Die vergoldete Schaukel

LINK-NAME

Balken eines Schaukelgestells mit Trentepohlia-Überzug

Balken eines Schaukelgestells mit Trentepohlia-Überzug

Mikroskopisches Bild von Trentepohlia umbrina aus dem gelborangen Belag des Schaukelpfostens

Mikroskopisches Bild von Trentepohlia umbrina aus dem gelborangen Belag des Schaukelpfostens

Vor sechseinhalb Jahren, im Sommer 2010, haben wir in unserem Garten in Oberteuringen für unsere Enkelkinder eine Schaukel aufgestellt. Bis heute wird sie sehr gerne genutzt und die Holzbalken des Gerüstes zeigen eigentlich noch keine Alterserscheinungen. Allerdings ist seit zwei Jahren zu beobachten, dass sich an den etwas beschatteten Pfostenteilen ein orange-gelblicher Überzug bildet und immer weiter ausdehnt. Dieser Überzug lässt sich leicht abschaben und im Mikroskop erkennt man, dass der Belag sich aus rundlichen Zellen zusammensetzt. Es handelt sich um die Luftalge Trentepohlia umbrina.

Trentepohlia cf. umbrina im Schlosspark von Donaueschingen, 29.1.2017

Trentepohlia cf. umbrina im Schlosspark von Donaueschingen, 29.1.2017

Düngung aus der Luft

Diese zu den Grünalgen gehörende Luftalge, deren Farbe von dunkelgelb bis rotbraun variieren kann, ist in den letzten Jahren – zusammen mit einigen anderen Arten der Gattung – häufig geworden. In verschiedenen Internetforen melden sich Gartenbesitzer, weil ihnen orangefarbene oder rotbraune Beläge der Borke von Obstbäumen Sorge machen. Für die Bäume hat dieser Bewuchs allerdings keine nachteiligen Folgen. Aber er ist – wie das massenhafte Auftreten der Gelbflechten (Xanthoria) – ein Zeichen dafür, dass Stickstoffverbindungen in der Luft in den letzten 10-15 Jahren immer häufiger geworden sind. Dazu gehören nicht nur gasförmige Verbindungen, wie Stickoxide und Ammoniak sondern auch Feinstaubpartikel (PM = particulate matter) aus Ammoniumnitrat. Für die Zunahme dieser Stoffe in unserer Atmosphäre sind neben der Landwirtschaft vor allem Verbrennungsmotoren von Kraftfahrzeugen verantwortlich – nach einer WHO-Untersuchung von 2003 zu 50 bis 75%. http://www.euro.who.int/__data/assets/pdf_file/0005/112199/E79097.pdf

Während bei den fossilen Brennstoffen Steinkohle, Braunkohle und Schweröl  erhebliche Mengen an Stickstoffverbindungen enthalten sind, die bei dem Verbrennungsvorgang freigesetzt werden – man spricht von Brennstoff NOx -, entstehen die Stickstoffoxide bei Diesel- und Benzinmotoren bei hohen Verbrennungstemperaturen aus N2 und O2 der Luft. Dieser Anteil wird thermisches NOx genannt..

Früher –  mit Höhepunkt in den 1970iger Jahren – schadete vor allem die Belastung mit Schwefelverbindungen (vor allem SO2) den Flechten, Moosen und Luftalgen, die ihre Nährmineralien ungefiltert direkt aus der Luft aufnehmen. Man sprach „Flechtenwüsten“ in den Städten und nutzte Flechten als Zeigerorganismen für Luftschadstoffe. Heute hat sich das Bild  gewandelt: Schwefelverbindungen spielen als Luftschadstoffe kaum noch eine Rolle, weil in die  Fabrikschlote entsprechende Filter eingebaut wurden. Dafür haben Stickstoffverbindungen sehr stark zugenommen. Diese Stickstoffbelastung ist nicht nur die Ursache einer flächendeckenden Eutrophierung, die sich nachteilig auf die pflanzliche Biodiversität auswirkt, Stickoxide reizen und schädigen auch die Atmungsorgane. Im Sommersmog sind sie verantwortlich für die Ozonbildung. Außerdem ist insbesondere das Lachgas N2O ein hochwirksames Treibhausgas, das zudem die Ozonschicht der Stratosphäre angreift.

