Schlagwort-Archiv: Erdgeschichte

Leben und Konsum

LINK-NAME

Titelfoto: Zucker als Abfall Phloemsaft konsumierender Blattläuse auf Lindenblatt.

Für das Jahr 2020 ist ein Unterricht Biologie Heft zum Thema „Leben und Konsum“ geplant. Als designierter Herausgeber habe ich hier einige Gedanken zum Thema zusammengestellt. Ich würde mich freuen, wenn sie einige Leser*innen zur Mitarbeit an diesem Heft  ermuntern könnten. Ich bitte Interessierte, sich bei mir oder bei der Redaktion von Unterricht Biologie zu melden.

Konsum und Konsument

Der Begriff „Konsum“ und „Konsument“  bzw. „Verbraucher“ spielt in der modernen Gesellschaft eine wichtige Rolle. Man spricht von einem Konsumklima und es gibt sogar einen Konsumklimaindex, ein Verbraucherministerium und Verbraucherzentralen, die dem Verbraucherschutz dienen sollen. In Schleswig-Holstein gibt es seit einigen Jahren das Schulfach „Verbraucherbildung“, seit 2017 werden von der  Verbraucherzentrale Bundesverband (vzbv)  Schulen mit besonders vielfältigem Engagement in der Verbraucherbildung mit der Auszeichnung „Verbraucherschule Gold“ bzw. „Verbraucherschule Silber“ gewürdigt.

In Wirtschaftsberichten ist Konsumsteigerung positiv belegt. Der Konsum muss gesteigert werden, um das für die Wirtschaft notwendige Wachstum zu ermöglichen. Allerdings wird diese marktwirtschaftliche Prämisse mindestens seit 40 Jahren, seit der Studie des Club of Rome über die „Grenzen des Wachstums“ von 1972, auch kritisch gesehen,  wird über den Zusammenhang von Wirtschaftswachstum und ökologischem Wachstum nachgedacht. Dabei spielt der Begriff der Nachhaltigkeit eine zentrale Rolle. Seit 2008 findet als wichtigste Veranstaltung der Wachstumskritiker die Internationale Degrowth-Konferenz statt. Diese Kritiker fordern, dass Wirtschaftsmodelle an die realen Bedingungen angepasst werden müssen. Die ökonomischen Theorien dürfen nicht zu einem Wachstumszwang führen.

Häufig wird die Biosphäre als Vorbild für mögliche menschliche Wirtschaftsweisen herangezogen. Konsumbedingte Umweltprobleme könnten durch Konsumverzicht, aber auch durch Kreislaufwirtschaft gemindert werden. Welche Methode für nachhaltige Entwicklung vielversprechender ist, wird kontrovers diskutiert (Probst 2009).

Durch das Studium der Wachstums- und Konsumproblematik in der Biologie können Einsichten in ökologische und ökonomische Probleme gewonnen werden. Formen exponentiell Wachstums, wie sie zum Beispiel in Bakterienkulturen oder bei Krebsgeschwüren auftreten, scheitern relativ schnell an der eigenen Dynamik. Andere Wachstumsprozesse, die kurzfristig zu einem „Umkippen“ des Systems führen sind zum Beispiel die Hypertrophierung eines Gewässers, die Massenvermehrung einer eingeschleppten Art oder das Aussterben einer Schlüsselart. Andere Beispiele für das Zusammenspiel von Wachstum, Konsum und Abfall, die in längeren Zeiträumen ablaufen, sind Prozesse wie die Verlandung eines Gewässers, Wüstenbildung oder Walddegradation.

Wachstumskurve der Weltbevölkerung (Quelle: UNO World population prospects 2004)

Das in den letzten 200 Jahren abgelaufene exponentielle Wachstum der menschlichen Bevölkerung von etwa 1  Mrd. Menschen 1804 bis auf heute 7,3 Mrd. hat eine enorme Konsumsteigerung mit sich gebracht. Die Ressourcen an Rohstoffen und Energie werden immer stärker in Anspruch genommen und Bemühungen um Recycling  der Abfälle konnten bisher nicht verhindern, dass die Lücke zwischen Verbrauch und Regenaration immer größer wird. Die wichtigste Zukunftsaufgabe der Menscheit ist es, diese Lücke zu schließen.

