Zellen der Wurzelrinde ein. Dabei ist die große Oberfläche des Pilzmycels von Vorteil. Die Pflanzen versorgen die Pilze dafür mit Kohlenhydraten, die sie über die Fotosynthese meist im Überfluss herstellen können. Die Ektomykorrhiza ist typisch für Waldbäume wie Eichen, Buchen oder Fichten.
Bei den verschiedenen Formen der Endomykorrhiza bildet sich kein dichtes Pilzgeflecht um die Wurzelspitzen. Dafür dringen die Pilzhyphen in die Zellen der Wurzelrinde der Pflanzen ein. Diese Mykorrhizatypen kommen vor allem bei krautigen Pflanzen aber auch bei verschiedenen Gehölzen vor.
Orchideen können ohne eine solche Endomykorrhiza nicht leben.
Insbesondere auf „mageren“ Böden, das heißt Böden mit wenig stickstoff- und phosphorhaltigen Mineralstoffen, sind die Mykorrhizapilze für Pflanzen oft lebensnotwendig.

Es gibt einige Pflanzen, die kein Blattgrün ausbilden und alle Nähr- und Mineralstoffe sowie das Wasser von ihrem Mykorrhizapilz beziehen. Nach Merckx (2013) ist eine solche vollständige Mykoheterotrophie für mindestens 514 Pflanzenarten nachgewiesen. Teilweise Mykoheterotrophie kommt jedoch bei sehr vielen Mykorrhiza bildenden Pflanzen vor, zum Beispiel bei allen Orchideen, bei denen zumindest die Keimlinge ihre Nährstoffe von einem Pilz beziehen. Ein Beispiel für eine vollständig mykoheterotrophe Pflanze ist die Vogel-Nestwurz, die man relativ häufig in Buchenwäldern finden kann. Der Fichtenspargel, eine chlorophylllose Pflanze aus der Verwandtschaft der Heidekrautgewächse, bildet mit Ritterlingsarten eine Mykorrhiza. Diese Pilze haben außerdem Fichten, Buchen und noch einige andere Waldbäume als Mykorrhizapartner. Von diesen erhalten sie organische Kohlenstoffverbindungen, von denen auch der Fichtenspargel profitiert. Diesen indirekten Parasitismus, auch Epiparasitismus genannt, konnte man dadurch nachweisen, dass man Zuckerverbindungen in den Bäumen radioaktiv markierte.
Vermutlich kommt ein solcher Stofffluss von grünen Pflanzen über Mykorrhizapilze zu bleichen, mykoheterotrophen Pflanzen häufig vor. Auch für einen Pilzpartner der Nestwurz, die Erd-Wachskruste (Sebacina incrustans), ist ein solcher Transfer nachgewiesen. Dieser Pilz bildet eine Ektotrophe Mykorrhiza mit dem Haselstrauch und bezieht von ihm Kohlenhydrate, die er teilweise an die Nestwurz weitergibt .

Die Vernetzung verschiedener Pflanzenindividuen und -arten eines Ökosystems durch Mykorrhizapilze spielt vermutlich eine größere Rolle, als lange Zeit vermutet.
Für den globalen Kohlenstoffkreislauf ist von Bedeutung, ob Ektotrophe-Mykorrhiza (EM)- oder Arbuskuläre-Mykorrhiza (AM)-Symbiosen – die häufigste Form der Endomykorrhiza – vorherrschen. Im ersten Fall konkurrieren die Mykorrhizapilze mit anderen Mikroben um organische Abfallstoffe, dadurch wird der C-Gehalt des Bodens erhöht, im zweiten Fall nehmen die Pilze vorwiegend anorganischen Stickstoff auf und sind deshalb keine Konkurrenz für andere Destruenten. Organische Abfallstoffe werden deshalb schneller abgebaut und der Kohlenstoffspeicher im Boden ist kleiner (s. S. XX, Averill, Turner, Finzi 2014).

Flechten sind Doppelorganismen aus Pilzen, Algen oder/und Cyanobakterien. Mit Ausnahme der Gallertflechten gibt der Pilz der Flechte ihre Form. Die meist nur aus einer oder wenigen Zellen aufgebauten grünen Organismen sorgen durch ihre Fotosyntheseleistung für die Energieversorgung des Doppelorganismus..
Es ist kein Wunder, dass Flechten lange für eine eigenständige Organismengruppe angesehen wurden. Nicht nur die besondere Flechtenform sondern auch bestimmte Flechtenstoffe – wie zum Beispiel der gelbe Farbstoff der überall häufigen Gelbflechte (Xanthoria) – können nur in Symbiose produziert werden. Solche speziellen Stoffwechselleistungen sind auch dafür verantwortlich, dass Flechten noch gedeihen können, wo „echte Pflanzen“ keine Chance mehr haben: Auf eisigen Berggipfeln, auf trockenen Felsen und Wüstenböden und an Baumrinde, wo es auch Moosen zu trocken wird. Dank besonderer Proteine und Polysaccharide können sie vollständig austrocknen ohne abzusterben. Bei erneuter Befeuchtung kommen die Lebensvorgänge sofort wieder in Gang.

Bei vielen endophytischen (in Pflanzen lebenden) Pilzen ist nicht ganz klar, ob es sich um Parasiten oder Symbionten handelt. In jedem Fall sind sie eine besonders vielversprechende Gruppe, wenn es um die Entdeckung neuer biotechnisch bzw. medizinisch nutzbarer Stoffwechselleistungen geht. Sie sind deshalb in den Fokus moderner Screenings nach verwertbaren Enzymen gerückt. 2011 wurde im ecuadorianischen Amazonasgebiet ein endophytischer Pilz, Pestalotiopsis microspora, entdeckt, der ein Enzym produziert, mit dem er Polyurethane abbauen kann (Russell et al. 2011).
Gleichzeitig haben endophytische Pilze vermutlich eine große ökologische Bedeutung, indem sie z. B. Giftstoffe produzieren, die Pflanzen wie dem Taumel-Lolch (Lolium temulentum) und der Prunkwinde (Ipomea) als Fraßschutz dienen. Möglicherweise schützen Abwehrstoffe endophytischer Pilze die Wirtspflanzen auch vor Infektionen durch andere Mikroorganismen. Auch eine Verbesserung der Trocken- und Kälteresistenz der Wirtspflanzen wird diskutiert (Proksch et al. 2010).

Als Symbiosepartner von Tieren helfen Pilze z. B., den schwer zugänglichen Holzstoff für die Verdauung aufzuschließen.
Die sogenannten Ambrosia-Käfer, die bei zwei verschiedenen Gruppen der Rüsselkäfer vorkommen, leben in Bohrgängen im Holz toter oder absterbender Bäume. Diese Gänge beimpfen sie mit dem Myzel von Ambrosia-Pilzen. Die Pilze ernähren sich vom Holz und kleiden die Bohrgänge mit einem speziellen Myzel dicht aneinander schließender Hyphen aus. Die Käfer und ihre Larven fressen ausschließlich dieses Myzel. Indem sie das Pilzmyzel und teilweise auch Konidien des Pilzes auf andere Bäume übertragen, helfen sie der Ausbreitung. Während jedoch die Käfer nur mithilfe des Pilzes leben können, ist der Pilz nicht unbedingt auf die Käfer als Partner angewiesen.
Eine ganz ähnliche Partnerschaft gehen Holzwespen mit Pilzen ein. Hier legen die Weibchen mit ihrem Legestachel zusammen mit den Eiern Pilzmyzel der Weißfäule erregenden Schichtpilze Stereum und Amylostereum in das Holz toter oder absterbender Nadelbäume. Von diesen Pilzen ernähren sich dann ihre Larven.

Besonders ausgefeilt ist die symbiotische Beziehung zwischen Pilzen und zwei Gruppen von sozialen Insekten, den Blattschneiderameisen und den Termiten (Angersbach/Groß 2005 in UB 306).
Blattschneiderameisen leben in tropisch-subtropischen Amerika zwischen 40° Nord und 44° Süd. Sie können in kurzer Zeit große Waldstücke entlauben. Die Blattstücke tragen sie in ihren Bau, dort werden sie zu Blattbrei zerkleinert und mit Pilzen der Gattungen Leucocoprinus und Leucoagaricus beimpft, von deren Mycel sich die Ameisen ernähren. Die Hyphenenden schwellen zu „Nährkörperchen“ an, die reich an Nährstoffen sind und von den Ameisen leicht geerntet werden können. Die Ameisen pflegen ihre Pilzkulturen, insbesondere sorgen sie dafür, dass sie nicht von anderen Pilzen überwuchert werden. Vor Befall durch den Schadpilz Escovopsis schützen die Ameisen ihren Kulturpilz mit speziell wirkenden Bakterien (Streptomyces, Pseudonocardia u.a.), die sie an ihrem Panzer mit sich führen. Diese Bakterien produzieren Candicidine (Stoffe, die auch gegen die humanpathogene Candida albicans wirken). Man kennt über 200 verschiedene Arten von Blattschneiderameisen vor allem aus den Gattungen Atta und Acromyrmex. Auf Grund von molekulargenetischen Untersuchungen nimmt man an, dass die Atta-Leucocoprinus-Symbiose schon mindestens 50 Mio. Jahre alt ist (Stephenson 2010).
Die zweite Gruppe von Pilzgärtnern, bei der es ebenfalls um den Aufschluss ligninreichen Pflanzenmaterials geht, findet sich bei den Termiten. Die „Höheren Termiten“ (Fam. Termitidae,) – sie sind auch für die hohen Termitenbauten verantwortlich – vermischen Holzschnitzel und andere Pflanzenteile mit Speichel und Kot zu einem Nährsubstrat für die Pilze. Solange die Bauten von Termiten bewohnt sind, bilden die kultivierten Pilze – vor allem der Gattung Termitomyces – keine Fruchtkörper. Doch aus verlassenen Termitenbauten wachsen die großen schirmförmigen Fruchtkörper, die auf afrikanischen Märkten als Speisepilze verkauft werden (Barnekow/Probst in UB 306).
Auch pflanzenfressende Säugetiere, insbesondere Wiederkäuer, sind bei der Verdauung der Cellulose auf pilzliche Endosymbionten angewiesen: Die erst in den 1970 er Jahren entdeckten Neocallimastigomyceten, seit 2007 als eigene Abteilung gewertet, sind anaerobe Darmbewohner, der große Bedeutung sich hier in den letzten Jahrzehnten herausgestellt hat.

Die Ameisenart Allomerus decemarticulatus bildet einer Dreiersymbiose mit dem tropischen Strauch Hirtella physophora und einem Pilz. Die den Baum besiedelnden Ameisen nutzen die abgeschnittenen Haare der Pflanze, um aus diesen mithilfe von Pilzhyphen effektive Insektenfallen zu bauen (Dejean et al. 2005)

In Pflanzengallen können manche Gallinsekten Pilzpartner nutzen, indem sie sich von deren die Galle auskleidendem Mycel ernähren (Kehr/Kost 1999)

Auch eine ernährungsphysiologische Symbiose zwischen Pilzen und Nicht-Insekten konnte nachgewiesen werden. Strandschnecken an der nordostamerikanischen Küste infizieren Schlickgras mithilfe ihrer Kotbällchen mit einem Pilz, den sie dann verzehren. Das Schlickgras alleine können die Schnecken nicht verdauen (Whitfield 2003).

Fortpflanzung, Vermehrung, Ausbreitung

Pilze können sich geschlechtlich und ungeschlechtlich fortpflanzen. Die ungeschlechtlich sich fortpflanzende Form bezeichnet man als Nebenfruchtform oder Anamorphe, die geschlechtlich sich fortpflanzende als Hauptfruchtform oder Telomorphe, die Gesamtheit der Entwicklungsstadien als Holomorphe (Dörfelt 2001, 2014). Da man dabei oft nicht erkannte, dass es sich um dieselbe Art handelt, wurden beide Formen zuweilen unterschiedlich benannt. So wurde der Verursacher des Eschentriebsterbens zunächst als Chalara fraxinea identifiziert, später erkannte man, dass es die Anamorphe zur Telomorphen Hymenoscyphus pseudoalbidus ist. Hat man die Zusammengehörigkeit nachgewiesen, gilt der Name der Telomorphen als der korrekte wissenschaftliche Artname.

Während bei den Töpfchenpilzen (Chytridiomycota) noch begeißelte Gameten und Zoosporen vorkommen – sie werden deshalb auch Geißel- oder Flagellenpilze genannt –, gibt es bei den übrigen Pilzen keine begeißelten Fortpflanzungsstadien.
Die heute in mehrere Abteilungen aufgeteilten Jochpilze (Zygomycota) pflanzen sich vorwiegend ungeschlechtlich fort, wie der überall häufige Brotschimmel Rhizopus stolonifer: Aus stark verzweigten Hyphen im Substrat wachsen lange Lufthyphen, die wie die Ranken einer Erdbeerpflanze der Ausbreitung dienen. Schließlich bilden sich Sporenträger mit einer endständigen Sporocyste, die viele asexuell entstandene Sporen enthält und in den Luftraum entlässt. Ihren Namen haben sie jedoch aufgrund der besonderen Form der geschlechtlichen Fortpflanzung bekommen: Zwei Hyphenenden, die vom selben oder von unterschiedlichen Mycelien stammen können, bilden so genannte Gametocysten, die sich vereinigen und dabei eine jochartige Struktur bilden. Aus dieser derbwandigen Zygospore bildet sich nach Kernverschmelzung und Meiose eine gestielte Sporocyste mit vielen Sporen, die äußerlich den asexuell entstandenen Sporocysten gleicht (Nomenklatur vgl. Dörfelt 2001).
Auf Grund molekulargenetischer Untersuchungen hat man die Arbuskulären Mykorrhizapilze oder kurz AM-Pilze als eigene Abteilung Gomerulomycota von den Jochpilzen abgetrennt. Es sind die phylogenetisch ältesten und bis heute verbreitetsten Mykorrhizapilze. Bisher ist nur eine asexuelle Fortpflanzung bekannt. An den Hyphenenden bilden sich Verdickungen, die sich schließlich mit einer festen Wand umgeben. Bei manchen Arten – wie bei Gigaspora margarita – können diese Sporen nahezu 1 mm Durchmesser erreichen.

Für die Abteilungen Schlauchpilze (Ascomycota) und Ständerpilze (Basidiomycota) ist charakteristisch, dass sie Hyphen mit Querwänden bilden,die allerdings einen Porus besitzen, durch den eine Verbindung des Cytoplasmas besteht. Dieser Durchlass ist bei den verschiedenen Verwandtschaftsgruppen recht unterschiedlich – teilweise sehr kompliziert – aufgebaut.
Bei den Ascomycota wird die geschlechtliche Fortpflanzung durch Gametocystenbildung eingeleitet. Die männliche Gametocyste entlässt ihre Kerne in die weibliche Gametocyste (Ascogon). Dort paaren sich je ein weiblicher und ein männlicher Kern ohne zu verschmelzen. Anschließend wachsen aus dem Ascogon so genannte ascogene Hyphen, die in jeder Zelle zwei Kerne enthalten. Schließlich kommt es in der Endzelle zur Kernverschmelzung und zur anschließenden Meiose und meist zu einer weiteren mitotischen Teilung. Um diese acht Kerne bilden sich Zellwände(„freie“ Zellbildung). So entsteht eine Zelle mit acht Ascosporen, ein Ascus oder Schlauch.
Bei den Basidiomycota verschmelzen zwei normale Hyphen mit haploiden Kernen zu einem Paarkernmyzel. Bei der Zellteilung teilen sich beide Kerne, einer wird über eine Schnalle an die nächste Zelle weitergegeben. Durch Verschmelzung dieser zwei Kerne – normalerweise erst nach vielen mitotischen Teilungen und der Bildung eines ausgedehnten dikaryotischen Myzels – kann es in bestimmten Zellen zur Bildung eines diploiden Kerns kommen, der sich anschließend durch Meiose wieder in vier haploide Kerne teilt, die in vier Auswüchse der Zelle einwandern. Das ganze Gebilde wird Basidie oder Ständer genannt. Funktionell wird durch die Zweikernigkeit ein Zustand erreicht, welcher der Ausbildung eines diploiden Chromosensatzes entspricht.

Die großen „Fruchtkörper“, besser eigentlich Sporenkörper, vieler Schlauchpilze und Ständerpilze sorgen für eine effektive Verbreitung der winzigen Sporen durch die Luft oder durch Tiere. In diesem Fruchtkörpern bilden sich meist eine große Zahl – oft Millionen – Asci bzw. Basidien. Bei den Schlauchpilzen werden die Fruchtkörper auch Ascoma genannt. Sie bilden sich jeweils nach der Verschmelzung von Gametocysten. Die Fruchtkörper der Ständerpilze – auch Basidioma genannt – können sich immer wieder in großer Anzahl aus einem Paarkernmyzel bilden, das aus der Verschmelzung von zwei Einkernmyzelien hervorgegangen ist (Dörfelt 2012).
Diese „Pilzfrüchte“, die landläufig als „Pilze“ bezeichnet werden, faszinieren Menschen seit alters her aus verschiedenen Gründen:
• sie erscheinen unverhofft und ziemlich plötzlich und sind auch schnell wieder verschwunden,
• sie haben oft auffällige Formen, Farben und Gerüche,
• man kann sie sammeln und essen,
• eine ganze Reihe sind giftig, manche sogar lebensgefährlich,
• manche enthalten halluzinogene Stoffe und eigen sich als Rauschdrogen.
Viele Jahrhunderttausende mussten die Menschen ihre Nahrung sammeln. Das Pilze Sammeln und das Zubereiten dieser selbst gesammelten Pilze ist möglicherweise deshalb so befriedigend, weil es an diese archaische Tradition anknüpft. Pilzexkursionen mit anschließender Besprechung und Bearbeitung der Funde – gegebenenfalls mit einem Pilzkenner zusammen – können ein Erlebnis sein, das Interesse an Naturbegegnungen weckt und fördert und als Einstieg in verschiedene ökologische Themen dienen kann.
Außer der klassischen Pilzform kommen noch viele verschiedene andere Fruchtkörperformen vor. Für die Windverbreitung von Sporen hat ein Fruchtkörper aus Stiel und Hut jedoch durchaus Vorteile: Durch den Stiel wird die sporentragende Schicht in etwas bewegtere Luftschichten emporgehoben, durch den Hut wird sie vor Regen geschützt, Lamellen oder Röhren sorgen für eine große Oberfläche. Dadurch, dass der Hut zunächst wie ein zusammengefalteter Schirm dem Stiel anliegt, wird die sporentragende Schicht vor Austrocknung geschützt. Bei vielen Fruchtkörpern – wie beim Grünen Knollenblätterpilz oder beim Fliegenpilz – werden die jungen Fruchtkörper durch zusätzliche Hüllen vor Verdunstung geschützt. Wenn der Hut aufschirmt, bleiben die Reste der Hüllen als Scheide, Ring und weiße Punkte auf der Hutfläche zurück.