Für eine Reihe von Flechten- , Moos- und Luftalgenarten allerdings, die diese Verbindungen über ihre Oberfläche direkt aus der Luft aufnehmen können, bedeutet diese erhöhte  Konzentration von Stickstoffverbindungen in der Luft eine zusätzliche Düngung.

Xanthoria parietina am Syrischen Hibuskus

Xanthoria parietina am Syrischen Hibuskus

Die Häufigkeit der Gelbflechte (Xanthoria spp., v.a. X. parientina) an Baumstämmen, Ästen und Zweigen hat flächendeckend enorm zugenommen. Fast in jedem Garten findet man die Flechte an Ästen und Stämmen von Sträuchern und Hecken. Auch die Helm-Schwielenflechte (Physcia adscendens) ist an vielen Bäumen und Sträuchern sehr häufig geworden. Ebenso profitieren bestimmte Mauermoose, z. B. das Kissenmoos (Grimmia pulvinata), von der Luftdüngung.

Mauer mit Kissenmoos Grimmia pulvinata

Mauer mit Kissenmoos Grimmia pulvinata

Kissenmoos Grimmia pulvinata

Kissenmoos Grimmia pulvinata (alle Fotos W. Probst)

)

Feinstaub aus Ammoniak

Wie man von typischen Xanthoria-Standorten – wie Misthaufeneinfassungen und Vogelfelsen – weiß, wird die Flechte nicht nur von Stickoxiden sondern vor allem auch durch Ammoniak bzw. Ammonium begünstigt. Nun konnte einmal nachgewiesen werden, das aus Katalysatoren von Benzinmotoren Ammoniak freigesetzt wird (Frahm 2008). Zum Anderen dürfte auch die Ammoniakfreisetzung von Dieselmotoren mit SCR-Katalysatoren (Selektive katalytische Reduktion) eine Rolle spielen. Die strengeren Richtlinien Stickstoffoxidabgabe durch Dieselmotoren haben bewirkt, das die Hersteller diese SCR-Katalysatoren entwickelten, bei denen durch Ammoniakzugabe in den Abgasstrom die Stickoxide zu N2 reduziert werden sollen. Die Ammoniakzugabe erfolgt über wässrige, 32,5-prozentige Harnstofflösung (Firmenbezeichnung „AdBlue“), die in einem Extratank mitgeführt wird. Sie wird dosiert in den Abgasstrom eingespritzt. Im titanbeschichteten Katalysator reduziert der Ammoniak ab einer Abgastemperatur von 170°C Stickstoffoxide zu Stickstoff (N2) und Wasser, außerdem entsteht als Oxidationsprodukt des Harnstoffs Kohlenstoffdioxid. Dabei müssen auf 100 l Dieselkraftstoff etwa 5 l AdBlue zugesetzt werden.

Man kann davon ausgehen, dass bei diesem Verfahren beträchtliche Restmengen an  NH3, eventuell auch Lachgas (N2O), freigesetzt werden, die nicht zur Reduktion von Stickoxiden zu N2 genutzt wurden. Zusammen mit Wasserdampf und Ozon kann sich aus diesem Ammoniak ammoniumhaltiger Feinstaub (NH4NO3 und  – in Gegenwart von SO2 – auch (NH4)2SO4) bilden. Ammoniumnitrat ist fest und schmilzt erst bei 169,6°C. Es bilden sich kleinste Partikel, die als sogenannter „sekundärer Feinstaub“ bezeichnet werden. Dieser NH3-Ausstoß von LKW- und PKW-Motoren erfolgt zu großen Teilen an den Autobahnen und damit in Deutschland auch in vielen Bereichen der freien Landschaft.