Konsument Lebewesen

Leben ist immer mit Konsum verbunden. Dieser Konsum bedeutet zunächst einen ständigen Bedarf an Nährstoffen, sodann eine ständige Abgabe von Abfallstoffen. Da es für Lebewesen außerdem charakteristisch ist, dass sie ständig wachsen und sich vermehren, steigen damit auch Verbrauch und Abfall an. Das Ende einer solchen Entwicklung ist abzusehen: Irgendwann sind entweder die Nährstoffe erschöpft oder die Abfallstoffe lebensgefährlich angehäuft. Die Lebewesen verhungern oder vergiften sich. Die Grenzen des Wachstums sind eng verbunden mit Verbrauch und Abfall.

Obwohl solche Grenzen im Laufe der Erdgeschichte regelmäßig zu Engpässen und auch zur Vernichtung von Lebensräumen und zum Aussterben von Arten geführt haben, konnte das Leben auf der Erde dieser gefährlichen Entwicklung  immer wieder  dadurch entgehen, dass Lebewesen in der Lage sind, sich zu verändern. Durch die Mechanismen der Anpassungsselektion gelang es ihnen, neue Nahrungsquellen zu erschließen und der Gefährdung durch Abfälle zu entgehen. Dabei haben große Mengen zunächst gefährlicher Abfallstoffe oft zu besonders großen Schüben in der Evolution geführt, in dem die Abfallstoffe als neue Rohstoffe genutzt und recycelt wurden:

  • Sauerstoffanhäufung durch photosynthetisch aktive Cyanobakterien führte zu „Erfindung“ der aeroben Dissimilation und damit zum Beginn eines sehr effektiven Stoffkreislaufs.
  • Überschuss an Zucker bei fotosynthetisch aktiven Pflanzen ermöglichte die verstärkte Bildung von stabilisierenden Stoffen auf Kohlenhydratbasis wie Zellulose und Lignin. Diese Stoffe waren eine wesentliche Voraussetzung für die Stabilität großer Landpflanzen und damit der Entwicklung von Wäldern.
  • Kalküberschuss durch Nutzung von Hydrogenkarbonat bei der Photosynthese ermöglichte Skelett- und Schalenbildung. Die endosymbiotischen Algen  in Steinkorallen verschieben durch ihre Assimilation  das Gleichgewicht zwischen Kohlenstoffdioxid und Karbonat und schaffen damit die Voraussetzung für die Bildung der Korallenriffe.
  • Proteinüberschuss war die Voraussetzung zur Bildung von Hornschuppen, Haaren und Federn.
  • Die Notwendigkeit überschüssige Stickstoffverbindungen loszuwerden, ermöglichte silbrige (guaninhaltige) Fischschuppen und bei Pflanzen die Bildung von Alkaloiden.

Stoffkreisläufe

Laubstreu im Buchenwald

Ökosysteme bestehen aus Produzenten,  Konsumenten und Destruenten. Dabei kann man die Konsumenten verschiedenen Trophiestufen zuordnen. Der Konsum der höheren Stufe wird häufig durch Produktion auf der niederen Stufe reguliert (Bottom-up Regulation), umgekehrt können aber auch die Konsumenten höherer Ordnung die Konsumenten der nächstniederen Stufe regulieren (Top-down Regulation).

Die Abfall-verwertenden Destruenten sind für die Stoffkreisläufe von besonderer Bedeutung. Durch die Wiederverwertung von Abfällen haben sich die großen Stoffkreisläufe der Biosphäre herausgebildet. Photosynthese und Atmung sind bis heute die Grundlage des Kohlenstoffkreislaufs. Der Abbau organischer Stickstoffverbindungen bis zum Ammoniak bzw. durch Nitrifikation zum Nitrat ermöglichen den Stickstoffkreislauf.