Pilzfruchtkörper fallen nicht nur durch auffällige Farben und Formen sondern manchmal auch durch ihre besondere Größe auf: Macrocybe titans aus Mittelamerika und der afrikanische Termitomyces titanicus bilden die größten bisher bekannt gewordenen Fruchtkörper bei Blätterpilzen (Agaricomycetes). Gewaltige Fruchtkörper bis über 50 cm Durchmesser bildet auch der Riesen-Bovist , auch die konsolenförmigen, mehrjährigen Fruchtkörper von Baumpilzen können sehr groß werden, beim Abgeflachten Lackporling bis zu 1 m im Durchmesser.

Pilze als Umweltindikatoren

Pilze können bestimmte Stoffe aus dem Boden aufnehmen und in ihrem Mycel anreichern. Besonders deutlich wurde dies nach dem Reaktorunfall von Tschernobyl. Einige Zeit wurde die radioaktive Kontamination von Böden über die Messung der Radioaktivität von Pilzfruchtkörpern dokumentiert und noch bis heute gibt es Regionen, in denen die Pilze – z. B. Maronenröhrlinge – relativ hoch belastet sind. Hauptursache ist von den Pilzen aufgenommenes Cäsium 137 mit einer Halbwertszeit von 30 Jahren.
Auch Schwermetalle wie Cadmium und Blei können von Pilzen angereichert werden. Diese Fähigkeiten kann auch positiv genutzt werden, indem man Pilze zur Dekontamination schwermetallverseuchter Böden einsetzt. 2012 konnten britische Wissenschaftler nachweisen, dass aus Bleiminen isolierte Pilze elementares Blei in das besonders schwer lösliche Chloropyromorphit Pb5(PO4)3Cl umwandeln und damit verseuchte Böden entgiften können (Rhee/Hiller/Gadd 2012).

Ähnlich wie Fauna und Flora beeinflussen Umweltveränderungen auch die Funga – also die Gesamtheit der vorkommenden Pilzarten – eines Ökosystems. In Waldökosystemen können Pilzarten als Indikatoren für „Naturnähe“ verwendet werden. So gelten zum Beispiel Bergporling, Tannen-Stachelbart und Tannen-Stielporling als Zeigerarten für naturnahe Bergmischwälder (vgl. z. B. Blaschke et al. 2009). Die meist auffällig gefärbten Saftlings-Arten (Hygrocybe) sind Zeigerarten für magere Wiesen- und Rasengesellschaften, die als besonders schützenswert gelten. Flechten sind klassische Indikatoren für Luftverschmutzung, vor allem durch Schwefelverbindungen.

Seit einiger Zeit versucht man, Arten zu ermitteln, deren Erhalt in bestimmten Regionen eine besondere Bedeutung für die weltweite Erhaltung der Biodiversität hat. Eine Liste solcher „Verantwortungsarten“ wurden vom Bundesamt für Naturschutz für Deutschland bereits aufgestellt. Mittlerweile gibt es auch 19 Pilzarten, die als Verantwortungsarten für Deutschland ausgewählt wurden, weil ein hoher Anteil der Weltpopulation in Deutschland zu finden ist und weil die Biotope, in denen sie vorkommen, zu den gefährdeten zählen. Beispiele sind der Hauhechel-Samtfußrübling, die Strandlings-Erdzunge oder der Lilastielige Rötelritterling. Warum gerade diese 19 Arten ausgewählt wurden, hängt allerdings auch noch mit weiteren Kriterien zusammen, zum Beispiel, ob die Arten nicht schon durch eine andere Schutzverordnung ausreichend geschützt sind (Lüderitz/Gminder 2014).

Pilze und Menschen

Nahrungsmittel

Pilze werden vermutlich schon seit Urzeiten von Menschen als Nahrung genutzt. Sicher wurden Pilze auch schon von steinzeitlichen Menschen als Heilmittel und Rauschdrogen verwendet. Bei der 5300 Jahre alten Gletschermumie aus dem Ötztal („Ötzi“) hat man Reste vom Zunderschwamm gefunden, die auf seine Verwendung beim Feuermachen hindeuten. Ebenso trug Ötzi zwei Birkenporlinge mit sich, deren antibakterielle und entzündungshemmende Wirkung er möglicherweise zur Wundbehandlung nutzte.
Der gezielte Anbau von Pilzen ist nicht so alt. Die älteste Überlieferung von Pilzkulturen stammt aus China. Dort wurden Shiitake-Pilze (Lentinula edodes) schon vor mehr als 1000 Jahren kultiviert, indem man tote Baumstämme mit dem Pilzmycel beimpfte (Stephenson 2011). Bis heute zählen Shiitake-Pilze in Asien zu den wichtigsten Kulturpilzen , sie werden mittlerweile aber weltweit auf unterschiedlichsten Substraten kultiviert. Die in Europa am häufigsten angebauten Pilze sind Champignons.

Immer häufiger spielt beim Pilzanbau eine Rolle, dass man damit Abfallstoffe „upcyclen“, also sinnvoll weiter nutzen kann. Das gilt für Dung, Stroh, Sägemehl oder andere Holzabfälle, aber auch für Abfälle aus der Bierbrauerei (Biertreber) und aus der Kaffeeproduktion, sogar aus Kaffeesatz lassen sich Austernseitlinge gewinnen. Der Wiener Pilzzüchter Haidvogl http://www.pilz-kultur.at/Die%20Seite/ startete 1996 eine Aktion, bei der er alte Wiener Telefonbücher erfolgreich als Kultursubstrat für Austernseitlinge nutzte (Kasten Kaffeepilze).
Mittlerweile spielen Speisepilze und Heilpilze auch in der Hobbygärtnerei eine wichtige Rolle. Im Internet gibt es viele Angebote für Startkulturen, Kultursubstrate und fertige Ansätze, die nur ausgepackt und bewässert werden müssen.

Nahrungsmittelbearbeitung

Neben der direkten Verwertung von Pilzen als Nahrungsmittel spielen Pilze eine wichtige Rolle bei der Nahrungsmittelbearbeitung bzw. –fermentation.
Die Bedeutung der Hefepilze für die Geschichte der Menschheit kann kaum überschätzt werden. Die Art Saccharomyces cerevisiae, wörtlich übersetzt “Zuckerpilz des Bieres“, und bekannt als die Gewöhnliche Bierhefe kann Zucker zu Ethanol („Alkohol“) und Kohlenstoffdioxid abbauen. Beide Abbauprodukte werden von Menschen seit Jahrtausenden genutzt, das Ethanol zur Herstellung alkoholischer Getränke, das Kohlenstoffdioxid zum Brotbacken (Hefeteig). Einige Historiker glauben, dass das Bierbrauen aus gekeimten Getreidekörnern der erste Anlass für den Beginn des Ackerbaus war. Wenn dies stimmt, wäre die unbewusste Kultivierung von Hefepilzen die erste Voraussetzung für die Entwicklung von Hochkulturen gewesen (Reichholf 2008).
Neben der Bierhefe spielen auch noch zahlreiche andere Mikropilze eine wichtige Rolle in der biotechnischen Produktion und in der Mikrobiologie. Eine lange Tradition haben die verschiedenen Pilze, die in der Käseherstellung eingesetzt werden, wie Penicillium camembertii oder P. roquefortii, oder die verschiedenen Pilzarten, die man in Ostasien zur Fermentierung von Soja, Reis oder anderen Getreidearten nutzt. Der Schlauchpilz Fusarium venenatum wird seit den 1980iger Jahren in Großbritannien zur Herstellung eines als „Quorn“ bezeichneten Fleischersatzes verwendet. Der gefürchtete Pflanzenparasit Botrytis cinerea (s. S. XX) bewirkt auf reifen Weintrauben eine sogenannte „“Edelfäule“, die für die Produktion von besonderen Weinen (Beerenauslese, Trockenbeerenauslese) genutzt werden.

Antibiotika und Statine

Pilze sind seit der Entdeckung von Alexander Fleming die klassischen Lieferanten von Antibiotika. Ohne pilzliche Cyclosporine könnte man die Immunreaktion bei Organtransplantationen kaum unterdrücken. Auch die als Cholesterrolsynthesehemmer eingesetzten Statine stammen aus Schimmelpilzen.

Im mikrobiologischen Labor werden Pilze meist unter sterilen Bedingungen in Petrischalen auf festem Substrat (Agar mit Zusätzen) oder in flüssigen Medien kultiviert. Aus solchen Kulturen werden – heute oft unter Anwendung gentechnischer Methoden – immer wieder Stämme mit neuen Stoffwechselleistungen gewonnen. In der Biotechnik verwendet man große Bioreaktoren zur Produktion zum Beispiel von Zitronensäure (Aspergillus niger), weiteren organische Säuren, Antibiotika, Enzymen und Steroiden.

Pilzgifte

Viele Pilzgifte sind Stoffwechselbestandteile von Großpilzen. Obwohl schon seit dem Altertum bekannt, werden immer wieder neue Giftpilze und neue Gifte entdeckt, z. B. der Glutamatantagonist Acromelsäure aus dem Parfümierten Trichterling (Clitocybe amoenolens, 1987 nach DGfM) oder 2001 die in dem lange Zeit als guter Speisepilz geltenden Grünen Ritterling (Tricholoma equestre) enthaltene Cycloprop-2-en-carboxylsäure, die zumindest bei manchen Menschen Skelettmuskelzerfall (Rhabdomyolyse) verursacht. Die verschiedenen giftig wirkenden Substanzen aus Pilzen und die Funktionszusammenhänge im Organismus sind in vielen Fällen noch nicht genau erforscht. Üblicherweise werden die Vergiftungserscheinungen unter verschiedenen Syndromen zusammengefasst (Tabelle XX Pilzvergiftungen).
Von den rund 8000 in Mitteleuropa vorkommenden Großpilzen sind nur 150-200 Arten giftig. Als tödlich giftig werden von der französischen Gesellschaft für Mykologie 28 Arten genannt. Von 2003 – 2012 starben nach Angaben des Statistischen Bundesamtes durch Verzehr von giftigen Pilzen allerdings nur 31 Personen, insbesondere am häufigen Grünen Knollenblätterpilz (Amanita phalloides). Trotzdem sind Giftpilze eine nicht zu unterschätzende Gefahr, die nur vermieden werden kann, wenn man nur solche Pilze zu Speisezwecken verwendet, die man ganz sicher kennt. Diese Erkenntnis muss das wichtigste Unterrichtsziel bei der Behandlung von Giftpilzen sein. Im übrigen kann man auf die Möglichkeit der Pilzberatung und die verschiedenen Giftnotrufzentralen aufmerksam machen (s. S. XX).
In Abgrenzung zu den Giften in Fruchtkörpern der Großpilze werden giftige Inhaltsstoffe in Schimmelpilzen und anderen Mikropilzen (Aflatoxine, Ochratoxine u. a.) als Mykotoxine bezeichnet. Besonders Getreideprodukte und Nüsse können durch Schimmelbefall vergiftet werden. Über das Futter können die Gifte auch von Nutztieren aufgenommen werden und in Nahrungsmittel gelangen („carry-on“). Auch der giftige Mutterkornpilz (Claviceps purpurea) ist dieser Kategorie zuzuordnen (s. S. XX).

Halluzinogene Pilze

Psychoaktive Pilzinhaltsstoffe haben vor allem bei Azteken und Mayas schon seit Jahrtausenden eine wichtige Rolle gespielt. Die bekannten Pilzsteine der Mayas aus Guatemala wurden im 1. Jahrtausend unserer Zeitrechnung hergestellt. Von der Hippiekultur der 1960iger und 70iger Jahre wurden Pilze – insbesondere Psilocybe-Arten – als Rauschdrogen wiederentdeckt. Der Fliegenpilz (Amanita muscaria) spielte als wichtiger psychoaktiver Pilz vor allem in Nordasien und Nordamerika, wahrscheinlich auch in Europa, eine bedeutende Rolle. Dass er bis heute als Glückssymbol gilt, dürfte auf diese Verwendung zurückzuführen sein. Der Ethnologe Wasson vertrat die nicht endgültig gesicherte Ansicht, dass die in Sanskrittexten beschriebene göttliche Droge Soma der Fliegenpilz sei (Wasson 1968, Bauer/Klapp 2012).

Heilpilze

Heilpilze haben vor allem in der traditionellen chinesischen Heilkunde einen große Bedeutung, werden aber auch zunehmend in westlichen Ländern genutzt und oft über das Internet vertrieben. Kernkeulen (Cordiceps) sollen das Immunsystem stärken, der Stachelbart (Hericium) wird gegen Sodbrennen und empfindliche Magenschleimhäute empfohlen, der Eichhase (Polyporus umbellatus) soll herzstärkend wirken und Wassereinlagerungen verhindern, der Glänzende Lackporling (Ganoderma lucidum) wird nahezu als Allheilmittel gepriesen, besonders aber als Mittel gegen neurotische Erkrankungen. Der Brasilianische Mandelchampignon (Agaricus subrufescens, syn. A. blazei) gilt nicht nur wegen seines Gehalts an β-D-Glucanen als Immunsystem unterstützend, auch seinem hohen Selengehalt wird gesundheitliche Bedeutung zugemessen.

Vorratsschädlinge, Holzzersetzer

Als Saprobionten vernichten Pilze natürlich auch alle Arten von organischen Materialien, die vom Menschen genutzt werden: Nahrungsmittel (Vorratsschädlinge), Textilien und Lederwaren und Baumaterialien, vor allem Holz. Der Hausschwamm (Serpula lacrymans) ist für Holz- und Fachwerkäuser eine besondere Gefahr, da er ein höchst effektives Wasserleitungssystem besitzt und damit auch für völlig trockene Holzkonstruktionen gefährlich werden kann (Bavendamm 1974). Über die Bedeutung von Schimmelpilzen in feuchten Räumen ist viel geschrieben und gestritten worden. Gefährlicher als die Vernichtung von Bausubstanz sind hier vor allem allergische Reaktionen der Bewohner auf Pilzsporen.

Pathogene

Auf die Wirkung pflanzen- und tierpathogener Pilze wurde schon im Zusammenhang mit ihrer Rolle als Konsumenten in Ökosystem hingewiesen. „Although viruses and bacteria grab more attention, fungi are the planet’s biggest killers“ schrieb Nicola Jones 2013 in einem Artikel über mögliche zukünftige globale Bedrohungen. Dabei könnte der Klimawandel die Ausbreitung von Pilzparasiten begünstigen. So hat sich der ursprünglich tropische humanpathogene Pilz Cryptococcus gattii an Amerikas Pazifikküste nach Nordwesten ausgebreitet und 2010 bereits 280 Personen infiziert, von denen zahlreiche starben. Angegriffen werden die Atemwege. Der Pilz ist auch Pflanzenparasit, eine Infektion ist auch über befallene Bäume, vor allem Eukalyptusarten, möglich.

Kompostierbare Baustoffe

Schließlich eignen sich Pilze auch zur Herstellung von kompostierbaren Baustoffen und Verpackungsmaterialien. Als Beispiel sei die New Yorker Firma, Ecovativedesign genannt, die dafür mit mehreren Umweltpreisen ausgezeichnet wurde.

Verwandtschaft und Phylogenie

Pilze werden als „Fadenwesen“ bezeichnet (Holzer 2011). Dieser Name charakterisiert das Reich der Pilze recht gut, denn auch bei den nicht fädigen Hefepilzen gibt es zahlreiche Übergänge zu einer fädigen Lebensform. Andererseits gehören nicht alle fädigen chlorophyllfreien Lebewesen zur engeren Verwandtschaft der Pilze. Schon bei Prokaryoten kommen chlorophylllose „Fadenwesen“ vor, die folgerichtig zunächst auch als „Strahlenpilze“ oder „Actinomyceten“ bezeichnet wurden, heute aber korrekt Actinobacteria genannt werden. Die „Eipilze“ oder „Oomycota“ entwickeln Echten Pilzen ähnliche Fadengeflechte, ihre Zellwände enthalten jedoch kein Chitin sondern Cellulose, weshalb sie auch „Cellulosepilze“ genannt werden. Zu ihnen gehören gefährliche Pflanzenparasiten wie die Kartoffelfäule (Phytophthora infestans) und die „Falschen Mehltaupilze“ (Peronosporaceae). Verwandtschaftlich lassen sie sich zusammen mit Braunalgen, Goldalgen und Kieselalgen der Protistengruppe Chromista (Stramenopila) zuordnen.
Auch die Schleimpilze (Myxomycota) sind keine Pilze im engeren Sinne. Große Teile ihres Lebenszyklus leben sie als Einzeller, nur zur Fortpflanzung bilden sie größere Aggregate und morphologisch sehr unterschiedliche und auffällige Sporenkörper. Bei einer Untergruppe bilden sich vielkernige, nicht in einzelne Zellen unterteilte Syncytien (s. S. XX).

Die ersten Versuche einer systematischen Gliederung der Pilze im 18. und 19. Jahrhundert basierten auf der Makromorphologie der Fruchtkörper. Ende des 19. und zu Beginn des 20. Jahrhunderts rückten mikromorphologische Merkmale immer mehr in den Vordergrund. Seit Ende des 20. Jahrhunderts wurden zunehmend molekulargenetische Methoden zur Aufklärung der Verwandtschaftsbeziehungen der Pilze eingesetzt. 67 Mykologen erarbeiteten im Rahmen des Projekts „Assembling the Fungal Tree of Life“ ein vorläufiges Gesamtergebnis, das 2007 veröffentlicht wurde (Hibbett et al. 2007). Dieses System bedeutet in vieler Hinsicht eine völlige Neuordnung. So wurde die lange sehr gut etablierte Gruppe der Bauchpilze mit Bovisten, Erdsternen und Teuerlingen vollständig aufgelöst. Die einzelnen Taxa wurden unterschiedlichen systematischen Gruppen zugeordnet, der Kartoffelbovist zum Beispiel den Röhrlingsartigen, die Stäublinge und Teuerlinge in eine Familie mit den Champignons. 2001 wurde in Guyana ein Pilz entdeckt, der aussah wie ein Stielbovist (Gattung Tulostoma), sich aber bei genetischer Untersuchung als Verwandter der Hirschtrüffeln (Elaphomycetaceae, Ascomycota) herausstellte (Miller et al. 2001).
Die Schlauchpilze und Ständerpilze insgesamt blieben als einheitliche Verwandtschaftsgruppen (Abteilungen) erhalten, die früher als „Algenpilze“ oder „Niedere Pilze“ zusammengefassten Gruppen mit Jochpilzen und Geißelpilzen wurden – nach Ausschluss der Oomycota – neu aufgeteilt, ihre systematische Gliederung in neue Abteilungen ist jedoch noch im Fluss. Als gesichert gilt die Monophylie der Verursacher der vesikuär-arbuskulären Mykorrhizen, der Abteilung Glomeromycota.