NO  +  O3  →  NO2  +  O2

2NO2  +  H2O  →  HNO3  + HNO2

HNO3  + NH3  →  NH4 NO3

Die wichtigste Ammoniakquelle ist die Landwirtschaft. Nach Angaben des Umwelt-Bundesamts stammen um die 95% der Emissionen insbesondere aus der Tierhaltung und werden vor allem über die Gülledüngung freigesetzt. (http://www.umweltbundesamt.de/daten/luftbelastung/luftschadstoff-emissionen-in-deutschland/ammoniak-emissionen). Auch wenn ammoniakhaltige Gase aus der intensiven Landwirtschaft mit Stickoxiden aus Verbrennungsmotoren zusammentreffen, bildet sich Ammoniumnitrat.

Ammoniumnitrat ist Hauptbestandteil vieler Mineraldünger. Neben dem Düngereffekt geht von dem Salz aber auch eine osmotische Wirkung aus, die dazu führt, dass nur salzresistente  bzw. austrocknungsresistente Algen, Flechten und Moose von dieser Düngung aus der Luft nicht geschädigt werden (Frahm 2008).

Gesundheitsschäden

Für uns Menschen sind diese Verbindungen, insbesondere NO2, Reizgase für die Atmungsorgane. Zudem ist bodennahes NO2 verantwortlich für die sommerliche Ozonbildung:

Sonnenlicht

NO2  +  O2  →  NO  +  O3

Bei fehlender Lichtenergie ist diese Reaktion reversibel:

NO  +  O3  →  NO2  +  O2

Deshalb gehen die Ozonwerte in Städten nachts wieder zurück. Vertriftetes NO fern von Emissionszentren wird durch den Luftsauerstoff  zu NO2 oxidiert und wirkt dann weiter Ozon bildend. Als Folge sind die Ozonwerte oft außerhalb der Städte noch höher.

N2O (Lachgas), das z. B. beim SCN-Verfahren entsteht, ist ein sehr stark wirkendes Treibhausgas, das nach einem Report des IPCC (Intergovernmental

Panel on Climate Change) die 300fache Treibhausgaswirkung von CO2 haben soll. http://www.ipcc.ch/pdf/assessment-report/ar4/wg1/ar4-wg1-ts.pdf. Außerdem wird es durch UV-Licht in NO umgewandelt und führt dann in höheren Atmosphäreschichten zum nächtlichen O3-Abbau.

Zur gesundheitsschädlichen Wirkung von Feinstaub schreibt das Bundesumweltministerium: „PM10 kann beim Menschen in die Nasenhöhle, PM2,5 bis in die Bronchien und Lungenbläschen und ultrafeine Partikel bis in das Lungengewebe und sogar in den Blutkreislauf eindringen. Je nach Größe und  Eindringtiefe der Teilchen sind die gesundheitlichen Wirkungen von Feinstaub verschieden. Sie reichen von Schleimhautreizungen und lokalen Entzündungen in der Luftröhre und den Bronchien oder den Lungenalveolen bis zu verstärkter Plaquebildung in den Blutgefäßen, einer erhöhten Thromboseneigung oder Veränderungen der Regulierungsfunktion des vegetativen Nervensystems (Herzfrequenzvariabilität). PM10 kann beim Menschen in die Nasenhöhle, PM2,5 bis in die Bronchien und Lungenbläschen und ultrafeine Partikel bis in das Lungengewebe und sogar in den Blutkreislauf eindringen. Je nach Größe und  Eindringtiefe der Teilchen sind die  bis zu verstärkter Plaquebildung in den Blutgefäßen, einer erhöhten Thromboseneigung oder Veränderungen der Regulierungsfunktion des vegetativen Nervensystems (Herzfrequenzvariabilität).“ http://www.umweltbundesamt.de/themen/luft/luftschadstoffe/feinstaub

Dabei bezieht sich PM2,5 bzw. PM10 auf die Größe der Partikel von durchschnittlich 2,5 bzw. 10 μm.