Solche Stoffkreisläufe haben sich auf dem Bioplaneten Erde in seiner mehr als 4 Milliarden Jahre langen Geschichte entwickelt und dabei auch immer wieder verändert. Das wirkte sich zum Beispiel auf die Zusammensetzung der Atmosphäre und damit auf das Klima aus. So vermutet man, dass es im späten Proterozoikum, in einer Zeit zwischen 750-580 Mill. Jahren, mehrfach zu Gesamtvereisungen der Erde gekommen ist (Schneeballerde). Als Ursache wird der Zerfall des damaligen Superkontinents Rodinia angesehen. Die Aufteilung in kleinere Kontinente soll zu einer Erhöhung der Niederschläge geführt haben, dass im Regenwasser gelöste Kohlenstoffdioxid bewirkte eine chemische Verwitterung von kalkhaltigen Gesteinen und die Einschwemmung von Hydrogencarbonat in die Ozeane. Dort kam es zur Ausbildung von Kalk und zur Bildung von Kalksedimenten auf diese Weise wurde Kohlenstoffdioxid der Atmosphäre entzogen und in der Folge kam es zu einer starken Abkühlung wegen fehlendem Treibhausgaseffekt (Schüring 2001): Aber auch starke vulkanische Tätigkeit und der Ausstoß großer Mengen an Schwefelgasen in die Stratosphäre könnten die Sonneneinstrahlung abgeschwächt haben (Fischer 2017).

Die verschiedenen Teilkreiläufe des Kohlenstoffs auf der Erde

Abfallüberschuss

Abfallüberschuss, die dauerhafte Sedimentation der Abfälle von Lebewesen, führte im Laufe der Erdgeschichte zu Sedimentgesteinen. Bestandteile dieser oft kilometerdicken Sedimente können in erdgeschichtlichen Zeiträumen über geochemische Kreisläufe wieder aufs Neue von Lebewesen genutzt und in Lebewesen eingebaut werden. Auch die Nutzung solcher Sedimente als Brennstoffe und Ausgangsmaterial für die chemische Industrie kann als Recycling von Abfallüberschüssen aus früheren geologischen Epochen gedeutet werden. Bei dieser Nutzung werden aber in für geologische Zeiträume sehr kurzer Zeit große Mengen neuer Abfallstoffe produziert, zum Beispiel nicht abbaubare Kunststoffabfälle und klimawirksames Kohlenstoffdioxid.

Geiseltalsee, ehemaliges Braubkohleabbaugebiet (Google-Earth)

Energiefluss

Bei den Lebensprozessen werden die aufgenommenen Stoffe umgewandelt. Bei dieser Umwandlung in chemischen Reaktionen wird Energie umgesetzt. Gemäß dem zweiten Hauptsatz der Thermodynamik wird dabei immer ein Teil der umgesetzten chemischen Energie irreversibel in Wärmeenergie umgewandelt. Praktisch bedeutet dies eine Energieentwertung, die umgangssprachlich im allgemeinen als „Energieverbrauch“ bezeichnet wird. Für die Aufrechterhaltung der Lebensvorgänge ist deshalb eine ständige Energiezufuhr von außen notwendig. Auf der heutigen Erde kommt diese zugeführte Energie zum großen Teil von der Sonne.

Da die Sonne noch über 6 Milliarden Jahre in gleicher Form Energie liefern wird, werden auf der Erde alle Energieformen, die sich von der Sonnenenergie ableiten lassen, also neben der direkten Solarenergie Wind- und Wasserenergie und Energie aus Biomasse, als regenerative Energien bezeichnet. Den Gegensatz  bilden Energieformen, die durch die Verbrennung von fossilen Brennstoffen (Kohle, Erdöl, Erdgas) bereitgestellt werden, denn diese organischen Abfallstoffe früherer Erdzeitalter sind begrenzt und ihre Ergänzung durch neue organischen Abfallstoffe benötigt geologische Zeiträume, in geschichtlichen Zeiträumen können Sie sich nicht regenerieren.

Mögliche Beispiele

Lebewesen als Konsumenten:

Grundsätzliche Fragen:

Was wird „verbraucht“?

Was bedeutet „Sparsamkeit“, was „Verschwendung“?

Wie hängen Konsum, Produktion und Abfall zusammen?

Wie hängen „Energiekonsum“ und „Stoffkonsum“ zusammen?