Die stammesgeschichtliche Entstehung der Pilze reicht vermutlich weit ins Präkambrium zurück, sicherlich weiter als 1 Mrd. Jahre. 2017 entdeckten schwedische Forscher Pilzmyzel-ähniche Strukturen in 2,4 Mrd. J. alten südafrikanischen Basalten (Bengtson et. al 2017). Die Zuordnung der gefundenen Fadenstrukturen zu Pilzen ist jedoch nicht unumstritten. In 410 Mill. Jahre alten Sedimenten des Unterdevons kommen zusammen mit den ersten Landpflanzen auch schon alle Pilzgruppen außer den Basidiomyceten vor. Basidiomycota dürften wesentlich später entstanden sein, sichere Fossilfunde sind 90 Mill. Jahre alt (Stephenson 2010; Moore et al. 2011). Von einem bemerkenswerten Riesenfossil aus dem Devon, Prototaxites mit bis über 8m langen Stammstrukturen, wird heute angenommen, das es pilzlicher Natur war – ein wahrer Pilzbaum in der damals noch ziemlich niedrigen Vegetation (Boyce et al 2007, Abb. XX). Dieses größte Landlebewesen seiner Zeit hat sich aber nicht von den Abfällen der ersten Landpflanzen ernährt, das Isotopenverhältnis seiner Kohlenstoffverbindungen deutet darauf hin, dass es sich von den biogenen Abfallstoffen ernährt hat, die in den vorausgegangenen 2 Mrd. Jahren von Protisten angehäuft worden waren. Das große Artensterben vor 251 (Perm – Trias) und vor 65 (Kreide – Tertiär) Millionen Jahren hatte vermutlich jeweils zur Folge, dass saprobiotische Pilze besonders gute Entwicklungsbedingungen vorfanden. Entsprechend viele Pilzfossilien kennt man aus diesen Zeitabschnitten (Moore/Robsen/Trinci 2011).

Im Stammbaum der Lebewesen stehen Pilze zusammen mit den Tieren und den einzelligen Kragengeißlern (Choanoflagellatae) in einer großen Verwandtschaftsgruppe (Schubgeißler, Opisthokonta). Deren Schwestergruppe sind die Amoebozoa mit Amöben und Schleimpilzen. Zusammen werden sie auch als Amorphea bezeichnet und als monophyletische Gruppe von allen übrigen Eukaryoten abgegrenzt (Adl et al. 2012).

Resumé

In den folgenden Unterrichtsvorschlägen kann nur eine kleine Auswahl aus den möglichen pilzkundlichen Themen gegeben werden. Wir mussten auswählen, genau so, wie jede Lehrperson immer auswählen muss, wenn sie ein komplexes Thema bearbeiten will. Wir hoffen aber, dass deutlich wurde, dass Pilze in fast allen Teilgebieten der Life Sciences eine Rolle spielen, insbesondere auch in Bereichen der angewandten Biologie, und dass es sich lohnt, im Biologieunterricht nicht nur beim „Ökosystem Wald“ auf die Bedeutung dieser fantastischen Fadenwesen zu sprechen zu kommen.

Literarur und Quellen unter

http://www.wilfried-probst.de/site/wp-admin/post.php?post=709&action=edit

Saumbiotope – Grenzen und Übergänge (zu UB 425)

Immer häufiger sieht man an Straßenrändern, auf Verkehrsinseln oder an Ackerrandstreifen bunte Blumen blühen. Das sind nicht nur Klatsch-Mohn und Kornblume, Schafgarbe, Wilde Möhre und Wegwarte sondern auch Sommermalve (Malope trifida), Großblütiger Lein (Linum grandiflorum), Büschelschön (Phacelia tanacetifolia), Vogelfuß-Mädchenauge (Coreopsis palmata), Doldige Schleifenblume (Iberis umbellata) und andere Exoten, vorwiegend aus etwas wärmeren Regionen Europas und Amerikas. Für „Blühstreifen“ an Äckern gibt es für Landwirte sogar Fördermittel. Mittlerweile bieten Saatgutfirmen bereits ein differenziertes Angebot an Samenmischungen an. Sind es nur ästhetische Gesichtspunkte, die zu diesen „Blumenstreifen“ Anlass geben? Stehen dahinter auch ökologische Überlegungen und Ziele? Diese blühenden Wegränder sehen zweifellos schön aus, sie werden auch von blütenbesuchenden Insekten gerne angenommen. Ist es sinnvoll, dafür vor allem nicht einheimische Arten zu nutzen?

Diese Fragen führen zu der übergeordneten Frage, welche besonderen Merkmale solche Übergänge und Grenzen zwischen verschiedenen Landschaftselementen kennzeichnen. Was zeichnet Saumbiotope aus?

Das Unterricht Biologie Heft 425 „Saumbiotope – Grenzen und Übergänge“ ist im Juli 2017 erschienen

Grenzen und Übergänge

Räumlich begrenzte Lebensgemeinschaften, deren Organismen untereinander besonders zahlreiche Wechselbeziehungen zeigen, bezeichnet man zusammen mit ihrer unbelebten Umwelt als Ökosystem. Ein solches System kann ein begrenzter Waldbestand, ein kleines Moor, ein Dorfteich oder eine Felskuppe sein. Aber auch viel größere Einheiten, etwa ein großer See oder Meeresteil oder ein riesiges Waldgebiet wie das Amazonasbecken kann man als Ökosystem auffassen.
Bei naturnahen Landschaften sind die Grenzen zwischen verschiedenen Ökosystemen oft keine scharf gezogenen Linien, vielmehr sind es allmähliche Übergänge. Dies gilt für großräumige Übergänge, etwa vom tropischen Regenwald zur Savanne oder von der Taiga in die Tundra. Diese Übergangsbereiche werden auch als Ökotone bezeichnet.

Vegetationszonierung im Vorderrheintal bei Sedrun

Vegetationszonierung im Vorderrheintal bei Sedrun (Foto Probst)

Es gilt aber auch für kleinere Gebiete, zum Beispiel für die Baumgrenze an einem Gebirgsmassiv.

Scharfe Grenzen hängen oft mit menschlichen Aktivitäten zusammen: Waldränder, Feldraine und Straßenränder sind dafür typische Beispiele. Aber auch katastrophenartige Naturereignisse wie Waldbrände, Sturmschäden, Lawinen, Vulkanausbrüche oder Überschwemmungen haben die Ausbildung scharfer Grenzen zur Folge, die allerdings meist im Laufe der Zeit wieder ausgeglichen werden.
Auch steile Umweltgradienten, zum Beispiel die Wassertiefe an einem Gewässerufer oder die Meereshöhe in einem Gebirge, können zu deutlich erkennbaren Zonierungen führen, bei denen die einzelnen Pflanzengemeinschaften scharf gegeneinander abgegrenzt sind.

Der besondere Reiz solcher Grenzen besteht darin, dass es hier zu einer Vermischung von zwei verschiedenen Lebensgemeinschaften kommt. Solche „Säume“ oder „Ökotone“ bieten besonders viele ökologische Nischen und sind deshalb oft besonders artenreich. Sie erfüllen wichtige ökologische Funktionen, zum Beispiel als Brutplatz für Vögel, Wanderwege für Reptilien und Amphibien, Überwinterungsquartiere für Wirbellose oder Nahrungsspender für Blüten besuchende Insekten.

Saumbiotope in der mitteleuropäischen Kulturlandschaft

Mitteleuropäische Kulturlandschaft (Baden-Württemberg)

Mitteleuropäische Kulturlandschaft (Baden-Württemberg; Foto Probst)

Saumbiotope sind wesentliche Elemente der traditionellen Kulturlandschaft. Sie sind mit der Entwicklung des Ackerbaus seit dem Neolithikum und der Bronzezeit unter dem Einfluss des Menschen entstanden. In Mitteleuropa haben sich diese kleinräumigen Strukturen mit der Auflockerung und Zurückdrängung der ursprünglichen Urwälder in den vergangenen 6000 Jahren allmählich entwickelt. Dadurch hat sich die Anzahl der Pflanzen- und Tierarten, die Biodiversität, stark erhöht. Schaut man sich die Verteilung der Tier- und Pflanzenarten in einer kleinräumig strukturierten, von Wallhecken, Wegrändern, kleinen Gehölzen und Wasserläufen geprägten Landschaft an, so sind die flächigen Landschafselemente relativ artenarm, die meisten Arten konzentrieren sich in den Saumbiotopen. Viele Arten aus den bewirtschafteten Arealen haben

Hochgewachsener Straßenrand mit Glatthafer und Margeriten

Hochgewachsener Straßenrandstreifen mit Glatthafer und Margeriten (Foto Probst)

in den Saumbiotopen eine Rückzugsmöglichkeit gefunden. Dabei kam es im Laufe der Jahrhundrte auch zu Einnischungsprozessen, die Arten haben sich in Anpassung an die besonderen Bedingungen der Saumbiotope  etwas verändert. Auch für eine Reihe neu eingewanderter Arten bieten Saumbiotope günstige Bedingungen.

Eine besondere Bedeutung kommt Saumbiotopen für die Vernetzung von Ökosystemen zu. In einer wenig strukturierten Agrarlandschaft kann die ökologische Qualität durch Ökotone wesentlich verbessert werden. Ein besonderes Problem riesiger Felder in einer ausgeräumten Landschaft ist die Bodenerosion. In Mecklenburg-Vorpommern, einen Bundesland mit besonders vielen großflächigen Äckern, gelten mehr als die Hälfte der Böden als erosionsgefährdet, in ganz Deutschland immerhin 14% (Umweltbundesamt). Das ist ein Grund dafür, dass der Naturschutz ein besonderes Augenmerk auf die Ökotondichte einer Landschaft legt.

Schutz und Pflege von Saumbiotopen

Durch Beweidung stark degradierter Knick, Ausacker b.Flensburg, 1984 (Foto Probst)

Durch Beweidung stark degradierter Knick, Ausacker bei Flensburg, 1984 (Foto Probst)

Allerdings sind Grenzen in einer Kulturlandschaft nicht immer ein wertvoller Saumbiotop. Wallhecken wachsen zu weniger nischenreichen Baumreihen aus, wenn sie nicht regelmäßig „auf den Stock gesetzt“ werden. Dabei sollte man allerdings darauf achten, dass die zurückgeschnittenen Strecken nicht zu lang sind, damit sich für die Arten Rückzugsmöglichkeiten eröffnen. Durch Beweidung können die Wälle erodieren und die Krautvegetation vernichtet werden, durch Pestizideinsatz auf dem angrenzenden Acker können Tiere und Pflanzen geschädigt werden.

Herbicideinsatz am Wegrand (Foto Probst)

Herbicideinsatz am Wegrand (Foto Probst)

Ähnliches gilt für Wegränder und Straßenränder. Frühzeitiges und häufiges Mähen mindert ihren Wert. Erst wenn die Pflanzen blühen, können sie Blütenbestäuber ernähren und erst wenn sie reife Früchte ausbilden können sie sich selbt vermehren und auch als Futterpflanzen für Vögel und andere Tiere zur Verfügung stehen. Auch noch im Winter bieten Fruchtstände („Wintersteher“) Futter und Unterschlupf- und Überwinterungsmöglichkeiten für Insekten.

Waldränder sind umso artenreicher, je dichter der Gebüschsaum und der Hochstaudenbestand ausgebildet sind.Allerdings wird sich von einem Waldrand ausgehend in einem Waldklima der Wald allmählich ausdehnen, wenn man der Natur ihren Lauf lässt. Durch Wurzelausläufer und Keimlinge vordringende Gehölzpflanzen wird der Landwirt deshalb abmähen  und umpflügen müssen. Mäht man allerdings mit dem Schlegelmäher hart an der Waldgrenze entlang, führt dies schnell zu einer Auflockerung des dichten Gebüschstreifens, der dadurch viele seiner ökologischen Funktionen verliert.

Gewässerränder können je nach Uferprofil und Gewässertyp sehr unterschiedlich aussehen.Besonders stark wurden die Fließgewässer in der mitteleuropäischen Landschaft im Laufe der Jahrhunderte verändert. Um die landwirtschaftlich nutzbaren Flächer zu vergrößern wurden nicht nur die Übergangszonen, verschmälert, die Bäche selbst wurden begradigt, tiefer gelegt, und regelmäßig ausgeräumt und ihre Ufervegetation abgemäht. Die Renaturierung von Bachläufen ist deshalb heute ein wichtiger Bereich des Natur- und Umweltschutzes.

Die charakteristischen Saumbiotope an großen Wasserläufen, die Auwälder, sind fast vollständig aus unserem Landschaftsbild verschwunden. Dabei handelt es sich um ursprünglich besonders artenreiche für den Naturhaushalt einer Landschaft wichtige Biotope: “ In den Auen der Schweiz wurden bisher gegen 1200 Pflanzenarten erfasst, wobei die tatsächliche Zahl wahrscheinlich 1500 Arten übersteigt. Dies entspräche der Hälfte der Schweizer Flora auf einem halben Prozent der Landesfläche. Wie die botanische ist auch die zoologische Vielfalt gross: Schmetterlinge, Libellen, Heuschrecken nutzen die verschiedenen Auenbiotope im Lauf ihres Lebenszyklus; Amphibien und Fische, zahlreiche Vogel- und Säugetierarten finden hier Nahrung und Unterschlupf.“ http://www.waldwissen.net/wald/naturschutz/gewaesser/wsl_auen_schweiz/index_DE?dossierurl=http://www.waldwissen.net/dossiers/wsl_dossier_auen/index_DE

Auch an stehenden Gewässern kommt dem Schutz der Gewässerrandstreifen eine besondere Bedeutung zu und auch hier sind natürliche Verhältnisse nur noch an sehr wenigen Stellen zu finden.

Gewässerränder sollten durch Schutzstreifen vor Einträgen aus der Landwirtschaft (Dünger, Pestizide) aber auch vor menschlichem Zutritt geschützt werden.

Auch Meeresküsten zeigen eine charakteristische Zonierung, die allerdings je nach Küstenform sehr unterschiedlich aussehen kann. Bei den an der deutschen Nordseeküste so charakteristischen Wattflächen handelt es sich um flächenhafte Ökosysteme, die nicht  als Saumbiotope im eigentlich Sinne bezeichnet werden können.

Halophytenflur auf Baltrum, 1982 (Foto Probst)

Halophytenflur auf Baltrum, 1982 (Foto Probst)

Dünen und Salzwiesen zeigen schon eher die Charaktristika von Saumbiotopen, in denen sich Elemente der angrenzenden Lebensräume mit den typischen Vertretern mischen. Sehr enge Säume bilden sich an Felsküsten, die  in Deutschland allerdings weitgehend auf die Insel Helgeland begrenzt sind. Sie sind aber charkteristisch für mediterrane Küsten.

Natüriche Küstensäume sind durch anthropogene Einflüsse vielfach verändert worden. Ein Rolle spielen künstliche Befestigungen und Schutzanlagen (Deiche, Grabensysteme und Befestigungen zur Landgewinnung), Verbauungen, Hafenanlgen usw. . Hinzu kommen Einleitungen von Abwässern sowie Düngemitteln und Pestiziden. Tropische Mangroveküsten sind insbesondere durch Aquakulturen, vor allem Garnelenfarmen, bedroht.

Fragmentierung

Oft sind Saumbiotope besonders artenreich, da in ihnen die Arten beider angrenzender Biotope zu finden sind. Es wäre allerdings die falsche Schlussfolgerung, wenn man daraus ableiten würde, dass eine Zerstückelung großer Lebensräume grundsätzlich die Biodiversität erhöhen würde. Im Gegenteil, die Habitatfragmentierung, also die Aufspaltung der Lebensräume von Tier- und Pflanzenarten, wird als eine wichtige Ursache für die Verminderung der Biodiversität angesehen. Lebensraumzerschneidungen, der Aufbau von Barrieren und Grenzen zwischen verschiedenen Teilen einer Population, schränkt den genetischen Austausch ein und kann letzlich zum Aussterben von Arten führen, wenn die Teilpopulationen eine bestimmte Größe unterschreiten.  Um diese nachteiligen Effekte zu vermeiden, ist es wichtig, dass Korridore erhalten bleiben, durch die eine Verbindung der Teillebensräume bestehen bleibt. Der Zerschneidungseffekt von Verkehrswegen kann zum Beispiel durch grüne Brücken über Autobahnen oder durch Krötentunnel unter Landstraßen ein bisschen gemindert werden.

Besonders gefährlich ist die Fragmentierung für artenreiche, großflächige Ökosysteme, die eine lange Evolution hinter sich haben, wie zum Beispiel das Amazonasbecken. Rodungen und der Bau von Verkehrswegen haben hier zu vielen neuen Waldgrenzen geführt. Die Veränderungen durch eine solche Grenze wirken sich oft 100m in das Innere des Ökosystems aus. Das veränderte Mikroklima begünstigt die Einwanderung von neuen, auch invasiven Arten, dichterer Unterwuchs kann das Übergreifen von Feuern von angrenzenden Wirtschaftsflächen fördern. Dadurch verändert sich das Artengefüge, je kleiner die neuen Teillebensräume, desto größer ist der Verlust an Biodiversität.

Saumbiotope im Biologieunterricht

Saumbiotope haben oft etwas mit menschlichen Aktivitäten zu tun. Damit können Menschen aber auch Einfluss nehmen auf die  Qualität solcher Übergänge. Dabei bietet es sich besonders an, Beispiele aus dem direkten Umfeld der SchülerInnen, aus der eigenen Gemeinde, in den Mittelpunkt des Unterrichts zu stellen. In ländlichen Gemeinden können sich SchülerInnen  zum Beispiel über Aussehen und Pflege von Ackerrandstreifen informieren und eigene Vorstellungen mit betroffenen Landwirten diskutieren. In Städten können Parkpflegekonzepte und die Pflege von Weg- und Straßenrändern thematisiert und wenn möglich mit Anwohnern und Mitarbeitern des Umwelt- und Grünamtes besprochen werden. Dabei können  ökologische Grundkenntnisse über Artenschutz und Biodiversität, Verinselung und Vernetzung, Einnischung und Konkurrenz, Eutrophierung und Anreicherung von Schadstoffen in der Nahrungskette vermittelt werden. Es zeigt sich aber auch, dass wirtschaftliche Interessen, Fragen der Verkehrssicherheit und ästhetische Vorstellungen und Bdürfnisse der Bevölkerung berücksichtigt werden müssen. Auf dieser Basis kann es gelingen,  die Folgen von Pflegemaßnahmen und Eingriffen zu verstehen und dieses Verständnis zu nutzen, um sich in der Gemeinde aktiv für sinnvolle Naturschutzmaßnahmen einzusetzen.

Mögliche Themen

Vielfalt an Straßenrändern
Anzahl blühender Pflanzen in verschiedenen Saumbiotopen
Lebensraum Wallhecke (Knick)
Ackerrandstreifen
Bachufer
Seeufer (z. B. Kartierung eines Gewässerufers)

Uferkartierung mit Klebepunkten (Foto: Probst)

Uferkartierung mit Klebepunkten (Foto: Probst)

Meeresküste, Spülsaum
Leben am Waldrand (z. B. Tierspurensuche am Waldrand, Vegetationstransekt vom Wald auf die Wiese)
Transektmethode zur Aufnahme von Übergängen
Waldgrenze im Gebirge
Höhenzonierung
Luftbildauswertung zu Saumbiotopen in unterschiedlichen Landschaften
Verbesserung der Ökotondichte (Ausarbeitung von Vorschlägen für die eigene Gemeinde)
Biotopverbund

Literaturauswahl und URLs

Beck, E. (2015): Biodiversitätsforschung – wohin geht die Reise? Biol.Unserer Zeit 45(2), S. 98-105

Ellenberg, H./Leuschner, L. (6. A., 2010): Vegetation Mitteleuropas mit den Alpen Stuttgart: Ulmer (UTB)

Frey, ./Lösch, R. (3.A., 2010): Geobotanik. Pflanze und Vegetation in Raum und Zeit. Heidelberg: Spektrum

Heydemann, B./Hofmann, W./Irmler, U. (Hrsg, 1990): Verbundfunktion von Straßenrandökosystemen. Faunistisch-Ökol. Mitt., Suppl.9, Neumünster: K. Wachtholtz

Hobohm, C. (2000): Biodiversität. UTB 2162, Wiebelsheim: Quelle und Meyer

Kronberg, I. (Hrsgin.,1999): Saumbiotope. UB 245 (23.Jg.)