Moose und Flechten gegen Feinstaub

Die vergoldeten Schaukelpfosten, das von Gelbflechten überzogene Gartengesträuch und die Kissenmoospelzchen auf der Gartenmauer sind also Zeiger für düngende Stickstoffverbindungen in der Luft. Diese Luftinhaltsstoffe sind gesundheitsschädlich. Die Wachstumsförderung von Algen, Flechten und Moosen könnte aber auch eine Möglichkeit für die Verminderung der Feinstaubelastung aufzeigen. Insbesondere Moose scheinen dafür besonders geeignet. Mit ihrer großen Oberfläche, die zudem etwas negativ aufgeladen ist, werden Ammonium haltige Feinstaubpartikel und Ammoniumionen (NH4+) aufgefangen. Über die Blättchen werden diese Stickstoffverbindungen vom Moos aufgenommen und verstoffwechselt. Im Labor wurden diese Zusammenhänge von Frahm und Mitarbeitern an der Universität Bonn gründlich erforscht

(http://www.iug-umwelt-gesundheit.de/pdf/0801_13_6_SP_Moos.pdf)

In der baden-württembergischen Landeshauptstadt Stuttgart hat man besonders mit Feinstaub zu kämpfen. An dem Feinstaub-Hotspot der Stadt, dem „Neckartor“ wurde im November 2016 mit dem Errichten der ersten Mooswand gegen Feinstaub begonnen. Bis Ende März 2017 soll sie auf einer Länge von 100m stehen. Mit dieser Einrichtung soll nicht nur die allgemeine Wirkung getestet werden, man möchte auch herausfinden, welche Moosarten besonders geeignet sind.

http://www.stuttgarter-zeitung.de/inhalt.mit-moss-gegen-den-feinstaub-erste-testwand-in-stuttgart-steht.25a11043-4f6e-4a27-8844-2f4ff14725ee.html

 

Jeder Gartenbesitzer hat die Möglichkeit, in seinem Garten etwas gegen Stickoxide, Ammoniak und Feinstaub zu unternehmen, indem er Moose, Fechten und Algen nicht bekämpft sondern fördert. Ein vermooster Rasen ist kein Anlass zur Sorge, im Gegenteil., er kann der Grundstein für einen ganz besonderen Gartenabschnitt, einen „Moosgarten“ sein. Ein sehr guter Ratgeber für die Anlage von Moosgärten ist das Büchlein von dem leider 2014 verstorbenen Bryologen und Ökologen Jan-Peter Frahm.

Kranzmoos-Rasen (Rhytidiadelphus squarrosus), ist immer grün und muss nicht gemäht werden

Kranzmoos-Rasen (Rhytidiadelphus squarrosus), ist immer grün und muss nicht gemäht werden

Weitere Quellen

Barnekow, D. (2011): Gelbes Geäst. Unterricht Biologie 364, S. 39-43

Ellenberg, H. (1987): Fülle – Schwund -Schutz: Was will der Naturschutz eigentlich? Verh. d. Ges. f. Ökologie XVI, Göttingen, S.449-460

Frahm, J.-P. (2008): Nitrophile Flechten und Moose nehmen zu – Überdüngung und Versalzung durch Katalysatoren? Biuz 2/2008 (38): S.94-101

Frahm, J.-P. (3.A. 2011): Mit Moosen begrünen – Gärten, Dächer, Mauern, Terrarien, Aquarien, Straßenränder – eine Anleitung zur Kultur. Jena: Weißdorn-Verlag

Gams, H. (1969): Makroskopische Süßwasser- und Luftalgen. Kleine Kryptogamenflora Bd. Ia, Stuttgart: G.Fischer

Landesanstalt für Umwelt, Messungen und Naturschutz Baden-Württemberg: relevante Luftschadstoffe. http://www4.lubw.baden-wuerttemberg.de/servlet/is/20243/

Schenk, G. (1997): Moss gardening including Lichens, Liverworts and other miniatures. Portland (Oregon): Timber Press

Ein Gedanke zu „Die vergoldete Schaukel

  1. Konrad Stolz

    Sehr interessant! Muss unbedingt den Kommunen und Stadtplanern bekannt gemacht werden, ist auch noch schöner aus als grauer Breton!

    Antworten

Schreibe einen Kommentar

Deine E-Mail-Adresse wird nicht veröffentlicht. Erforderliche Felder sind mit * markiert.