  • Konsum von Spitzmaus und Elefant (Abhängigkeit des Stoffumsatzes von der Körpergröße, Bergmann’sche Regel, Kleinheit von Inselarten). „Die Beziehung zwischen dem Energiehaushalt und der Körpergröße der Tiere ist eine der spannendsten, ungelösten Fragen in der vergleichenden Physiologie.“ (Heldmaler,Neuweiler,Rössler 2013) https://www.e-periodica.ch/digbib/view?pid=fng-001:1978:67::208#64
  • Zucker, der aus Bäumen regnet (Zucker als Abfall Phloemsaft konsumierender Blattläuse, siehe Titelfoto) „Die Blattlaus als Verschwender (?)“
  • Chilesalpeter (die Lagerstätten in der Atacama-Wüste und in anderen Trockengebieten und Inseln sind Reste von abgelagertem, harnsäurereichem Vogelkot)
  • Kreislaufwirtschaft benötigt Energie (Erdwärmeheizung als Modell für Kreislaufwirtschaft, hinterfragen des Begriffes „Energieverbrauch“)
  • Leben und Konsum in einer Raumstation (Für lange Reisen in einem Raumschiff oder lange Aufenthalte in Stationen auf dem Mond und auf dem Mars ist die Frage des Konsums essenziell. Denn die Möglichkeiten, Vorräte mitzunehmen, sind begrenzt. Deshalb beschäftigen sich Wissenschaftler schon seit längerem mit den Möglichkeiten, in dem begrenzten Raum eines Raumschiffes oder einer Raumstation mit bioregenerativen Lebenserhaltungssystemen, also Photobioreaktoren, die biologische Stoffkreisläufe ermöglichen, wodurch das Mitführen von Vorräten und die Produktion von Abfall minimiert wird. Neben Pflanzen spielen dabei vor allem Mikroalgen eine entscheidende Rolle).

Lebensstrategien bzw.  Lebensformen und Konsum

Welche besonderen Lebensformen sind mit bestimmten Formen des Konsums verbunden?

  • Wasserverbrauch von Wüstentieren (z.B. Kängururatte Dipodomys, Oryxantilope, Dromedar, Dunkelkäfer Onymacris)
  • Wie Pflanzen Wasser sparen (Sukkulenz, Verdunstungsschutz, zum Beispiel durch Oberflächenverringerung und Oberflächenverdichtung; physiologische Anpassungen wie C4, diurnaler Säurezyklus)
  • Massenvermehrung (Gradation): Heuschreckenschwärme (wie sie entstehen und sich entwickeln)
  • Konsumstopp: Winterruhe, Winterschlaf, Winterstarre, Austrocknungsresistenz

Der Einfluss von Konsum und Abfall auf Ökosysteme

  • Sauerstoffverbrauch in Gewässern („Umkippen“ von Gewässern, Prinzip der Pflanzenkläranlage)
  • Berge aus Abfall – Gebirge aus Sedimenten und was mit ihnen geschehen ist und geschehen wird oder Erdgeschichte als Konsumentengeschichte
  • Von Erdöl zu Plastik (biogene Stufe aus früheren geschichtlichen Epochen werden zu anthropogenen Abfallstoffen der Gegenwart)
  • Torf, Kohle, Erdöl, Erdgas
  • Hochmoore: Mehr Abfall als Verbrauch
  • Was wird aus dem Abfall vom Blattfall? – Durch den jährlichen Laubfall fällt in sommergrünen Wäldern jeden Herbst eine große Menge organischen Abfalls an, der schnell aufgearbeitet wird.
  • Primärproduktion und Trophieebenen (Nahrungsketten können umso länger werden, je höher die Primärproduktion ist: Vergleiche von Wüste – Regenwald, tropischem Meer – marinem Auftriebsgebiet)

Menschen als Konsumenten

  • Der letzte Baum der Osterinseln (die Osterinseln sind – möglicherweise – ein Beispiel dafür, wie eine menschliche Gesellschaft durch unbedachte Nutzung der natürlichen Ressourcen ihre eigenen Lebensgrundlagen zerstörte und daran zu Grunde ging, Diamond 2011)
  • Der Mensch als Verursacher quartärer Aussterbewellen (anthropogen bedingter Verlust der Biodiversität)
  • Kunststoffe (Plastikmüllstrudel in Pazifik und Atlantik; Mikro- und Nanoplastik in Lebensmitteln; abbaubare Kunststoffe)
  • Verbrauch von Sand und Kies
  • Seltene Erden – die Würze von High Tech (Herkunft, Verbrauch, Recycling)
  • Fleischkonsum

Quellen

Braungart, M., McDonough, W. (2008): Einfach intelligent produzieren. Cradle to cradle. Berlin: Berliner Taschenbuchverlag.

Bauman, Z. (2009): Leben als Konsum. Hamburg: Hamburger Edition.

Diamond, J (20113): Kollaps: Warum Gesellschaften überleben oder untergehen. Frankfurt: Fischer-Taschenbuch.

Gerten, G. (2018): Wasser-Knappheit, Klimawandel, Welternährung. München: C.H. Beck.