Kühne, S./Freier, B. (2012): Saumbiotope und ihre Bedeutung für Artenvielfalt und biologischen Pflanzenschutz. Workshop „Biological Diversity in Agricultural
Landscapes“ – February 09-10, 2012, Berlin-Dahlem
http://pub.jki.bund.de/index.php/JKA/article/view/2201/2585

Plachter, H. (1991): Naturschutz. Stuttgart: G.Fischer

Poschold, P. (2015): Geschichte der Kulturlandschaft. Stuttgart:Ulmer

Riedel, W./Lange, H. (Hrsg., 2. A., 2002): Landschaftsplanung. Heidelberg,Berlin: Spektrum

Schwarz, L. (2016): Als der Boden wegflog. TAZ vom 8.4.2016

Starkmann, T. (2017): Blühende Vielfalt am Wegesrand. Praxis-Leitfaden für artenriche Weg- und Feldränder. LANUV-Info 39 https://www.lanuv.nrw.de/fileadmin/lanuvpubl/1_infoblaetter/info39_Broschuere_Wegrain.pdf

Tschumi, M. et al.(2015): Wildflower strips enhance biological pest control and yield. In: Gesellschaft für Ökologie e. V. (Hrsg.): Verhandlungen der Gesellschaft für Ökologie. Band 45. S. 163ff, Marburg: Görich & Weiershäuser.

Walter, H. (1976): Die ökologischen Systeme der Kontinente (Biogeosphäre). Stuttgart, New York: G. Fischer

http://www.brodowin.de/naturschutz/saumbiotope/

http://www.karch.ch/karch/page-34517_de.html

http://www.landwirtschaftsamt.tg.ch/documents/2015_LQ-Merkblatt__205_Blumenstreifen_am_Ackerrand_Wegleitung_Projekthomepage.pdf

http://www.nachhaltigleben.ch/1-blog/3398-schaedlinge-bekaempfen-blumenstreifen-koennten-pestizide-ersetzen

https://umweltministerium.hessen.de/sites/default/files/media/hmuelv/ackerrandstreifen.pdf

http://naturschutzbund.at/service/newsletter-leser/items/bedrohte-wunderwelt-am-wegesrand.html?file=tl_files/Inhaltsbilder/Service/newsletter/pdf/062_wegraender_anhang.pdf.

https://www.sielmann-stiftung.de/projekte/sielmanns-biotopverbunde/

http://www.naturschutzinformationen-nrw.de/vns/de/foerderkulissen/extens_ackernutzung/ackerrandstreifen

http://www.fva-bw.de/publikationen/merkblatt/mb_48.pdf

http://www.kn-online.de/News/Aktuelle-Nachrichten-Rendsburg/Nachrichten-aus-Rendsburg/Bluetenpracht-der-Saumbiotope-bietet-neuen-Lebensraum

http://www.waldwissen.net/wald/naturschutz/gewaesser/wsl_auen_schweiz/index_DE?dossier_rated=1#bew

http://www.baden-wuerttemberg.de/de/service/presse/pressemitteilung/pid/start-des-modellprojekts-strassenbegleitgruen-1/

http://ifa.agroscience.de/index.php/de/news-projekte/beispielprojekte/eh-da-flaechen/

UB 405 „Pilze“ und UB 406 Schülerkompakt „Ab in die Pilze“ sind erschienen

Von der Planung bis zum Erscheinen eines Unterricht Biologie Heftes vergehen gut zwei Jahre. Trotzdem wird es in den letzten Monaten meistens etwas hektisch und nicht immer kann der Erscheinungstermin ganz pünktlich eingehalten werden. Nun sind die beiden Hefte zu den Pilzen – für Juni und Juli 2015 vorgesehen- tatsächlich Ende Juni erschienen.

Die beiden Hefte ergänzen sich. Während wir im regulären UB-Heft 405 versucht haben, möglichst viele Facetten der Pilzkunde einzubeziehen, stehen im Kompakt (UB 406) Pilze im Mittelpunkt, die man in Wald und Wiese finden kann. Dabei geht es natürlich nicht nur ums Essen, sondern auch um Hexenringe  und Sporenbilder, Pilz-Baum-Partnerschaften, Pilzdüfte und Plzfarben und Pilze als Werkstoffe und Bastelmaterial.

Die unten stehenden Inhaltsverzeichnisse sollen Ihr Interesse wecken.

Inhalt UB 405

Inhalt UB 405

Inhalt UB 406

Inhalt UB 406

Ausführliche Literatur- und Quellenliste zum UB-Heft 405 „Pilze“

Bei den Recherchen zum UB Heft über Pilze, das voraussichtlich im Juni 2015 erscheinen wird, habe ich wesentlich mehr Literatur konsultiert als in der Literaturliste zum Basisartikel angegeben. Deshalb folgt hier eine ausführlichere Liste. Für wichtige oder besonders interessante Ergänzungen wäre ich dankbar.

Wilfried Probst, im November 2014

Zeitschriften, Beiträge zu Sammelbänden

Adl, S. et al. (2012): The Revised Classification of Eukaryotes. Journal of Eukaryotic Microbiology 59(5).
http://onlinelibrary.wiley.com/doi/10.1111/j.1550-7408.2012.00644.x/pdf

Agerer; R. (1993): Mykorrhiza. UB 183 (Jg. 29), S.46-48

Akademie für Naturschutz und Landschaftspflege (ANL, 2013): Pilze und Naturschutz. Laufen
http://www.anl.bayern.de/veranstaltungen/tagungsergebnisse/2013pilze/index.htm

Angersbach, U./Groß, J. (2005): Blattschneiderameisen – schneiden, kauen und essen? UB 306 (29. Jg.), S. 34-40

Averill, C./Turner, B. l./Finzi, A. C. (2014): Mycorrhiza-mediated competition between plants and decomposers drives soil carbon storage. Nature 505, pp. 143-145

Bardgett, R.D./van der Putten, W. H. (2014): Belowground biodiversity and ecosystem functioning. Nature 515, pp. 505-511

Barnekow, D./Probst, W. (2005): Termiten fressen Holz. Beihefter in UB 306 (29.Jg.), S. 28-31

Bavendamm; W. (1974): Die Holzschäden und ihre Verhütung. Stuttgart: Wiss. Verlagsges.

Bayerische Akademie für Naturschutz und Landschaftspflege (ANL) (2013): Bericht von der Tagung „Pilze und Naturschutz“ 2.2.2013 http://www.anl.bayern.de/veranstaltungen/tagungsergebnisse/2013pilze/index.htm

BBC über Cordyceps-Infektionen von Insekten (Video)
http://io9.com/5918948/fungal-infection-causes-tarantula-to-grow-antlers

Bengtson, S. et al. (2017): Fungus-like mycelial fossils in 2.4-billion-year-old vesicular basalt. Nature Ecology & Evolution 1, Article number: 0141.doi:10.1038/s41559-017-0141

Blaschke, M. et al. 2009: Naturnähezeiger …, Natur und Landschaft 84 (12): 560-566

Boyce, C. K. et al. (2007): Devonian landscape heterogeneity recorded by a giant fungus. Geology, 35(5), pp.399–402, Boulder

Brundrett, M. (2008): Mycorrhizal associations: The Web Resource
http://mycorrhizas.info/#123

Carris, L. M./Little, C. R./ Stiles, C. M. (2012): Introduction to Fungi. The Plant Health Instructor. DOI:10.1094/PHI-I-2012-0426-01
http://www.apsnet.org/edcenter/intropp/pathogengroups/pages/introfungi.aspx

Clémençon, H. (2012): Großpilze im Mikroskop. Beih. Z. Mykol.12, München

Dejaen, A. et al. (2005): Insect behaviour: Arboreal ants build traps to capture prey. Nature 434, p. 973; doi:10.1038/434973a

Deutsche Gesellschaft für Mykologie: Pilze in den Lehrplänen der Bundesrepublik Deutschland http://www.dgfm-ev.de/node/17

Deutsche Gesellschaft für Mykologie: Neue Pilzgifte
http://www.welt.de/gesundheit/article131879273/Schwere-Pilzvergiftungen-nehmen-in-Deutschland-zu.html

Douts, D. D. jr./Seidel, R. (2013): The contribution of arbuscular mycorrhizal fungi to the success or failure of agricultural practices. In:.Cheeke, T. E./Coleman, D. C./ Wall, D. H. (Hrsg): Microbial Ecology in Sustainable Agroecosystems. Boca Raton/USA: CRC-Press

Ecovativedesign (Bau- und Verpackungsmterial) http://www.ecovativedesign.com/

Egli, S./Brunner, I. (2011):Mykorrhiza. Eine faszinierende Lebensgemeinschaft. WSLBirmersdorf, Merkblatt 35. www.wsl.ch/dienstleistungen/publikationen/pdf/11252.pdf

European monitoring centre for drugs and drug addiction (EMCDDA): Hallucinogenic mushrooms: an emerging trend case study. Lisbon 2006

Fisher, M. C. et al.(2012): Emerging fungal threats to animal, plant and ecosystem health. Nature 484, pp. 186-194

Frank, A. et al. (2015):Volatile signalling by sequiterpenes from ectomycorrhizal fungi reprogrammes root architecture. Nature Communications 6:.Doi: 10.1038/ncomms7279

Garnica S, Riess, K, Bauer R, Oberwinkler F, Weiss M (2013) Phylogenetic diversity and structure of sebacinoid fungi associated with plant communities along an altitudinal gradient. FEMS Microbiology Ecology 83: 265–278. doi:10.1111/j.1574-6941.2012.01473.x

Haidvogl, W. (o.J.): www.pilz-kultur.at

Hayden, E. C. (2009): Fungus farmers show way to new drugs. Nature online, doi:10.1038/458561a, http://www.nature.com/news/2009/090329/full/458561a.html

Heaton, L. et al.(2012): Analysis of fungal networks. Fungal Biology Reviews 26(1), pp. 12-29, doi: 10.1016/j.fbr.2012.02.001

Hibbett, D. S. (2002): Plant-fungal interactions: When good relationships go bad. Nature 409, pp. 345-346

Hibbett, D. S. et al.(2007): A higher-level phylogenetic classification of the Fungi. Mycological research 111(5), pp.509-547

Hibbett, David S.: Agaricomycotina. Jelly Fungi, Yeasts, and Mushrooms. Version 20 April 2007. http://tolweb.org/Agaricomycotina

Hibbett, D. S./ Taylor, J. W.. fungal systematics: is a new age of enlightment at hand? Nature Reviews Microbiology; AOP, published online 3.1.2013; http://www.clarku.edu/faculty/dhibbett/Reprints%20PDFs/added_pdfs_Feb_2013/HibbettTaylor_2013.pdf

Honstraß, D. (2013): Trüffelhn in Deutschland – nicht selten, sondern sehr häufig. Tintling 84 (18.Jg.), S. 59-63

Jones, N. (2013): Food fuelled with fungi. Nature 504, p.199

Kehr, V./Kost, G. (1999): Mikrohabitat Pflanzengalle: Das Zusammenleben von Gallmücken und Pilzen. BiuZ 29(1), S. 22-25

Khamsi, R.(2005): Fungi destroy mosquitos. Nature online, doi:10.1038/news050606-13, http://www.nature.com/news/2005/050609/full/news050606-13.html

Libkind, D. et al.: Mikrobe domestication and the identification of the wild genetic stock of lager-brewing yeast.  http://www.pnas.org/content/early/2011/08/17/1105430108

Lüderitz, M./Gminder, A. (2014): Verantwortungsarten Deutschlands. Beiheft Z. Mykol. 13

Lyssek, G./Rubner, A. (1993): Tierfangende Pilze. UB 183 (Jg.17), S. 49, 50

Miller, O. K./ Henkel, T. W., James, T. Y., Miller, S. L.. (2001). „Pseudotulostoma, a remarkable new genus in the Elaphomycetaceae from Guyana“. Mycological Research 105 (10), pp. 1268–1272. doi:10.1017/S095375620100466X.

MykoTroph AG, Institut für Ernährungs- und Pilzheilkunde
http://www.heilenmitpilzen.de/heilpilze.html

Neuhäusler, M./ Neukom,H.-P.: Mykologie (1998): Einführung in die Pilzkunde
http://www.pilze.ch/mykologie/mykologie.htm

Parniske, M. (2008): Arbuscular mycorrhiza: the mother of plant root endosymbioses. Nature Reviews Microbiology 6, pp. 763-775, doi:10.1038/nrmicro1987

Perkins, S. (2013): Fungi and roots store a surprisingly large share of the world’s carbon. Nature online, doi:10.1038/nature.2013.12698,
http://www.nature.com/news/fungi-and-roots-store-a-surprisingly-large-share-of-the-world-s-carbon-1.12698

Pilzproduktion
http://german.china.org.cn/archive2006/txt/2002-06/12/content_2033432.htm

Probst, W. (1993): Pilze im Naurhaushalt. UB 183 (17.Jg.), S. 4-13

Probst, W. (2007; 2. A.): Fliegenpilz. In: Probst, W.: Pflanzen stellen sich vor. Köln: Aulis, S. 213-229

Probst, W. (2013): Pilze und Gallen I – Einführung. Der Tintling 80, S.27-33

Proksch, P. et al.(2010): Endophyten als Quelle pflanzlicher Arzneistoffe. Apotheken-Magazin: Pharmazeutische Wissenschaft
http://www.storckverlag.de/wp-content/uploads/2012/05/Fortbildung-2010-03-Endophyten-Quelle-pflanzlicher-Arzneistoffe.pdf

Reichholf, J. H.:/Lohmeyer, T. R. (2012): Regentropfen oder Samenmimikry? Evolutionsbiologische Gedanken über Verbreitungsstrategien der Teuerlinge. Mycologia Bavarica 13, S.1-7

Rhee, Y. J./Hillier, S./Gadd, G. M. (2012): Lead transformation to Pyromorphite by fungi. Current Biology 22 (3): pp.237-241

Ruppert, W. (2014): Bakterien. Basisartikel in UB 391, S. 2-10

Russell, J. R. et al. (2011): Biodegradation of Polyester Polyurethane by Endophytic Fungi. Appl. Environ.Microbiol.77(17): 6076. DOI: 10.1128/AEM.00521-11

Schaarschmidt, S./Hause, B./Strack, D. (2009): Wege zur Endomykorrhiza. Biologie in unserer Zeit 39, S. 102-113

Schönfeld, P. (2012): Bäume mit und ohne Mykorrhiza. Veitshöchheimer Berichte 156, S. 43-51, www.lwg.bayern.de/45973/mykorrhiza_ergebnisse.pdf

Schüssler, A./Schwarzot, D./Walker, C. (2001): Anew fungal phylum, the Glomeromycota: phylogeny and evolution. Mycological Research 105, pp 1413-1421

Statistisches Bundesamt, DESTATIS, Todesursachenstatistik: T62.0 Toxische Wirkung: Verzehrte Pilze 1998-2012

Taylor, T. N./Osborn, J. M. (1996): The importance of fungi in shaping the Palaeoecosystem. Review of Palaeobotany and Palynology 90, pp 249-262

Treseder, K./Holden, S. R. (2013): Fungal Carbon Sequestration. Science 339, p. 1528-1529

Tisserant , E. et al. (2013): Genome of an arbuscular mycorrhizal fungus provides insight into the oldest plant symbiosis, PNAS, doi: 10.1073/pnas.1313452110-http://www.pnas.org/content/early/2013/11/21/1313452110.abstract

Tutschek, R. (1993): Holzzerstörende Pilze. UB 183 (Jg. 29), S.34-39

Weiss, M. (2007): Die verborgene Welt der Sebacinales. Mitt. des Vbio 3, S. 18-23

Whitfield, J. (2007): Fungal roles in soil ecology: Underground networking. Nature 449, 136-138 doi:10.1038/449136a

Whitfield, J. (2003): Snails farm fungus. Nature online, doi:10.1038/news031201-2, http://www.nature.com/news/2003/031202/full/news031201-2.html

Winterhoff, W./ Krieglsteiner G. J. (1984): Gefährdete Pilze in Baden-Württembeg. Beihefte zu den Veröffentlichungen für Naturschutz und Landespflege in Baden-Württemberg 40, Karlsruhe

 

Lehrbücher/Sachbücher

Bauer, W./Klapp, E. (2012): Wasson und der Soma. Heiliger Pilz. Berauschender Trank, Visionen. Solothurn: Nachtschatten-Verlag

Butin, H. (2011): Krankheiten der Wald-und Parkbäume. Diagnose, Biologie, Bekämpfung. Stuttgart: Ulmer

Cheeke, T. E./Coleman, D. C./ Wall, D. H. (Hrsg): Microbial Ecology in Sustainable Agroecosystems. Boca Raton/USA: CRC-Press

Dörfelt, H./Ruske, E. (2014): Morphologie der Großpilze. Heidelberg: Springer-Spektrum

Dörfelt, H./Ruske, E. (2008, 2. A.): Die Welt der Pilze. Jena: Weissdorn

Dörfelt, H./Jetschke, G. (2001, 2.A.): Wörterbuch der Mykologie, Heidelberg: Spektrum

Dörfelt, H./ Heklau, H. (1998): Die Geschichte der Mykologie. Hamburg: Einhorn

Erb, B./Matheis, W. (1983): Pilzmikroskopie. Präparation und Untersuchung von Pilzen . Stuttgart: Franckh-Kosmos

Flammer, R. (2014): Giftpilze. Aarau (Schweiz): AT-Verlag

Flammer, R./Horak, E. (2003): Giftpilze – Pilzgifte. Basel: Schwabe & Co.