Heldmaler,, G., Neuweiler, G., Rössler, W. (2013): Vergleichende Tierphysiologie. Berlin, Heidelberg:  Springer.

Hengeveld, R. (2012): Wasted World – How our consumption challenges the Planet. Chicago: Chicago Univ.Press.

Kattman, U. (Hrsg., 2004): Bioplanet Erde. UB 299 (28.Jg.), Seelze: Friedrich.

Looß, M. (1999): Abfall und Recycling. UB 247 (23.Jg.): 4-13, Seelze: Friedrich.

Probst, W. (2009): Stoffkreisläufe. Unterricht Biologie 349 (33. Jg.), S. 2-11, Seelze: Friedrich.

Schmidt-Bleek, F. (1997): Wieviel Umwelt braucht der Mensch? Faktor 10 – das Maß für ökologisches Wirtschaften. München: dtv.

Zuckerkonsum von Kindern

Plastik sammelnde Aqua-Drohne

Algen für Bioplastik

Schneeballerde

Lars Fischer: https://www.spektrum.de/news/machten-schwefeltropfen-die-erde-zur-eiskugel/1457163

Joachim Schüring: Schneeball Erde. (Memento vom 12. Februar 2013 im Webarchiv archive.is) spektrumdirekt, 13. August 2001.

Nostoc – der älteste Landbewohner

Auf der Erde vor 2,5 Milliarden Jahren - mit Blaugrünen Bakterien

Auf der Erde vor 2,5 Milliarden Jahren – mit Blaugrünen Bakterien (Fotos und Kombination W.Probst 2014)

Die Bakteriengattung Nostoc wurde von der Vereinigung für Allgemeine und Angewandte Mikrobiologie (VAAM) zur Mikrobe des Jahres 2014 gewählt.

http://mikrobe-des-jahres.de/content/nostoc/index.html

Vor zweieinhalb Milliarden Jahren

Ein ET landet vor zweieinhalb Milliarden Jahren auf der Erde. Es gibt keine Wälder und keine grünen Wiesen. Aber ganz ohne Bewuchs sind Berge und Täler nicht. Auf feuchten Sand- und Schotterflächen finden sich große Mengen von schwärzlichen Krusten. Wenn ein Regenguss diese Krusten aufweicht , quellen sie zu olivgrünem Glibber auf. Seine Messinstrumente zeigen dem Außerirdischen, dass es sich bei diesem Glibber um Lebewesen handelt. Sie gewinnen ihre Lebensenergie indirekt aus dem Sonnenlicht, indem sie Teile der Sonnenstrahlen (elektromagnetische Wellen) der Sonne nutzen, um das in der Atmosphäre reichlich vorhandene Kohlenstoffdioxid in energiereiche Kohlenhydrate zu verwandten. Die energiereichen Verbindungen, die beim Abbau dieser Kohlenhydrate in den kleinen in eine gallertige Substanz eingebetteten Zellketten dieser Lebewesen gebildet werden, dienen auch dazu, die Stickstoffmoleküle aus der Atmosphäre zum Aufbau von Aminosäuren und Proteinen zu assimilieren.

Stickstmoffassimilation und Kohlenstoffassimilation laufen parallel in verschiedenen Zellen ab. Dabei muss die Heterocystenzellwand für O2-Moleküle ziemlich dichtsein, denn die Nitrogenase ist extrem sauerstoffempindlich

Stickstmoffassimilation und Kohlenstoffassimilation laufen parallel in verschiedenen Zellen ab. Dabei muss die Heterocystenzellwand für O2-Moleküle ziemlich dicht sein, denn die Nitrogenase ist extrem sauerstoffempindlich.

Der olivfarbene Glibber ist „photolithoautotroph“:
autotroph = nicht auf organische Betriebsstoffe angewiesen
photo- = Licht dient als Energiequelle
litho- = Kohlenstoff stammt aus anorganischen Material

Die ersten Landlebewesen

Im Allgemeinen wird angenommen, dass die ersten Lebewesen, die vom Wasser- zum Landleben übergegangen sind, aus Grünalgen entstandene moosähnliche Pflanzen waren, und dass ihr Landgang vor etwa 450 Millionen Jahren begonnen hat. Man kann aber durchaus davon ausgehen, dass auch schon kernlose Lebewesen, also Bakterien und Archäen, Lebensformen entwickelten, die an das Landleben angepasst waren, wie sie dies heute noch sind. Ob dies – wie in der Einleitung angenommen – schon vor zweieinhalb Milliarden Jahren möglich war, oder wegen der zunächst noch sehr hohen UV-Strahlung erst deutlich später, ist nicht sicher.