Holzer, H. (2011): Fadenwesen: Fabelhafte Pilzwelt. Freyung: Edition Lichtland

Guthmann, J./Hahn, C./Reichel, R. (2011):Taschenlexikon der Pilze Deutschlands. Wiebelsheim: Quelle und Meyer

Kadereit, J. W./Körner, Ch./Kost; B./Sonnewald, U (2014, 37. A.): Strasburger Lehrbuch der Pflanzenwissenschaften . Berlin/Heidelberg: Springer-Spektrum

Kreisel, H. (2014): Ethnobiologie. Verzeichnis der ethnobiologisch, biotechnologisch und toxikilogisch relevanten Pilze. Jena: Weissdorn-Verlag

Kück, U./Nowrusian, M./Hoff, B./Engh, I. (2009): Schimmelpilze. Lebensweise, Nutzen, Schaden, Bekämpfung. Heidelberg/Berlin: Springer

Merckx, V. S. F. T. (2013): Mycoheterotrophy: The Biology of Plants Living on Fungi. New York …: Springer

Mishra, S. R. (2010): Textbook of Mycology. New Dehli: Discovery Publishing House

Lüder, R./ Lüder, F. (2013): Pilze zum Genießen. Das Familien-Pilzbuch für Küche, Kreativität und Kinder. Neustadt: Kreativpinsel-Verlag

Montag, K. (2015): Cook mal Pilze! Mit Fotos von über 1200 Pilzarten und über 300 bebilderten Rezepten. Schmelz: Verlag Der Tintling :

Moore; D./Robsen, G. D./Trinci, A. (2011): 21st Century Guidebook to Fungi. Cambridge u. a.: Cambridge Univ. Press

Müller, E./Loeffler, W. (1992, 5. A.): Mykologie – Grundriß für Naturwissenschaftler und Mediziner. Stuttgart u. a.: Thieme

Neubert, H./Nowotny, W./Baumann, K. (1993-2000): Die Myxomyceten Deutschlands und des angrenzenden Alpenraumes. 3 Bande. Gomaringen

Rätsch; C. (2010): Pilze und Menschen: Gebrauch, Wirkung und Bedeutung der Pilze in der Kultur. Aarau(Schweiz): AT-Verlag

Reichholf, J. H. (2008): Warum die Menschen sesshaft wurden: Das größte Rätsel unserer Geschichte. Frankfurt: S. Fischer

Roth, L./Fank, H./;Korman, K. (2001, 2. A.): Giftpilze – Pilzgifte. Hamburg: Nikol

Schön, G. (2005): Pilze – Lebewesen zwischen Pflanze und Tier. München: C. H. Beck

Schwantes, H. O. (1996): Biologie der Pilze. Stuttgart: Ulmer

Stephenson, S. L. (2010): The Kingdom Fungi. The Biology of Mushrooms, Molds and Lichens. Portland/Cambridge: Timber Press

Ulloa, M.,/Hanlin, R. T. (2012, 2. A.): Illustrated dictionary of mycology. St. Paul/USA: Phytopathological Society Press

Wasson, R. G. (1968): Soma: the divine mushroom of immortality. Ethnomycological Studies No. 1. New York: Harcourt Brace Janovich

Wearing, J. (2010): Fungi: Mushrooms, toadstools, molds, yeasts and other fungi. A class of their own. St.Catherine,Ontario,Canada: Crabtree Publ.Comp.

Weber, H. (1993): Allgemeine Mykologie. Jena: G. Fischer

Webster, J./Weber, R. W. S. (2007, 3. A.): Introduction to Fungi. Cambridge: University Press Cambridge

 

Bestimmungsliteratur (kleine Auswahl)

Bestimmung vorwiegend nach Abbildungen

Bon, M. (2012): Pareys Buch der Pilze. 1500 Pilze, über 2400 Zeichnungen. , Stuttgart: Franckh-Kosmos

Dähnke, R. (2001): 1200 Pilze in Farbfoto. Augsburg: Bechtermünz

Flück, M. (2013): Welcher Pilz ist das?: Extra. Pilze und ihre Baumpartner

Gehardt, E.(2013): Der große BLV Pilzführer für unterwegs: München: BLV

Laux, H. E./Gminder, A. (2010): Der große Kosmos-Pilzführer : alle Speisepilze mit ihren giftigen Doppelgängern: Stuttgart: Franckh-Kosmos

Bestimmungsschlüssel

Gröger, F. ( Teil I 2007 und Teil II 2014): Bestimmungsschlüssel für Blätterpilze und Röhrlinge in Europa.Regensburger Mykologische Schriften Bd. 13 und Bd. 17

Horak, E. (2005, 6. A): Röhrlinge und Blätterpilze in Europa.  Heidelberg:  Spektrum (Elsevier)2005, 6. A.

Jahn, H.: Pilze rundum, vergriffen aber als pdf kostenlos verfügbar
http://www.pilzbriefe.de/pilze_rundum/

Jülich, W. (1984): Die Nichtblätterpilze, Gallertpilze und Bauchpilze. In: Kleine Kryptogamenflora. IIb/1. Basidiomyceten, 1. Teil.; Stuttgart/New York: G. Fischer

Lüder, R. (2012, 3. A.): Grundkurs Pilzbestimmung. Wiebelsheim: Quelle u. Meyer.

Moser, M. (1983, 5. A.): Die Röhrlinge und Blätterpilze. (Polyporales, Boletales, Agaricales, Russulales). In: Kleine Kryptogamenflora. IIb/2. Basidiomyceten, 2. Teil., Jena/Stuttgart: G. Fischer

Pilze bestimmen mit dem PC
http://www.pilze.ch/pilzbestimmung/cd-2000pilze.htm

Tröger, R./Hübsch, P. (1990): Einheimische Großpilze. Bestimmungtafeln für Pilzfreunde. Stuttgart: G. Fischer

Winkler, R. (1996): 2000 Pilze einfach bestimmen. AT-Verlag, Aarau/Schweiz

Mehrbändige Werke

Agerer; R. (1985-2002): Colour Atlas of Ectomycorrhizae, 12 Teillieferungen. Schwäbisch Gmünd: Einhorn

Breitenbach, J./Kränzlin, F. (1981-2005): Pilze der Schweiz, 6 Bände, Luzern: Mycologia

Krieglsteiner, G./Gminder, A./Winterhoff, W. (2000-2010): Die Großpilze Baden-Württembergs. 5 Bände (nur Ständerpilze). Stuttgart: Ulmer

Michael, E. /Hennig, B./Kreisel, H. (1975-1987): Handbuch für Pilzfreunde, 6 Bände, Jena: G. Fischer

Moser, M./Jülich, W. (1985-2005): Farbatlas der Basidiomyceten. Lfg. 1-22. Heidelberg/Berlin: Springer-Spektrum

 

Zeitschriften (nur Deutschland)

Boletus – Pilzkundliche Zeitschrift des Bundesfachausschusses Mykologie. Hrsg.:NABU, 2 Hefte pro Jahr mit insgesamt ca.120 S. Wiessdorn-Verlag, Jena

Mycologia Bavarica – Bayerische mykologische Zeitschrift, Hrsg. Bayerische Mykologische Gesellschaft und Verein für Pilzkunde München

Südwestdeutsche Pilzrundschau, Hrsg. Verein der Pilzfreunde Stuttgart

Der Tintling, Hrsg. Karin Montag, Schmelz

Zeitschrift für Mykologie, Hrsg. Deutsche Gesellschaft für Mykologie,

Hier findet man Weblinks zu deutschen, österreichischen und schweizer Pilzzeitschriften:
http://www.entoloma.de/weblinks/zeitschriften-und-periodika.html

 

Weitere URLs

Pilze und Naturschutz
http://www.anl.bayern.de/veranstaltungen/tagungsergebnisse/2013pilze/index.htm

Pilze im Unterricht
http://www.dgfm-ev.de/node/17

http://www.dgfm-ev.de/node/1241

http://www.dgfm-ev.de/category/hauptmen%C3%BC/projekte/kinder-und-jugend/kopiervorlagen

http://crcooper01.people.ysu.edu/4848Home.html

http://mycology.cornell.edu/fteach.html

http://www.mycolog.com/

http://www.bcp.fu-berlin.de/en/biologie/arbeitsgruppen/mikrobiologie/ag_mutzel/res/pilzvorlesungst.pdf

http://www.schulportal-thueringen.de/web/guest/media/detail?tspi=2200

Teaching the fungal tree of life
http://www.clarku.edu/faculty/dhibbett/TFTOL/content/1introprogress.html
http://www.clarku.edu/faculty/dhibbett/TFTOL/content/4folder/homobasidiomycetes.html

Große Pilzausstellung, München 2006
http://www.botmuc.de/v-2006/06-09-15-pilze.html

Kingdom of fungi
http://www.mycolog.com/CHAP1.htm

Cladogramm Pilzsystem
Parniske, M.: Arbuscular mycorrhiza: the mother of plant root endosymbioses. Nature Reviews Microbiology 6, pp. 763-775 (October 2008) | doi:10.1038/nrmicro1987
http://www.google.de/imgres?biw=1393&bih=891&tbm=isch&tbnid=r6TiymNk9cfazM%3A&imgrefurl=http%3A%2F%2Fwww.nature.com%2Fnrmicro%2Fjournal%2Fv6%2Fn10%2Ffig_tab%2Fnrmicro1987_F1.html&docid=HoCYcQKHWnvfDM&imgurl=http%3A%2F%2Fwww.nature.com%2Fnrmicro%2Fjournal%2Fv6%2Fn10%2Fimages%2Fnrmicro1987-f1.jpg&w=655&h=1074&ei=UJffUoPtAsaThQfIloGIDg&zoom=1&iact=rc&dur=767&page=1&start=0&ndsp=36&ved=0CFoQrQMwAA

Pilzgerüche
http://www.vapko.ch/index.php/de/fragen-rund-um-pilze/die-seite-fur-den-anfanger/152-26-die-pilzgerueche

Endophytische Pilze
http://www.storckverlag.de/wp-content/uploads/2012/05/Fortbildung-2010-03-Endophyten-Quelle-pflanzlicher-Arzneistoffe.pdf

Pilzproduktion
http://german.china.org.cn/archive2006/txt/2002-06/12/content_2033432.htm
http://www.pilz-kultur.at/Die%20Seite/
http://pilzzuchtshop.de/anleitung2.php?mode=ext#anker2
http://pilzzuchtshop.de/Pilzzuchtkultur%20Substrate.php

Selenhaltiger Brasilianischer Mandelpilz
http://en.wikipedia.org/wiki/Agaricus_subrufescens
http://www.gesunde-pilze.de/nachhaltigkeit.html

Giftpilzliste nach Syndromen
http://www.dgfm-ev.de/sites/default/files/21-04-2014Giftpilz-Liste-AG_HA-w97.pdf

Pilztote
http://www.welt.de/gesundheit/article131879273/Schwere-Pilzvergiftungen-nehmen-in-Deutschland-zu.html
http://www.pilzschule.de/html/pilztote.html

Heilpilze
http://www.heilenmitpilzen.de/heilpilze.html

Predatoren
http://www.nematophage-pilze.de/

Fliegenpilz und Kinderlied „Ein Männlein steht im Walde …“
http://realasmodis.blog.de/2012/11/08/maennlein-steht-walde-15181429/

Riesenfruchtkörper
Macrocybe titans
http://www.mushroomexpert.com/macrocybe_titans.html
Fomitoporia ellipsoidea
http://www.bbc.co.uk/nature/14294283

Pilze – Pioniere der Biotechnologie
https://www.youtube.com/watch?v=Vke_BraoyTw

Radioaktive Belastung
http://www.umweltinstitut.org/themen/radioaktivitaet/messungen/waldproduktmessungen.html

Luzerne und Sichelklee (ergänzende Fotos zum Beitrag in UB 404)

Die Heimat der Luzerne (Medicago sativa), international nach dem aus dem Arabischen stammenden spanischen Namen auch als Alfalfa bezeichnet, ist vermutlich Nordiran. Als sehr gutes Pferdefutter hat sie sich mit den Reitervölkern nach Westen ausgebreitet und ist mittlerweile eine weltweit angebaute Futterpflanzen. Allerdings handelt es sich bei den angebauten Sorten heute fast nie um die reine Art, sondern um eine Hybridart mit dem Sichelklee (Medicago falcata), einer auch in Mitteleuropa heimischen Art. Dieser Hybrid wird Medicago x varia genannt. Doch handelt es sich bei Luzerne und Sichelklee wirklich um zwei Arten?

Zu dem Thema ist ein Beitrag für das Unterricht Biologie Heft 404 „Populationen“(Erscheinungstermin Mai 2015) geplant.

Pflanzen helfen und heilen (zu UB 415)

Die Unterricht Biologie Hefte 415 „Pflanzen helfen und heilen“ und das zugehörige Schüler-Kompakt UB 416 „Ein Kraut für alle Fälle“ sind erschienen.

http://www.friedrich-verlag.de/shop/sekundarstufe/naturwissenschaften/biologie/unterricht-biologie/pflanzen-helfen-und-heilen?___SID=U

http://www.friedrich-verlag.de/shop/sekundarstufe/naturwissenschaften/biologie/unterricht-biologie/ein-kraut-fur-alle-falle?___SID=U

Beziehungen von Menschen und Pflanzen

Pflanzen sind für uns Menschen nicht nur die wichtigsten Lieferanten von Nahrung, sie liefern auch Bau- und Konstruktionsmaterial und Ausgangsmaterial für Kleidung. Diese elementare Abhängigkeit der Menschen von Pflanzen wird durch subtilere Nutzungen ergänzt. Die Kenntnis, dass spezielle Pflanzenarten auch zur Minderung von Krankheiten, zur Wundheilung oder als belebende, bewusstseinsverändernde oder berauschende Drogen eingesetzt werden können, ist sehr alt, vermutlich viel älter als der Ackerbau.
Und es gibt noch einen weiteren Aspekt der hilfreichen Pflanzen: Schon Leonardo Da Vinci nahm die Flugfrucht des Wiesen-Bocksbarts als Vorbild für eine Fallschirm-Konstruktion, nach Vorbildern des Zanonia-Samens bauten Etrich und Wels Gleitfliegermodelle und selbstreinigende Oberflächen nach dem „Lotus-Effekt“ verdanken wir dem pflanzlichen Vorbild.

In dem geplanten Unterricht Biologie Heft soll die Bedeutung der Pflanzen als Heilmittel und Drogen im Vordergrund stehen. Aber auch ihre Vorbildfunktion für technische Konstruktionen soll Berücksichtigung finden.

Abb1-PflanzennutzungZur Geschichte der Heilpflanzenkunde

Die Nutzung von Pflanzen und Pflanzenteilen für die Heilung von Verletzungen und Krankheiten ist eine uralte medizinische Technik. Zunächst vor allem in den Händen von Medizinmännern und Schamanen versuchte man schon in den ältesten Hochkulturen eine systematische Erfassung der Heilpflanzen. In dem 1700 v. Chr. erstellten Kodex Hammurabi des mesopotamischen Königs werden Anwendungen und Anbau von Heilpflanzen beschrieben. In einer 1600 v. Chr. Verfassten Papyrusrolle aus Theben, in der das medizinische Wissen der alten Ägypter umfangreich dargestellt wird, werden 700 Heilpflanzen erwähnt. War die Heilkunde bei Ägyptern und Babyloniern noch ein Teil der Religion, so hat Hippokrates in 5. Jahrhundert v. Chr. im klassischen Griechenland die Grundlagen für die wissenschaftliche Medizin und Pharmazie gelegt. Bis in die Neuzeit galt das Werk Dioscurids, eines griechischen Arztes, der zur Zeit Neros in Rom lebte, „De materia medica“ mit der Beschreibung und Anwendungserklärung von mehr als 500 Heilpflanzen und Drogen als Grundlage der Medizin. Galenus, der Hofarzt von Marc Aurel, hat systematisch Heilkräuter zu Arzneimitteln verarbeitet („Galenik“) und gilt als „Vater der Pharmazie“. Im Mittelalter waren die Araber die Bewahrer der medizinischen Kenntnisse, in Europa wären Albertus Magnus und Hildegard von Bingen zu nennen. Im übrigen geriet die Heilkunde stark in die Anhängigkeit religiöser Vorstellungen (Signaturenlehre!). Im 16. Jahrhundert bemühten sich Leonhard Fuchs, Hieronymus Bock und Otto Brunfels mit ihren neuen „Kräuterbüchern“, dem antiken Wissen durch nach der Natur gezeichneten Illustrationen und Einarbeitung volkskundlichen Wissens Neues hinzuzufügen. Sie gelten deshalb als Begründer der Botanik als eigenständiger Wissenschaft („Väter der Botanik“).

Entdeckung und Isolation der pflanzlichen Inhaltsstoffe
Im 19 Jahrhundert gelang es erstmals, reine Wirkstoffe aus Pflanzen zu isolieren (1803/1804 F. W. A. Sertüner: Morphin aus Opium des Schlaf-Mohns; 1820 Pierre-Joseph Pelletier u. François Magendie: Chinin aus der Chinarinde). Auf Pelletier geht die industrielle Chininproduktion zurück. Nachdem man die reinen Stoffe, die wichtigsten „Wirkprinzipien“ kannte, nahm die Wertschätzung der Heilpflanzen ab, Pflanzenheilkundige verloren zunehmend an Reputation, wurden zu Kräuterweiblein und Wurzelsepp.

Synthetische Herstellung von Wirkstoffen
Ende des 19. Anfang des 20. Jahrhunderts begann man mit der chemischen Synthese von Wirkstoffen. Noch zu Beginn des 20. JH wurden fast alle Medikamente aus pflanzlichen Rohstoffen gewonnen, heute sind es weniger als 40%.

Pflanzliche Inhaltsstoffe in der modernen Medizin
Die Fortschritte und Möglichkeiten der modernen Medizin sind gewaltig. Dies gilt auch für den Einsatz von Medikamenten, die immer passgenauer auf bestimmte Fehlfunktionen des Organismus abgestimmt werden können. Doch trotz „Apparatemedizin“ und Tablettendesign erfreuen sich Heilpflanzen und Drogen auf Pflanzenbasis nach wie vor großer Beliebtheit. Dies mag einmal mit der menschlichen Wundergläubigkeit zusammenhängen, zum anderen aber auch mit der tatsächlichen Heilwirkung solcher Drogen, die teilweise auf Jahrtausende alter Empirie beruht.
In Deutschland beruhen noch etwa die Hälfte aller Medikamente auf pflanzlichen Wirkstoffen, weltweit sind aber erst ein Prozent aller Pflanzen auf ihre Inhaltsstoffe untersucht worden. Man schätzt, dass derzeit zwischen 10.000 und 50.000 Pflanzenarten weltweit als (traditionelle) Heilpflanzen genutzt werden. Lange Zeit scheuten Pharmaunternehmen deshalb den Aufwand einer systematischen Suche nach wirkungsvollen Medikamenten aus Pflanzen, doch die Suchprogramme sind kostengünstiger geworden und über Genanalysen lassen sich Erfolg versprechende Pflanzen über bereits bekannte Drogenlieferanten leichter finden. Deshalb wird weltweites Heilpflanzenscreening immer Erfolg versprechender (Problem: Verletzung der Rechte indigener Völker) – http://heilpflanzen-info.ch/cms/blog/archive/tag/screening

In der Heilpflanzenkunde (Phytopharmakognosie) unterscheidet man folgende Begriffe:

  •  eine Heilpflanze ist eine Pflanze, die für medizinische Zwecke verwendet werden kann
  •  eine Pflanzliche Droge ist eine Arznei aus rohen oder zubereiteten Pflanzenteilen
  •  ein Phytopharmakon ist ein Arzneimittel, das aus einer Heilpflanze gewonnen wird
  •  ein Phytogener Arzneistoff ist ein Stoff als medizinisch wirksame Substanz einer Heilpflanze (Wikipedia)

Pflanzliche Wirkstoffe

Fast alle pflanzlichen Wirkstoffe gehören zu den so genannten „sekundären Pflanzenstoffen“, also solchen Stoffen, die von Pflanzen weder im Energiestoffwechsel noch im Baustoffwechsel erzeugt werden. Oft werden sie in speziellen Zelltypen hergestellt. Im Unterschied zu den primären Pflanzenstoffen nahm man zunächst an, dass sie für die Pflanzen nicht unmittelbar lebensnotwendig sind. Heute weiß man jedoch, dass sie vielfach lebensnotwendige Funktionen bei der Abwehr von Fraßfeinden und Infektionen sowie bei der inter- und intraspezifischen Signalübertragung haben. .