Ein solches ursprüngliches Landlebewesen ist das Blaugrüne Bakterium Nostoc commune , dessen bis zu Handteller große Kolonien man auf offenen, mageren Böden auch heute noch finden kann.

Kolonie von Nostoc commune

Kolonie von Nostoc communem (feucht)

Kolonie von Nosatoc commune (ausgetrocknet)

Kolonie von Nostoc commune (ausgetrocknet)

Bei feuchtem Wetter bilden sie unregelmäßige, schleimige Klumpen, bei Trockenheit papierdünne schwärzliche Krusten. Es handelt sich also um ausgesprochen wechselfeuchte (poikylohydre) Lebewesen, die vollständige Austrocknung sehr gut ertragen und lange überdauern können (Anhydrobionten). Sie produzieren eine dicke äußere Hülle aus quellfähigen Polysacchariden (Mehrfachzuckern), die bei Feuchtigkeit ein glibbriges Substrat abgeben, in welchem die Zellketten dann auf dem Land unter wasserähnlichen Bedingungen leben können. Nostoc punctiforme ist ein terrestrisches Bakterium dass man frei lebend im Boden sowie in Symbiose mit verschiedenen Pflanzenarten finden kann, zum Beispiel bei Hornmoosen, Lebermoosen, Cycadeen (Wedelnacktsamer, „Palmfarne“) und dem Mammutblatt (Gunnera).
Auch andere Blaugrüne Bakterien (Cyanobacteria) sind Landbewohner. So sind sie zum Beispiel wichtige Bestandteile der mikrobiellen Krusten von Wüstenböden und der Tintenstriche an Kalkfelsen.

Für alle Cyanobakterien gilt, dass sie wie Algen und Pflanzen mithilfe von Lichtenergie zur Assimilation von Kohlenstoffdioxid in der Lage sind, wobei Wasser als Elektronendonator dient. Dabei wird Sauerstoff freigesetzt. Viele Cyanobakterien können darüber hinaus das Luftstickstoffmolekül assimilieren, das heißt, in organische Verbindungen einbauen. Diese Fähigkeit kommt nur bei kernlosen Lebewesen (Prokaryota) vor, zellkernhaltige Lebewesen (Eukaryota) zu sind hierzu grundsätzlich nicht in der Lage.

Zellifferenzierung

Nostoc-Zellkette mit Heterocyste

Nostoc-Zellkette mit Heterocyste

Wenn Zellen eines Lebewesens sich nach ihrer Teilung nicht trennen sondern zusammenbleiben größere Aggregate bilden, die einzelnen Zellen aber untereinander gleich sind, spricht man von „ZelKolonien“. Kommt es aber zu einer Differenzierung in verschiedene Zelltypen mit unterschiedlichen Funktionen, spricht man von Vielzellern. Ein Rostock und einigen anderen Blaugrünen Bakterien kann man eine solche Zelldifferenzierung beobachten, weshalb man sie als bakterielle Vielzeller auffassen kann: Die Nostoc-Zellketten bestehen aus „normalen“, Fotosynthese betreibenden Zellen, Stickstoff assimilierenden Heterocysten, der Überdauerung dienenden, sporenähnlichen Akineten und der Fortbewegung dienenden Hormogonien.

Zellkommunikation

Die einzelnen Zellen eines Nostoc-Zellfadens stehen über Nanoporen miteinander in Verbindung. Durch diese Poren stellen Multiproteinkomplexe die Brücken zwischen den Zellen her, durch die Signalstoffe und andere Stoffwechselprodukte transportiert werden können.

„Sternenrotz“

Sternenrotz am Straßenrand

Sternenrotz am Straßenrand

Die Kolonien von Nostoc commune sind schon den Menschen früherer Zeiten aufgefallen und sie haben sich Gedanken über ihre Entstehung und Herkunft gemacht. Der Name „Nostoc“ soll auf den Arzt und Alchemisten Paracelsus (1493-1541) zurückgehen, der die Gallerthüllen für einen „Sternenschnupfen“ hielt und daher angeblich das englische Wort nostril und die deutsche Übersetzung Nasenloch zu Nost-och verband. Andere Volksnamen sind zum Beispiel Erdgallerte, Zitteralge, Schleimling, Wetterglitt, Pockensnot, Sternschnupfen, Sternschnuppe, Sternschott, Sternräuspen, Sternschnäuze, Sternenrotz, Sternglugge, Hexenkaas, Hexendreck, Hexengespei, Leversee, Lebersee, Libbersee (Marzell ). Einige dieser Namen gehen auf die Vorstellung zurück, dass es ein „Lebermeer“ aus gallertigem Wasser gibt, in dem die Schiffe nicht vorankommen und die Gallertklumpen von Nostoc hielt man für Abkömmlinge dieses „geronnenen Meeres“.

Essbar

Mancherorts wurde und wird Nostoc als Nahrungsmittel genutzt. „Cushuru“ ist ein proteinhaltiges und eisenreiches Nahrungsmittel in den peruanischen Anden, das auf die Inkas zurückgeht. Auch in China ist Nostoc unter dem Namen „Ge-Xian-Mi“ als Nahrungsmittel bekannt.
Neuerdings versucht man auch, Medikamente aus Nostoc zu gewinnen. So befinden sich derzeit Substanzen gegen Krebskrankheiten oder HI-Viren in der Entwicklung. Auch für die Herstellung von Biokraftstoffen könnten Cyanobakterien künftig eine Rolle spielen.

Energiestoffwechsel der Lebewesen – Ein Wechselspiel zwischen Leben und Umwelt

Mit „Global Change“ oder Klimawandel bezeichnet man heute einen globalen Vorgang, bei dem ein Lebewesen, der Mensch, durch seine Aktivitäten die Umwelt so verändert, das sich die Umweltbedingungen auch für ihn ändern. Dieses Wechselspiel zwischen Leben und Umwelt ist allerdings so alt wie das Leben selbst. Als vor etwas weniger als 4 Milliarden Jahren auf der erstarrten Erdoberfläche die ersten Lebewesen entstanden und Stoffe aufnahmen und andere abgaben und dabei Lebensenergie gewannen (also Stoffwechsel machten), wurden die nützlichen Stoffe selten und die Abfallstoffe nahmen zu. So wäre ein schnelles Ende absehbar gewesen, wären nicht die Abfallstoffe zu Ausgangsstoffe anderer Lebensformen geworden, sodass es zu Rückkoppelungsschleifen kam.
Trotz solcher Recyclingprozesse waren die Grenzen für Leben so lange relativ eng gesteckt, bis als Abfallprodukt der Photosysthese auf Wasserbasis (Photolithoautotrophie) vor etwa 2,7 Milliarden Jahren ein Durchbruch erreicht wurde. Durch die Sauerstoffanreicherung in der Atmosphäre wurde die Versorgung mit freier Energie für die Lebewesen wesentlich einfacher. Diese Form der Photosynthese führte dazu, dass vor etwa 2,2 Milliarden Jahren die Atmosphäre einen so hohen Sauerstoffgehalt hatte, dass aerobe Atmung möglich wurde.

Litertatur/Quellen

Engelhardt, H. (2014): Nostoc – Multitalent mit bewegter Vergangenheit.
Biospektrum , S. 226-227
Flores, E./Herrero, A. (2014): The Cell Biology of Cyanobacteria. Norfolk(UK): Caister Academic Press
Maldener, I. (2014): Nostoc – ein prokaryotischer Vielzeller. Biologie in unserer Zeit 44(5), S. 304-311
Probst, W. (2004): Was Cyanos alles können – Entdeckungen an einer vergessenen Bakteriengruppe. Unterricht Biologie Heft 299 (28. Jg.), S. 40-46, Seelze: Friedrich                      Ward, P./Kirschvink, J. (2015): A new history of life.The radial new discoveries about origin and evolution of life on earth. London/New Dehli … Bloomsbury

Sind Tannen ein Thema? – Nacktsamer im Biologieunterricht (zu UB 300)

Wilfried  Probst   Vortrag auf der MNU-Tagung Bremerhaven am 20.11.2006

Sind Tannen ein Thema?