Roter Fingerhut (Digitalis purpurea)

Roter Fingerhut (Digitalis purpurea)

  • Glykoside ermöglichen es den Pflanzen, Giftstoffe in nicht giftiger Form zu speichern, indem sie diese an einen Zuckerrest binden. Sie können in einem Zellkompartiment, zum Beispiel in der Vakuole, gespeichert werden. Erst wenn die Zelle zerstört wird, kommt das Glykosid mit der entsprechenden Glykosidase in Verbindung und der giftige Stoff wird von dem Zuckerrest abgespalten. Herzglykoside wirken kontraktionsfördernd (inotrop) auf den Herzmuskel. Hierzu zählt man etwa 300 Substanzen, deren Zuckerkomponente (Glycon) drei relativ seltene Desoxizucker und deren Aglycon ein Steroidalkohol sind. Klinische Bedeutung haben heute noch Digoxin und Digitoxin (Fingerhut-Glykoside). Nach ihrem chemischen Aufbau unterscheidet man zum Beispiel: Phenolglykoside, Cumaringlykoside, Anthocyanglykoside, Senfölglykoside, Iridoidglykoside usw.

 

Etherisch Öle

Etherisch Öle

  • Etherische Öle sind fettlösliche, leicht flüchtige Substanzen, chemisch meist Mono- und Sesquiterpene. Den Pflanzen helfen sie, Fressfeinde, Schädlinge und Krank-heitserreger fernzuhalten, aber auch Bestäuber anzulocken. Häufig wirken sie schleimlösend, krampflösend, anregend oder antimikrobiell und entzündungs-hemmend. Meist gewinnt man sie mithilfe von Wasserdampfdestillation aus Pflanzenmaterial.

 

Alkaloide (aus arab. „al qalya = Pflanzenasche) sind N-haltige organische Verbindungen des pflanzlichen Sekundärstoffwechsels, die auf den tierlichen und menschlichen Organismus, meistens auf das Nervensystem, wirken. Die Einteilung der mehr als 10 000 bekannten Alkaloide kann chemisch (nach dem N-haltigen Molekülteil), nach der Herkunft (Pflanzenart, Droge), nach der Biogenese (chemischer Ausgangsstoff) oder nach der pharmakologischen Wirkung (Betäubung, Halluzinogen) erfolgen. Beispiele: Nicotin, Coffein, Kokain, Meskalin, Tyrosin, Colchizin, Morphin, Codein, Strychnin, Aconitin. – Viele Vertreter der Familie der Nachtschattengewächse (Solanaceae) enthalten Alkaloide.

Die Betalaine sind in Zellvakuolen vorkommende gelbe (Betaxanthine) oder rote bis rotviolette (Betacyane) Farbstoffe. Hierher gehört der Farbstoff der Roten Bete, das Betanidin.

 

Wermut (Artemisia absinthium)

Wermut (Artemisia absinthium)

  • Bitterstoffe nennt man alle chemischen Verbindungen, die bitter schmecken. In der Regel regen sie die Magen- und Gallensaftproduktion an und wirken dadurch appetitanregend und verdauungsfördernd. Unter den Bitterstoffen findet man auch Alkaloide und Isoprenoide. Den Pflanzen dienen sie vermutlich als Fraßschutz, und sie sind weit verbreitet. Bei kultivierten Gemüse- und Obstpflanzen wurde der Bitterstoffgehalt häufig durch Züchtung vermindert (Beispiel: Kopfsalat).
  • Beispiele: Chinin aus der Rinde des Chinarindenbaumes gegen Magen-Darm-Beschwerden, psychoaktive Substanzen wie Coffein,Theobromin können die Blut-Hirnschranke überwinden und damit besonders schnell wirken.

 

  • Anthracenderivate lassen sich chemisch formal vom Anthracen ableiten. Sie wirken abführend. Wichtige Lieferanten sind zum Beispiel Aloe, Faulbaum, Senna und Arznei-Rhabarber.
  • Schleimstoffe sind Biopolymere, die bei pflanzlicher Herkunft vorwiegend aus Polysacchariden bestehen. Sie können einen großen Anteil an Wasser aufnehmen und dadurch schleimartige Kolloide bilden. Wichtige pflanzliche Schleimstofflieferanten sind: Echter Eibisch, Huflattich, Leinsamen, Wilde Malve, Spitz-Wegerich.
  • Hormonartige Stoffe aus Pflanzen, zu denen z. B. Lignane und Isoflavone gehören, besitzen strukturelle Ähnlichkeit zu menschlichen bzw. tierlichen Hormonen. Die Entdeckung der Phytoöstrogene Genistein und Formononetin geht auf westaustralische Schafzüchter zurück, die in den 1950iger Jahren eine unerklärliche Unfruchtbarkeit bei ihren Schafen beobachteten. Zehn Jahre später wurden die Stoffe in Weidepflanzen (Schmetterlingsblütler) entdeckt. Diosgenin aus der Yamswurzel hat eine ähnliche Struktur wie Steroidhormone und lässt sich – ähnlich wie Sarmentogenin aus Strophanthus – für die kommerzielle Synthese von Cortisonpräparaten nutzen.
  •  Zu Flavonoiden gehören viele Farbstoffe in Blüten und Früchten, z. B. auch die Anthocyanidine vieler roter oder blauer Beeren. Sie lassen sich formal von dem Grundstoff Flavan (2-Phenylchroman) ableiten. Medizinisch und für die menschliche Gesundheit von besonderer Bedeutung ist ihre antioxidative Wirkung. Weiterhin begründet man ihre Heilwirkung auf die Interaktion mit DNA und Enzymen, die Aktivierung von Zellen, die Beeinflussung verschiedener Signaltransduktionswege in den Zellen, die Aktivierung des Immunsystems und die Verhinderung von Arteriosklerose.
  • Tannine sind pflanzliche Gerbstoffe, mit denen sich verschiedene nährstoffreiche Pflanzen vor dem Gefressenwerden schützen. Sie hemmen den Stärkeabbau und damit die Resorption von Zucker. Dies ist für Herbivoren von Nachteil, kann aber medizinisch genutzt werden. Reichlich sind sie in Holz und Rinde verschiedener Laubbäume enthalten (Eichen, Birken). Auch Rotwein und Schwarzer Tee sind reich an Tanninen. In der Medizin werden Tannine als blutstillendes und entzündungshemmende Mittel verwendet. Der Name „Gerbstoff“ weist auf ihre Bedeutung bei der Lederverarbeitung hin.

Bemerkenswerte Heilpflanzen und Drogen und ihre Geschichte

Schon früh war es ein erstrebenswertes Ziel der Heilkundigen, ein Arzneimittel zu finden, das möglichst universell eingesetzt werden kann, ein Allheilmittel. Als solche Wunderdrogen galten den unterschiedlichen Kulturkreisen zum Beispiel Ginseng, Mandragora, Salbei und Mistel.

Mistel (Viscum album)

Mistel (Viscum album)

 

Aber auch die Idee, ein gegen alle Leiden wirkendes Wundermittel aus möglichst vielen verschiedenen Ingredienzien zusammenzustellen, wurde schon früh verfolgt (Theriak, Mithridat).

 

 

In der Folge der Kolonialisierung weiterTeile der Erde durch europäische Völker wurden immer wieder neue Heil pflanzen entdeckt, zum Beispiel:

  • Chinarindenbaum (Cinchona) mit dem in der Rinde enthaltenen Wirkstoff Chinin gegen Malaria
  • Kampferbaum (Cinnamomum camphora)
  • Einjähriger Beifuß (Artemisia annua, Artemisinin gegen Malaria)
  • Madagassisches Immergrün (Cantharanthus roseus; mit Vincristin und Vinblastin, Cytostatika in der Krebstherapie)
  • Strophanthus und sein Inhaltsstoff Strophanthin (als Pfeilgift in Afrika entdeckt; Herzundinsuffizienz, Rhythmus-Anomalien, akute Myokardschäden)
  • Schmerwurz-Arten (Dioscorea spp.) aus denen man Steroidhormone wie Cortison und Testosteron herstellen kann.
  • Yohimbin aus dem afrikanischen Yohimbe-Baum als Aphrodisiakum und Potenz steigerndes Mittel
  • Teebaumöle aus Melaleuca qalternifolia, Leptospermum scoparium und anderen südhemisphärischen Myrtengewächsen. Die große Anzahl enthaltener etherischer Öle ( v. a. Mono- und Sesquiterpene) wirken bakterizid und bakteriostatisch.
  • Meerrettichbaum („Moringo“, Moringa oleifera u. a. Arten. Mit 1 g zermahlenen Samen kann man 5 L verunreinigtes Wasser trinkbar machen, Wirkprinzip: koagulierende Wirkung einiger Inhaltsstoffe bringt Schwebstoffe einschließlich Bakterien zum Absinken, auch bakterizide Wirkungen sind nachgewiesen.

 

Bewusstseinsverändernde pflanzliche Drogen („Pflanzen der Götter“)

Die Wirkung bestimmter pflanzlicher Inhaltsstoffe auf das vegetative Nervensystem haben sicherlich schon die Urmenschen erfahren und genutzt, ja sogar bei Tieren kann man beobachten, dass sie gezielt überreife alkoholhaltige Früchte zu sich nehmen, um sich zu berauschen. Die Beobachtungen an verschiedenen indigenen Völkern legen nahe, dass die Verwendung von Rauschdrogen zunächst vor allem mit religiösen Riten („Pflanzen der Götter“) verbunden war.

Eine sehr alte Tradition haben Räucherdrogen. Der Weihrauch ist heute noch eng mit Zeremonien und Kulten religiöser Art verbunden. Interessant in diesem Zusammenhang ist auch die Etymologie des Wortes Rauch (Geruch, Gerücht, verrucht, Rausch…).

Einige Beispiele für Pflanzen mit bewusstseinsverändernden bzw. bewusstseinserweiternden Inhaltsstoffen: Schlafmohn (Papaver somniferum)- Opium, Morphin, Diacetylmorphin (=Heroin); Peyotl-Kaktus (Lophophora williamsii) – Phenylethylamin Meskalin; Tollkirsche (Atropa belladonna), Bilsenkraut (Hyoscyamus niger) und Alraune (Mandragora officinarum) als Hauptzutaten von Hexensalben, Hyoscyamin, Atropin, Scopolamin; Datura und Brugmansia – Tropanalkaloide; Hanf (Cannabis sativa)- Haschisch, Marihuana, Cannabinoide, v. a. THC; Iboga (Tabernanthe iboga) – Indolalkaloide; Yopo (Anadenanthera peregrina) – Tryptaminderivate; Ayahuasca (Liane Banisteriopsis caapi) – Harmin-Alkaloide; Samen der Prunkwinde Ipomea tricolor – Lysergsäure-Alkaloide; Ebená (Virola spp.) – Dimethyltryptamin u. a. Indolderivate.

Wissen, Glauben, Aberglauben – ist „rein pflanzlich“ immer gut?

Offensichtlich ist auch heute die Meinung noch sehr verbreitet, dass Medikamente auf „rein pflanzlicher“ Basis weniger gefährlich seien als Elaborate der Chemieindustrie, weshalb damit erfolgreich Arzneimittelwerbung gemacht werden kann. Doch schon Sokrates wusste es besser. Dass Pflanzen, auch altbewährte Heilpflanzen wie Fingerhut und Tollkirsche – sehr giftig sein können, führt diesen Glauben ad absurdum.
Doch auch wenn sehr viele pflanzliche Inhaltsstoffe mehr oder weniger giftig für den menschlichen Körper sind, ist die gesundheitsfördernde Wirkung vieler „Kräuter“ nicht nur volkstümlicher Aberglaube, sondern empirisch gesicherte und heute vielfach naturwissenschaftlich erklärbare Tatsache. Es ist deshalb durchaus sinnvoll, diese Wirkungen aus dem Kräutergarten zu nutzen, bevor man zum Arzt oder in die Apotheke rennt. Außerdem sind viele Kräuter (in Maßen genossen) nicht nur gesund, sie tragen auch wesentlich zum Wohlgeschmack von Speisen bei.

Ein weiterer wichtiger Gesichtspunkt: Heilpflanzen enthalten fast immer ein Gemisch aus sehr vielen verschiedenen mehr oder weniger wirksamen Substanzen, deren besondere Wirksamkeit eben in dieser Kombination liegt. Dadurch können sie einem auf einer oder nur wenigen Inhaltsstoffen aufgebauten synthetisch produzierten Droge durchaus überlegen sein, gerade auch, was schädliche Nebenwirkungen anbetrifft.

Pflanzen als Vorbilder

Der Aufbau von Sprossachsen kann Vorbild für technische Konstruktionen sein

Der Aufbau von Sprossachsen kann Vorbild für technische Konstruktionen sein

Auf die Vorbildfunktion fliegender Samen und Früchte wurde schon in der Einleitung hingewiesen. Heute ist die Bionik anerkannte zwischen Biologie und Technik angesiedelte Wissenschaft , in der es darum geht, Konstruktionsprinzipien und Verfahrenstechniken der Natur zu nutzen. Lebewesen dienen als Vorbilder für technische Entwicklungen, sie sind aber nicht – wie in der Biotechnologie – in die Herstellung von Produkten eingebunden.
Es gibt mittlerweile viele gelungene Projekte, sei dies im Bau ultraleichter Tragekonstruktionen, stabiler Verbundkonstruktionen, gewichtssparender Seilkonstruktionen oder sich selbst reparierender Membranen.
Seit einigen Jahren werden in verschiedenen Botanischen Gärten Führungen mit Demonstrationsversuchen und einfachen Experimenten zum Thema Bionik angeboten. Das große Interesse an solchen Veranstaltungen beweist, dass Pflanzen als Vorbilder für technische Konstruktionen ein motivierendes Thema für den Biologieunterricht sein können.
(vgl. Speck, T./Speck, O. (2008): Bionik: Interdisziplinäre Forschung und Bildung in Botanischen Gärten. Osnabrücker Naturwissenschaftliche Mitteilungen Bd.33/34: 155-173)

Helfende Pflanzen motivieren

Die Bärwurz (Meum athamanticum) riechen und schmecken, auf einer Bergwiese im Harz. Bärwurz wird als Zusatz für Kräuterlikör und Kräuterquark verwendet, früher auch als vielseitig wirksame Heilpflanze

Die Bärwurz (Meum athamanticum) riechen und schmecken, auf einer Bergwiese im Harz. Bärwurz wird als Zusatz für Kräuterlikör und Kräuterquark verwendet, früher auch als vielseitig wirksame Heilpflanze

„Die Heilpflanzenkunde ist ein Wissenschaftszweig, der geobotanische, pharmakologische, phytochemische, humanbiologisch und biochemische Aspekte mit der Therapeutik vereint. “ (Wikipedia). Dieser übergreifende Charakter und die starke emotionale Wirkungen, die von Heilpflanzen auch heute noch ausgehen, können didaktisch genutzt werden, nicht nur, um zum Thema selbst (einschließlich Glauben und Irrglauben, Mythen und Märchen, kausalen Zusammenhängen und Spekulationen) Informationen zu liefern, sondern auch um das Interesse an Heilpflanzen als Einstieg in unterschiedliche biologische bzw. naturwissenschaftliche Fachthemen zu nutzen.

Ergänzende Materialien

Die Wirkung von Strophanthin (Ouabain)

Das Herzglykosid g-Strophanthin oder Ouabain kommt in den Samen verschiedener afrikanischer Lianen der Gattung Strophanthus, z. B. S. gratus (daher g-Strophanthin, k-Str. von S. kombe) vor. In Westafrika spielten sie traditionell als Pfeilgifte eine Rolle. Ihre Wirkung bei Herzschwäche wurde von dem Botaniker John während der Livingstone-Expedition 1859 zufällig entdeckt.

Wie bei den Digitalis-Glykosiden ist die wichtigste Wirkung die Hemmung der Na+-K+-Pumpe (Na+-K+-ATPase) in den Herzmuskelzellen. Dadurch erhöht sich die Na+-Konzentration in den Muskelzellen was wiederum bewirkt, dass das der Na+/Ca2+-Austauscher, ebenfalls ein Transmembranprotein in denselben Muskelzellen, mehr Ca2+ in die Muskelzellen transportiert, was zu einer Steigerung der Kontraktionskraft führt. Eine ähnliche Wirkung kann eventuell auch über die Arterienmuskulatur zu einer Erhöhung des Blutdrucks führen.

Diese Sachverhalte werden jedoch dadurch komplizierter, dass die Herzglykoside auch in unterschiedlicher Weise auf die körpereigene Freisetzung von gerfäßverengend wirkendem Endothelin und gefäßerweiternden NO Einfluss nehmen können.

Die Frage, ob Ouabain auch als körpereigenes Hormon in der Nebennierenrinde produziert und in den Blutkreislauf eingespeist wird, ist bis heute nicht eindeutig geklärt.

Bei hohen Ouabain-Werten im Blut wird ein Teil über die Niere ausgeschieden, ein Teil durch Bindung an Blutglobuline neutralisiert.

Im Gegensatz zu den Digitalis-Glykosiden Digitoxin und Digoin ist Strophanthin wasserlöslich. Es wird deshalb über das Verdauungssystem nur sehr schlecht aufgenommen. Deshalb wird bei akuter Herzinsuffiziens eine intravenöse Behandlung bevorzugt.

Wirkung von Strophanthin

Wirkung von Strophanthin

Allerdings werden Herzglykoside heute wegen der schwer vorhersehbaren (Neben-)wirkungen von den meisten Ärzten nicht mehr als die Mittel der ersten Wahl angesehen. Dies hängt vor allem damit zusammen, dass die Konzentration des Glykosids im Blut von verschiedenen nicht sicher beeinflussbaren Faktoren abhängt. Doch herrscht in dieser Hinsicht – wie man bei einer Internetrecherche leicht feststellen kann – bei der Ärzteschaft keineswegs Einigkeit.

http://www.strophantus.de/mediapool/59/596780/data/Yatin_Shah.pdf

http://news.doccheck.com/de/1533/strophanthin-gut-oder-alter-hut/?utm_source=DocCheck&utm_medium=DC%2BWeiterfuehrende%20Inhalte&utm_campaign=DC%2BWeiterfuehrende%20Inhalte%20flexikon.doccheck.com

(mit vielen Kommentaren)

http://www.melhorn.de/Strophhormon/

(starker Befürworter des g-Strophanthineinsatzes)

Möglicher Einsatz des Knoblauch-Inhaltsstoffes Alliin gegen Krebs

  1. Das Enzym Alliinase wird an einen Krebszellenspezifischen Antikörper gebunden und damit werden die Krebszellen markiert.Knoblauchwirkung
  2. Spritzt man nun Alliin, so wird dies von der Alliinase an den Krebszellen in das Zellgift Allicin umgewandelt. Es dringt in die Krebszellen ein und tötet sie. Da es schnell abgebaut wird, kann es sich nicht weiter im Organismus verbreiten.Knoblauchwirkung2

https://de.wikipedia.org/wiki/Allicin#Pharmakologie

 

Wiesen und Weiden (ergänzende Materialien zu UB 375)

Ergänzende Materialien zum Unterricht-Biologie-Heft 375  „Wiese“

Bei den Recherchen und Arbeiten für das Unterricht-Biologie-Heft habe ich viele Materialien zusammengetragen, die nicht alle in dem Heft Platz finden konnten. Einige davon werden hier zusammengestellt.

Ergänzung 1: Ich ruhe still im hohen grünen Gras …

Der Wechsel von bewaldeten Kuppen und offenen, von  Wiesen und Weiden geprägten Landschaften, die einen weiten Ausblick ermöglichen, wird von vielen Menschen als ausgesprochen schön empfunden. Wer weiß, vielleicht ist diese Empfindung – vgl. Edward O. Wilson: Biophilia – sogar genetisch verankert, ein Erbe unserer Savannen bewohnenden Vorfahren. Ein solches Landschaftsbild ist charakteristich für die durch  bäuerliche Landwirtschaft geprägten Kulturlandschaft Mitteleuropas.

Besonders in der Romantik haben Wiesen in Lyrik und Malerei eine große Rolle gespielt:

Feldeinsamkeit

Ich ruhe still im hohen grünen Gras

Und sende lange meinen Blick nach oben,

Von Grillen rings umschwirrt ohn Unterlaß,

Von Himmelsbläue wundersam umwoben.

Und schöne weiße Wolken ziehn dahin

Durchs tiefe Blau wie schöne stille Träume; –

Mir ist, als ob ich längst gestorben bin

Und ziehe selig mit durch ewge Räume.

Hermann Allmers 1860, vertont von Johannes Brahms

Frühlingsruhe

O legt mich nicht ins dunkle Grab,

Nicht unter die grüne Erd hinab!

Soll ich begraben sein,

Lieg ich ins tiefe Gras hinein.

 

In Gras und Blumen lieg ich gern,

Wenn eine Flöte tönt von fern

Und wenn hoch obenhin

Die hellen Frühlingswolken ziehn.

Ludwig Uhland 1812

Im schönsten Wiesengrunde …

Wir liegen gerne mit Johannes Brahms (bzw.Hermann Allmers) im hohen grünen Gras, aber den Schwaben gefällt „a gmähds Wiesle“ besonders gut. Die Romantik des Cowboys in der unendlichen Prärie oder der Steppenreiter , Tartaren und Kosaken, liegt in der Weite der unendlichen Graslandschaften begründet, die bösen Geister verstecken sich im dunklen Wald. Die Hauswiese am elterlichen Hof hatte nicht nur für Isländer (Halldor Laxness: Auf der Hauswiese) eine besondere Bedeutung, sondern auch für Mitteleuropäer:

Im schönsten Wiesengrunde

Ist meiner Heimat Haus,

Da zog ich manche Stunde

Ins Tal hinaus.

Dich mein stilles Tal

Grüß ich tausendmal!

Da zog ich manche Stunde

Ins Tal hinaus. … (es folgen 12 weitere Strophen)

Wilhelm Ganzhorn 1851

 Auf der Blumenwiese (Monet, Renoir)

 

Auf der Wiese - Claude Monet, 1876

Auf der Wiese – Claude Monet, 1876

 

Junge Mädchen auf der Wiese - Renoir, 1890-94

Junge Mädchen auf der Wiese – Renoir, 1890-94

Auf der grünen Wiese / hab ich sie gefragt, / ob sie mich wohl liebe. / ‚Ja’ hat sie gesagt! / Wie im Paradiese / fühlte ich mich gleich, / und die grüne Wiese / war das Himmelreich

Diese mittlerweile geflügelten Worte stammen aus der 1936 uraufgeführten tschechischen Operette Auf der grünen Wiese (Na tý louce zelený) von Jara Beneš nach einem Libretto von V. Tolarski.

 

 Wiesenfeste

Auf Wiesen kann man spielen und tanzen, sie sind seit alters her Orte bodenständiger Lustbarkeiten (berühmte Beispiele sind der Wiener „Prater“(lat. pratum = Wiese), die Münchner „Wiesen“ oder der Cannstatter „Wasen“).

Das Oktoberfest von 1823. Ein Gemälde von Heinrich Adam

Das Oktoberfest von 1823. Ein Gemälde von Heinrich Adam

Das Oktoberfest von 1823. Ein Gemälde von Heinrich Adam:

http://www.oktoberfest-live.de/jubilaeumswiesn/allgemein/jubilaeumswiesn-oktoberfest-bilder-aufmacher-873432.html

Eine jüngere Variante der großen Wiesenfeste sind die Open Air Rockkonzerte.

„Wiesenhof“

Der größte Geflügelfabrikant Deutschlands firmiert bezeichnenderweise unter dem Namen „Wiesenhof“, obwohl seine Hähnchen nie eine Wiese zu sehen bekommen – außer in gebratenem Zustand (http://www.wiesenhof-online.de/).

 

Hähnchen vom Wiesenhof

Hähnchen vom Wiesenhof

 

 

 

 

 

 

Ergänzung 2: Verletzung und Endopolyploidie

Abgefressenwerden und abmähen kann das Wachstum von Pflanzen stimulieren. Zumindest für eine ganze Reihe von Gräsern trifft dies zu. Für eine bestimmte Sorte der pflanzenphysiologischen Standardversuchspflanze Arabidopsis thaliana konnten Pflanzenphysiologen der Universität Illinois die Ursache für diese Wachstumssteigerung nachweisen: Verletzung bzw. Abfressen führt bei diesen Pflanzen zur Endopolyploidie, d. h. eine Vermehrung des Chromosomensatzes ohne Kernteilung. Dabei konnten die Wissenschaftler feststellen, dass sich die Chromosomenzahl von ursprünglich 10 auf bis zu 320 vervielfacht hatte. Ob dieser Mechanismus auch bei frassresistenten Gräsern vorkommt, ist bisher nicht bekannt.

Quelle:

Scholes, Daniel R., and Ken N. Paige. 2011. Chromosomal plasticity: mitigating the impacts of herbivory. Ecology 92:1691–1698., doi:10.1890/10-2269.1 (Abstract).

 

Ergänzung 3 : Mehrjährige Getreidearten?

Typisch für fast alle natürlichen Ökosysteme sind überwiegend mehrjährige Pflanzenarten mit einem ausgedehnten Wurzelsystem. Demgegenüber sind die wichtigsten Kulturpflanzen, die Getreidegräser, einjährig. Dies hat verschiedene nachteilige Folgen:

  • hohe Kosten für Landbewirtschaftung
  • Bodenerosion
  • geringe Kohlenstoffspeicherung im Boden

Das ist der Grund, warum das nordamerikanische Land Institute beabsichtigt, die Voraussetzungen dafür zu schaffen, dass  die Getreideproduktion allmählich auf mehrjährige Sorten umgestellt werden kann. Damit würden Getreideäcker Wiesen ähnlicher als den heutigen Ackerflächen.

The Land Institute

Summary of the possible. Protecting our soils with perennials.

A. 2010: Hay or grazing operations will continue as they exist. Preparations for subsidy changes begin.

B. 2015: Subsidies become incentive to substitute perennial grass in rotations for feed grain in meat, egg, and milk production.

C. 2020: The first perennial wheat, Kernza™, will be farmer-ready for limited acreage.

D. 2030: Educate farmers and consumers about new perennial grain crops.

E. 2045: New perennial grain varieties will be ready for expanded geographical range. Also potential for grazing and hay.

F. 2055: High-value annual crops are mainly grown on the least erodible fields as short rotations between perennial crops.

http://www.postcarbon.org/article/119799-the-50-year-farm-billwww.%20landinstitute.org:

Ergänzung 4 : Bläulinge, Ameisen und Wiesenpflanzen

Fast alle der 6000 bekannten Arten der Schmetterlingsfamilie der Bläulinge (Fam. Lycaenidae) leben in Grasländern. Außerdem sind die meisten Bläulinge irgendwie mit Ameisen verbunden. Der Helle Wiesenknopf-Ameisenbläuling (Phengaris teleius) legt im Juni oder Juli je ein Ei an einzelne Blüten in Blütenköpfchen des Großen Wiesenknopfes. Die frisch geschlüpften Raupen bohren sich in die Blüte und fressen sie aus. Von einem Blütenköpfchen können sich mehrere Raupen ernähren. Dabei dienen die aufgeblühten Wiesenknopfblüten den Faltern – neben anderen Blüten – auch als Nektarlieferanten, die Eier werden auf noch geschlossene Blüten abgelegt. Nach der dritten Häutung krabbeln die Räupchen auf den Boden. Dort suchen sie aktiv nach Straßen der geeigneten Ameisenarten der Gattung Myrmica und vermutlich gelangen sie so in ein Ameisennest. Möglicherweise werden sie auch von Ameisen dorthin geschafft. Durch geeignete morphologische und chemische Signale werden sie von den Ameisen – obwohl deutlich größer – für eigene Brut gehalten und so behandelt. So können sich bis zur Verpuppung ungestört von Ameisenbrut ernähren. Nach Schätzungen sind etwa 350 Ameisen-Arbeiterinnen nötig, um über die von der Raupe gefressene Ameisenbrut eine Larve des Wiesenknopf-Ameisen-Bläulings durchzufüttern. Normalerweise verpuppen sich die Raupen nach Überwintern im Ameisennest  im späten Frühjahr des folgenden Jahres, seltener bleiben sie auch noch einen Winter länger Ameisengäste.

In diesem Falle handelt es sich eindeutig um eine parasitische Beziehung zu Gunsten des Falters, es gibt jedoch andere Beispiele, bei denen die Bläulingsarten durch Zuckerabscheidung auch zur Ernährung der Ameisen beitragen.

http://de.wikipedia.org/wiki/Heller_Wiesenknopf-Ameisenbl%C3%A4uling)

Ergänzung 5: Umwandlung natürlicher Wälder

Die Waldfläche Mitteleuropas wurde durch Rodungen – zunächst vor allem für die ackerbauliche Nutzung und die Wiesen und Weidewirtschaft – auf etwa ein Drittel der ehemaligen Fläche reduziert (Frey/Lösch 2010). Dabei wurden die Waldflächen vorwiegend auf ärmere Standorte und Hanglagen zurückgedrängt. In der Folge wurden die Wälder durch Holzanschlag für Heizenergie, Glashütten, n, Ziegelbrennereien, Bergbau und Eisenhämmer weiter reduziert. Die wachsenden Städte benötigten immer mehr Bauholz und die Waldweidewirtschaft führte zu einer weiteren Walddegradation zu Gunsten offener, gräserreicher Habitate.

Wie in den unten stehenden Schemata dargestellt, sind diese Entwicklungen teilweise reversibel. Dies hängt allerdings davon ab, wie weit die Degradation der ursprünglichen Vegetation fortschreitet. Offene Habitate sind stärker erosionsgefährdet und bei anhaltend starker Beweidung kann dies zu einer wüstenhaften Vegetation auf weitgehend degradierten Böden führen, wie dies zum Beispiel für Teile des Mittelmeergebiet charakteristisch ist.

WaldwandelNach Ellenberg, H. (1996): Vegetation Mitteleuropas und der Alpen aus Frey, W./Lösch, R.: Lehrbuch der Geobotanik. Pflanze und Vegetation in Raum und Zeit. Elsevier, /Spektrum, München 20103, Abb.9-34  Umwandlung natürlicher Kalkbuchenwälder (Urwald) durch Weide-, Acker- und Waldwirtschaft auf lehmüberdecktem Kalkboden (Braune Rendzina) in der submontanen Stufe Mitteleuropas

Ergänzung 6: Ethymologische Notiz zum Thema WieseEthym.wiese

Aus Braun, W. et. al.: Ethymologisches Wörterbuch des Deutschen. Akademie Verlag, Berlin 19932

Ergänzung 7: Gräser

Gräser sind die wichtigsten Pflanzen der Wiesen und Weiden, eben der Grasländer. Sie sind aber auch seit Beginn menschlicher Kultur stete die Begleiter des Menschen gewesen: Die ersten Kulturen des Ackerbaus und der Viehzucht entstanden vermutlich in den Grasfluren des „Fruchtbaren Halbmondes“. Bis heute stellen die Gräser mit den Getreidearten Weizen, Reis und Mais, Hirsearten, Roggen, Gerste und Hafer sowie dem Zuckerrohr die wichtigsten Nährstofflieferanten. Als Futtergräser sind sie außerdem Grundlage für die Fleisch – und Milchproduktion. Umgekehrt spielen sie auch als „Unkräuter „eine Rolle, insbesondere Acker-Fuchsschwanz, Quecke, Flughafer und Windhalm. Schließlich nutzen wir Gräser in Rasen von Parks, Gärten und Sportanlagen.

Doch trotz dieser engen Beziehung ist es auch für Pflanzenkundige oft nicht einfach, die verschiedenen Arten der Gräser und Grasverwandten zu unterscheiden. Grund ist zum Beispiel, dass ihnen infolge der die Gültigkeit auffällige Blüten fehlen und dass sie sich aktuell sehr ähnlich sehen und die entscheidenden Unterscheidungsmerkmale nur bei genauer Betrachtung auffallen. Ein weiterer Grund ist die große Artenfülle: zu etwa 11.000 Süßgräsern (Fam. Poaceae) kommen 5500 Sauergräser (Fam. Cyperaceae) und 400 Binsengewächse (Fam. Juncaceae). Alle werden heute zur Ordnung Poales (Süßgräserartige) gerechnet. Auch in Deutschland kommen immerhin über 400 verschiedene grasartige Pflanzenarten vor!

Es gibt eine ganze Reihe spezieller Bestimmungsbücher für Gräser. Ich selbst habe mich auch in Bestimmungshilfen versucht, zum Beispiel in dem UB-Heft 175  „Gräser und Getreide“ (1992) und in den „Botanischen Exkursionen II“. Aus diesem Buch stammen die folgenden schematischen Darstellungen zu den typischen Familienmerkmalen von Süßgräsern, Sauergräsern und Binsengewächsen.

Bauplan der Süßgräse

Bauplan der Sauergräser

 

 

 

 

 

 

 

Bauplan der Binsengewächse

Das Taschenbuch der Gräser von Ernst Klapp hat mich schon während meines Studiums begleitet (damals schon die achte Auflage, 1957), mittlerweile gibt es die 2006 erschienene 13. Auflage in der Bearbeitung von Opitz von Boberfeld. Recht originell ist die „Kleine Gräserfibel“ von C. H. Schade, in der die Gläser nach bestimmten, leicht kenntlichen Merkmalen in Gruppen unterteilt werden. Dem Büchlein ist eine einseitige Übersichtstabelle beigegeben, die noch nicht einmal DIN A4 Format hat und auf der 34 Süßgräser mit ihren wichtigen Merkmalen und Standortansprüchen dargestellt sind. Dieses Heft ist ebenso wie die originellen Bestimmung Tabellen von Rudolf Kiffmann (Weihenstephan) vor allem für angehende Landwirte gedacht.

Haller, B./Probst, W.: Botanische Exkursionen Bd. II: Exkursionen im Sommerhalbjahr. G. Fischer, Stuttgart/New York 19892 (Nachdruck 2016 bei Springer)

Klapp, Ernst/ Opitz von Boberfeld, Wilhelm: Taschenbuch der Gräser. Ulmer, Stuttgart 200613  (im Buchhandel)

Schade, C.H.: Kleine Gräsefibel. Neumann-Neudamm, Melsungen 19572 (nur antiquarisch)

Kiffmann, Rudolf: Illustriertes Bestimmungsbuch für Wiesen-und Weidepflanzen des Mitteleuropäischen Flachlandes. Teil A :Echte Gräser(Gramineae) – Teil B.Sauergräser(Cyperaceae),Binsengewächse (Juncaceae) – Teil C.Schmetterlingsblütler (Papillionariae)(einschl.kleeartige Ackerfutterpflanzen). Freising ,Weihenstephan, A: 19623,- B:1959, C:19662 (nur antiquarisch)

Ergänzung 8: Korrekturen

Basisartikel

S. 8., auf Abb.8, ganz oben, muss der wissenschaftliche Name des Baumweißlings heißen: Aporia crataegi (von Crataegus = Weißdorn)

S. 9 letzter Absatz gehört zur Aufzählung, letztes Wort „Wiesen-“ muss gestrichen werden

Durch die Blume – Blüten und ihre Bestäuber

S. 14, Kasten

Der wissenschaftliche Name des Wiesen-Bärenklaus ist Heracleum sphondylium

Wilde Weiden für die Biodiversität

Das Foto auf S. 41 unten links zeigt einen Raubwürger und keinen Neuntöter

Aufgabe pur: Wiesenklee – „Schlüsselart“ mit Blutfarbstoff

Die Infos zur 4. Teilaufgabe sind nicht korrekt. In dem Versuch der Bayreuther Forscher wird der Einfluss des Wiesenklees auf die Biomasseproduktion bei unterschiedlicher Anzahl von Begleitarten  untersucht. Hier die entsprechende Korrektur:

AufgabeS.53

 

 

Sind Tannen ein Thema? – Nacktsamer im Biologieunterricht (zu UB 300)

Wilfried  Probst   Vortrag auf der MNU-Tagung Bremerhaven am 20.11.2006

Sind Tannen ein Thema?

Nacktsamer im Biologieunterricht

 

 

Auf einer Fachtagung der Zeitschrift Unterricht Biologie im Mai d. J. wurde über interessante und weniger interessante Titel von Unterricht Biologie-Heften gesprochen. Ein Unterricht Biologie-Heft mit dem Titel ‚Nadelgehölze & Co.’ vom Dezember 2004 wurde als ‚weniger interessant’ eingestuft. Als Herausgeber dieses Heftes bin ich natürlich anderer Meinung und als ich von Frau Bartel gefragt wurde, ob ich zu diesem Thema auf der diesjährigen MNU-Tagung in Bremerhaven einen Vortrag halten will, habe ich freudig zugestimmt. Denn das ist ja eine Gelegenheit für ein entsprechendes Plädoyer.   Als gut wurden auf genannter Tagung z.B. folgende Heftthemen bewertet: Herz und Kreislauf Die Zelle Gene Wirbeltiere Evolutionshefte („alles was mit Evolution zusammenhängt ist gut!“) Struktur und Funktion Stationen Lernen Standards und Kompetenzen Wissenschaft entdecken und begreifen   Natürlich ist es ein wichtiges Ziel des Biologieunterrichts, in all seinen Inhalten den Bezug zum Menschen und zur menschlichen Gesellschaft herzustellen. Humanbiologische Themen sind deshalb wichtig, das will ich nicht bestreiten. Aber Biologie heißt eben nicht „Medizin“ oder „Anthropologie“ oder „Gesundheitslehre“, sondern es geht in diesem Fach auch gerade darum, nichtmenschliches Leben kennen und verstehen zu lernen, u.a. auch deshalb, um danach menschliches Leben umso besser verstehen zu können. Auch allgemeinbiologische Themen, die heute häufig als Basiskonzepte apostrophiert werden, wie Evolution, Struktur und Funktion oder Ökologie sind selbstverständlich wichtig für die Entwicklung eines vernünftigen Curriculums, sie bedürfen aber immer konkreter Beispiele. Dies gilt genauso für „Methodenthemen“ wie „Standards und Kompetenzen“ oder „Wissenschaft entdecken“ oder „Forschendes Lernen“.   Vielleicht liegt es näher, geeignete Beispiele aus dem Bereich der dem Menschen vertrauteren weil verwandten Wirbeltiere zu suchen als die Nacktsamer zum Unterrichtsgegenstand zu machen. Wenn man `mal abwechseln will sind Nadelgehölze  – besonders in der Vorweihnachtszeit – das will ich zeigen – aber auch recht ergiebig.

Nadelgehölze sind gute Beispiele

denn:

  • Nadelgehölze halten Rekorde
  • Nadelgehölze sind die Reptilien unter den Pflanzen
  • Nadelgehölze sind Dokumente der Erdgeschichte
  • Nadelgehölze beeinflussen das Erdklima
  • Nadelgehölze haben wirtschaftliche Bedeutung
  • Nadelgehölze haben kulturgeschichtliche Bedeutung

Zur Kulturgeschichte

Als immergrünes Symbol ewigen Lebens schmücken Koniferen bis heute unsere Friedhöfe, seit einiger Zeit auch die Vorgärten, aber das liegt wohl weniger an der Symbolkraft als daran, dass sie weniger Arbeit machen und langsamer wachsen. In der christlichen Tradition steht der immergrüne Weihnachtsbaum für Wiedergeburt und Unsterblichkeit. Seit vor gut 200 Jahren durch Aufforstung Fichten auch im Flachland Deutschlands häufig wurden, verbreitete sich der Weihnachtsbaum in den Bürgerwohnungen und heute hat er sich über die ganze Welt ausgebreitet. Aber der Brauch hat vorchristliche Wurzeln: Schon die Römer schmückten ihre Häuser zum Jahreswechsel mit immergrünen Zweigen und die antiken Nekropolen wurden schon vor mehr als 2000 Jahren von Zypressen umrahmt. Oh Tannenbaum, oh Tannenbaum kann man deshalb mit Recht als interkonfessionelles oder interkulturelles Weihnachtslied bezeichnen – auch wenn die Tannen oft Fichten sind.  In der Umgangssprache werden diese zwei Gattungen der Familie der Kieferngewächse meist nicht unterschieden, auf Skandinavisch heißen sie auch beide „Gran“. Trotzdem wäre es ein die Allgemeinbildung förderndes Unterrichtsziel, einmal auf die Unterschiede hinzuweisen – vielleicht am Beispiel der üblicher Weise als Weihnachtsbäume angebotenen Arten (was allerdings auch von Jahr zu Jahr gewissen Modeströmungen unterliegt). Eine Hilfe bei der Bestimmung bietet der Beihefter in UB 300. Die wichtigsten Unterschiede zwischen den Gattungen Picea (Fichte) und Abies (Tanne):

  1. Bei der Fichte fallen die herabhängenden Zapfen als Ganzes ab, bei der  Tanne die Schuppen einzeln von der aufrechten Zapfenachse
  2. Die Fichtennadeln haben braune Stielchen, die Tannennadeln grüne basale Scheibchen

Neben dem Buchs sind Nadelgehölze, v.a. Eiben, auch wichtige Elementen der Barockgärten, da sie extreme Beschneidung gut vertragen. Andere wachsen schon so, als wären sie beschnitten, z.B. Zuckerhutfichten oder Zwergfichten,  die man durch vegetative Vermehrung aus Hexenbesen kultiviert hat. Aus Gärtnereikatalogen lassen sich Bestimmungskärtchen für Zierkoniferen basteln,, die man alle bei einem Friedhofsbesuch finden kann. Auf eine interessante geschichtliche Spur führt der Name des Küstenmammutbaumes Sequoia sempervirens, amerikanisch „Redwood“. Diese Art, die mit 135 m auch den Höhenrekord eines Baumes und den Rekord des größten Lebewesens hält, wurde von Lampert 1824 als Taxodium sempervirens beschrieben und 1847 vom Wiener Botaniker und Coniferenspezialisten Endlicher in die eigene Gattung Sequoia gestellt, benannt zu Ehren des Cherokee-Indianers Sequoi Yah, der ganz selbständig eine Schrift für die Sprache der Cherokee entwickelte und 1838 eine Zeitung auf Englisch und Cherokee herausgab – im gleichen Jahr, als dieser Stamm auf Befehl des Präsidenten Martin van Buren aus seiner Heimat vertrieben und zu einem winterlichen Gewaltmarsch über 1500km nach Westen gezwungen wurde, dem Marsch der Tränen, auf dem 4000 von 10 000 der  Vertriebenen umkamen.

 

Rekorde

Nadelgehölze halten Rekorde. Hierher gehören

  • mit der Borstenkiefer aus den trockenen Gebirgszügen Arizonas die Pflanzenart, die das höchste Alter erreicht.
  • mit den Redwoods, den Küstenmammutbäumen in Kalifornien und Oregon und den Mammutbäumen in der Sierra Nevada die höchsten Bäume oder
  • mit Picea obovata und Larix dahurica aus Ostsibirien die kälteresistentesten Bäume, die auch noch an den kältesten bewohnten Orten der Erde, in Oimekon und Werchojansk gedeihen.

 

Menschen lieben Rekorde, deshalb ist es immer interessant, in der Schule mit Rekord haltenden Lebewesen zu motivieren. Aber es geht natürlich nicht nur um den Rekord, denn mit ihm sind besondere ökologische, physiologische und strukturelle Leistungen verbunden. So wie einem Basketballspieler seine langen Beine und Arme nutzen, so nutzen einem großen Baum seine leistungsfähigen Wassertransportsysteme und das Alter der Bäume wird im wesentlichen durch die Widerstandskraft ihres Holzes determiniert. Die Kälteresistenz wird einmal durch die xeromorphen wassersparenden Nadelblätter, vor allem aber durch physiologische Anpassungen, insbesondere spezielle, die Bildung von Eiskristallen hemmende Proteine (Antifrostproteine) bewirkt.

Reptilien unter den Pflanzen

Nadelgehölze sind Nacktsamer, Gymnospermen. Sie nehmen im Pflanzenreich dieselbe Stellung ein, wie die Reptilien bei den Wirbeltieren.. Das soll nun näher begründet werden. Die ersten großen Pflanzen. die im Erdaltertum vor gut 400 Mill.Jahren, im ausgehenden Silur, im Devon und im Karbon die Festländer der Erde eroberten und auch damals schon große Wälder bildeten, waren überwiegend Sporenpflanzen: Urfarne, Farne, Schachtelhalme und Bärlappe. Zwar kam bei den Bärlappen auch schon so etwas ähnliches wie Samenbildung vor, aber parallel dazu entwickeln sich schon im ausgehenden Devon und zu Beginn des Karbons die ersten Nacktsamer aus den Verwandtschaftsgruppen, die man auch heute noch in dieser Kategorie einordnet. Der besondere Vorteil der Samenbildung ist ja eine weitergehende Emanzipation vom Wasser. Die freien Gametophyten, die kleinen Vorkeime der Farnpflanzen, sind auf hohe Feuchtigkeit angewiesen. Die Befruchtung erfolgt über Spermatozoiden im wässrigen Milieu. Bei den Samenpflanzen wird dieses alles ins Innere von festen Hüllen verlegt. Zwar kommt es da zunächst auch noch zur Ausbildung von Spermatozoiden, doch schlüpfen diese erst aus den Mikrosporen, die man nun Pollenkörner nennt, wenn diese auf den Samenanlagen gelandet sind. Die ganze Gametophytengeneration mit dem neuen Sporophytenembryo wird in eine neue Verbreitungseinheit, in den Samen, hineinverlegt. Wie dies stammesgeschichtlich schrittweise vonsttten gegangen ist, kann man sich auf grund von Fossilfunden recht gut vorstellen. Wenn diese Samen dann auch noch mit  Nährstoffvorräten versorgt werden, dann entstehen recht große Gebilde, wie z.B. bei den sogenannten „Palmfarnen“. Diese an Baumfarne und Palmen erinnernden Pflanzen entstanden im Karbon, sie hatten ihre stärkste Verbreitung im Erdmittelalter, in Trias, Jura und Kreide, zusammen mit den Dinosauriern. Es ist deshalb sehr passend, wenn im Arboretum Thiensen bei Ellerhoop eine große Dinosaurierplastik zwischen die ins Freiland ausgepflanzten Cycadeen gestellt wurde. Die heutige reliktartige Verbreitung der Cycadeen deutet übrigens auf die erdgeschichtliche Entwicklung der Kontinente hin. In der Zeit, als diese Pflanzenklasse besonders zahlreich vertreten war, war der große Südkontinent Gondwana eine einheitliche Festlandsmasse, die aus den heutigen Kontinenten Südamerika, Südafrika, Indien und Australien gehörten –  die Gebiete in denen man auch heute noch die meisten Cycadeen findet.

Der etwas irreführende deutsche Name „Palmfarn“ könnte als Aufhänger für einen Unterricht dienen, der am Beispiel dieser lebenden Fossilien den Übergang von  Sporen- zu Samenpflanzen behandelt. Warum der Vergleich mit den Reptilien? Während Moospflanzen und Farnpflanzen mit ihren relativ ungeschützten austrocknungsempfindlichen Gametophyten noch sehr wasserabhängig sind, ist die Samenbildung der entscheidende Schritt zur Emanzipation vom Wasser. Sie hat ihre genaue Entsprechung bei der Entwicklung der Wirbeltiere mit dem Übergang von den Amphibien zu den Reptilien, mit der Bildung der Eihäute (Amnion und Chorion) und trockenheitsresistenter Eier, die nicht mehr ins Wasser abgelegt werden müssen.

Dokumente der Erdgeschichte

Nadelgehölze sind damit Dokumente der Erdgeschichte. Formen, die im Erdaltertum und im Erdmittelalter entstanden sind und weit verbreitet waren, haben sich an einigen Standorten bis heute als „lebende Fossilien“ erhalten. Das gilt nicht nur für die  Palmblatt-Nacktsamer, auch für den Ginkgobaum,  und auch für Nadelgehölze im engeren Sinne, wie Urweltmammutbaum, Araukarie oder die erst vor einem guten Jahrzehnt entdeckte Wollemie Pine.

Nacktsamer und Bedecktsamer

Ich wollte das UB-Heft zunächst „Nacktsamer“ nennen. Das stieß aber auf Widerstand bei der Redaktion, da man meinte, der Begriff wäre irreführend und niemand könnte damit das verbinden, was gemeint wäre. Nun ist es aber so, dass diese Bezeichnung für die ganze Pflanzengruppe charakteristischer ist, als die Bezeichnung „Nadelgehölze“ oder „Koniferen“ (=“Zapfenträger“). Denn weder nadelförmige Blätter noch die Ausbildung von zapfenartigen Fruktifikationsorganen ist auf diese Gruppe beschränkt und außerdem gibt es eben, wie gesagt Verwandte, die ganz anders aussehen. Die genannten Palmfarne, die man besser palmblättrige oder wedelblättrige Nacktsamer nennen sollte, sind ein Beispiel. So bizarre Gestalten wie Welwitschia mirabilis aus der Namib Wüste, die schachtelhalmähnlichen Ephedra-Arten oder die wie normale Laubbäume aussehenden Gnetum-Arten wären andere Beispiele. Selbst bei den Nadelgehölzen im engeren Sinne gibt es Bäume, die wie normale Laubbäume aussehen, etwa die sogenannte Kauri-Fichte in Australien. Das entscheidende gemeinsame Merkmal dieser Gruppe ist also tatsächlich die Anordnung und der Aufbau der Samenanlagen und Samen. Diese Gebilde sitzen bei den Nacktsamern offen am Ende von kurzen Sprossen  wie bei der Eibe – oder auf Schuppen. Im Gegensatz dazu sind sie bei den Bedecktsamer in einen Fruchtknoten eingeschlossen, der aus einem oder mehreren Fruchtblättern gebildet wird. Diese heute viel artenreichere Gruppe entstand aber erst vor etwa 150 Mio. Jahren, nachdem es schon  rund 200 Mio. Jahre lang Samenpflanzen, nämlich Nacktsamer, gegeben hatte.   Die Samenanlagen und Samen sind sehr nährstoffreich. Manche schmecken auch den Menschen gut, wie Pinienkerne oder Zirbelnüsse. So war es sicher eine sinnvolle Erfindung der Evolution, diese Leckereien vor Fressern besonders zu schützen: die Bedecktsamer machen das durch das Einhüllen in die Fruchtblätter. Wie das am Anfang ausgesehen hat, das kann man heute z.B. noch bei den Magnolien sehen. Der eigentliche Vorteil dieser Umhüllung stellte sich – wie oft bei Evolutionsabläufen – aber erst danach heraus: Er lag in der großen morphologischen Plastizität der Fruchtblätter, die zu den ungeheuer vielen Fruchttypen mit den verschiedensten Verbreitungsmechanismen führte. So wie bei den Bedecktsamern der Fruchtknoten empfindlichen Samenanlagen vor dem Gefressenwerden schützt, so haben die Koniferen, die Zapfenträger, einen sehr kompakten Samenstand ausgebildet, bei dem die Samen zwischen den Schuppen des Zapfens ebenfalls sehr gut geschützt sind. Bei manchen Pyrophyten (Feuerpflanzen) sind diese Zapfen so fest geschlossen, dass sie nur durch einen Waldbrand geöffnet werden können – z.B. bei Pinus contorta.   Solche Nadelholzzapfen sind ästhetisch ansprechende Sammelobjekte. Die Samenschuppen sind in sehr regelmäßigen Spiralen angeordnet und zwar so, dass normalerweise nie zwei Schuppen übereinanderstehen, sie bilden keine Orthostichen, sondern Spirostichen, Spiralen. Der Winkel zwischen zwei Blattanlagen beträgt ca. 137° 30’. Dieser „Limitdivergenzwinkel“ teilt den Kreis im Goldenen Schnitt.   Nach botanischer Definition sind Blüten endständige Sporophyllstände. Samen enthalten Megasporangien, die Schuppen könnte man also als Megasporophylle auffassen. Dann wären Zapfen Blüten. Nun sitzen aber oft zwischen den Samenschuppen Deckschuppen – besonders auffällig z.B. bei der Douglasie. Die Erklärung hierfür liefern Fossilien aus dem späten Erdaltertum, z.B. die Gattung Lebachia: Samenschuppen sind aus Kurzsprossen entstanden, die Deckschuppen sind die dazugehörigen Tragblätter. Danach sind Koniferenzapfen Blütenstände, jede Schuppe mit den zwei Samenanlagen ist eine Einzelblüte.

Erdklima und Stoffkreislauf

Man sollte jedoch nicht meinen, Nadelgehölze wären in der Gegenwart versprengte und vereinzelte Relikte. Auch heute noch gibt es riesige Nadelwälder, die durchaus für den Stoffkreislauf der Biosphäre und damit auch für das Erdklima bedeutend sind. Ich meine die riesigen borealen Nadelwälder, die sich von Kanada und Alaska über Sibirien bis nach Skandinavien erstrecken, teilweise über mehr als 20 Breitengrade. Ihre Ausbreitung oder Zurückdrängung hat wegen der gespeicherten Kohlenstoffmengen erheblichen Einfluss auf das Erdklima. Die unüberlegte Ausbeutung der Redwood- und Mammutbaumwälder in der zweiten Hälfte des 19. Jahrhunderts war Ausgangspunkt für die Naturschutzbewegung in den Vereinigten Staaten und auf der ganzen Welt und der Anlass für die Gründung der ersten Nationalparks. Noch heute sind die letzten Nordamerikanischen Urwälder, vor allem in Kanada, von unüberlegter kommerzieller Nutzung bedroht und Naturschutzorganisationen wie Greenpeace kämpfen um ihren Erhalt.

Wirtschaft

Zweifelsohne haben Nadelgehölze eine große wirtschaftliche Bedeutung. Viele Arten wachsen schnell, schneller als die meisten Laubbäume und gerade für die Papierproduktion sind sie deshalb besonders wichtig. Auch das Harz von Nadelgehölzen war lange Zeit ein wichtiger Rohstoff und bis heute zeugen viele Ortsnamen und Familiennamen davon. Besonders viele mitteleuropäische Namen sind mit der Kiefer verbunden: Familiennamen wie Kiefer, Kienke, Künast, Kienast, oder Ortsnamen wie Kienitz, Kienbaum, – waren doch Kienspäne lange Zeit die wichtigste Beleuchtung für arme Leute. Auch der vormals wichtige Rohstoff Pech (Harz) wurde von Pechern v.a. aus Schwarz-Kiefer gewonnen. Die Waldkiefer ist der Baum des Jahres 2007. Wirtschaftliche Ausbeutung von Urwäldern betrifft nicht nur die tropischen Regenwälder sondern bis heute auch Wälder der gemäßigten Zonen, z.B. immer noch in Kanada. In Südchile wurde das Pendant zum Küstenmammutbaum, die Alerce (Fitzroya cupressoides), die ebenfalls riesengroß und uralt werden kann, durch Raubbau praktisch ausgerottet. Ihr äußerst widerstandsfähiges Holz wächst sehr langsam

Entdeckungen

Immer wieder gab es in der Neuzeit Entdeckungen von Nadelholzarten, die der Wissenschaft bis dahin verborgen geblieben waren. Die erste dieser spektakulären Neuentdeckungen war der Ginkgo-Baum, der schon 1690 von dem Japan-reisenden Arzt Engelbert Kämpfer zum ersten Mal beschrieben wurde. Dann folgten Küsten-Mammutbaum und Berg-Mammutbaum im 18. und 19. Jahrhundert und im 20. Jahrhundert der Urweltmammutbaum sowie 1994 in den Blue Mountains – knapp 200 km von der Metropole Sidney entfernt – Wollemia nobilis, die sogenannte .Wollemie-Pine, ein Araukariengewächs, das man zuerst fossil entdeckt hatte, ganz ähnlich wie den Urweltmammutbaum aus China. Jüngste Nadelbaumentdeckung des 21. Jahrhunderts ist die vietnamesische Goldzypresse (Xanthocyparis vietnamensis), die 2002 von englischen und vietnamesischen Botanikern in einem abgelegenen Berggebiet Vietnams nahe der chinesischen Grenze entdeckt wurde. Zu all diesen Entdeckungen gibt es interessante spannende Geschichten, die mittlerweile auch im Internet leicht zugänglich sind.   Damit bin ich am Ende meines Vortrags, der Ihnen nur einen kurzen Einblick in das Themenkaleidoskop der Nacktsamer geben konnte. Mehr findet sich in dem UB-Heft 300 und natürlich im Internet.