Nacktsamer im Biologieunterricht

 

 

Auf einer Fachtagung der Zeitschrift Unterricht Biologie im Mai d. J. wurde über interessante und weniger interessante Titel von Unterricht Biologie-Heften gesprochen. Ein Unterricht Biologie-Heft mit dem Titel ‚Nadelgehölze & Co.’ vom Dezember 2004 wurde als ‚weniger interessant’ eingestuft. Als Herausgeber dieses Heftes bin ich natürlich anderer Meinung und als ich von Frau Bartel gefragt wurde, ob ich zu diesem Thema auf der diesjährigen MNU-Tagung in Bremerhaven einen Vortrag halten will, habe ich freudig zugestimmt. Denn das ist ja eine Gelegenheit für ein entsprechendes Plädoyer.   Als gut wurden auf genannter Tagung z.B. folgende Heftthemen bewertet: Herz und Kreislauf Die Zelle Gene Wirbeltiere Evolutionshefte („alles was mit Evolution zusammenhängt ist gut!“) Struktur und Funktion Stationen Lernen Standards und Kompetenzen Wissenschaft entdecken und begreifen   Natürlich ist es ein wichtiges Ziel des Biologieunterrichts, in all seinen Inhalten den Bezug zum Menschen und zur menschlichen Gesellschaft herzustellen. Humanbiologische Themen sind deshalb wichtig, das will ich nicht bestreiten. Aber Biologie heißt eben nicht „Medizin“ oder „Anthropologie“ oder „Gesundheitslehre“, sondern es geht in diesem Fach auch gerade darum, nichtmenschliches Leben kennen und verstehen zu lernen, u.a. auch deshalb, um danach menschliches Leben umso besser verstehen zu können. Auch allgemeinbiologische Themen, die heute häufig als Basiskonzepte apostrophiert werden, wie Evolution, Struktur und Funktion oder Ökologie sind selbstverständlich wichtig für die Entwicklung eines vernünftigen Curriculums, sie bedürfen aber immer konkreter Beispiele. Dies gilt genauso für „Methodenthemen“ wie „Standards und Kompetenzen“ oder „Wissenschaft entdecken“ oder „Forschendes Lernen“.   Vielleicht liegt es näher, geeignete Beispiele aus dem Bereich der dem Menschen vertrauteren weil verwandten Wirbeltiere zu suchen als die Nacktsamer zum Unterrichtsgegenstand zu machen. Wenn man `mal abwechseln will sind Nadelgehölze  – besonders in der Vorweihnachtszeit – das will ich zeigen – aber auch recht ergiebig.

Nadelgehölze sind gute Beispiele

denn:

  • Nadelgehölze halten Rekorde
  • Nadelgehölze sind die Reptilien unter den Pflanzen
  • Nadelgehölze sind Dokumente der Erdgeschichte
  • Nadelgehölze beeinflussen das Erdklima
  • Nadelgehölze haben wirtschaftliche Bedeutung
  • Nadelgehölze haben kulturgeschichtliche Bedeutung

Zur Kulturgeschichte

Als immergrünes Symbol ewigen Lebens schmücken Koniferen bis heute unsere Friedhöfe, seit einiger Zeit auch die Vorgärten, aber das liegt wohl weniger an der Symbolkraft als daran, dass sie weniger Arbeit machen und langsamer wachsen. In der christlichen Tradition steht der immergrüne Weihnachtsbaum für Wiedergeburt und Unsterblichkeit. Seit vor gut 200 Jahren durch Aufforstung Fichten auch im Flachland Deutschlands häufig wurden, verbreitete sich der Weihnachtsbaum in den Bürgerwohnungen und heute hat er sich über die ganze Welt ausgebreitet. Aber der Brauch hat vorchristliche Wurzeln: Schon die Römer schmückten ihre Häuser zum Jahreswechsel mit immergrünen Zweigen und die antiken Nekropolen wurden schon vor mehr als 2000 Jahren von Zypressen umrahmt. Oh Tannenbaum, oh Tannenbaum kann man deshalb mit Recht als interkonfessionelles oder interkulturelles Weihnachtslied bezeichnen – auch wenn die Tannen oft Fichten sind.  In der Umgangssprache werden diese zwei Gattungen der Familie der Kieferngewächse meist nicht unterschieden, auf Skandinavisch heißen sie auch beide „Gran“. Trotzdem wäre es ein die Allgemeinbildung förderndes Unterrichtsziel, einmal auf die Unterschiede hinzuweisen – vielleicht am Beispiel der üblicher Weise als Weihnachtsbäume angebotenen Arten (was allerdings auch von Jahr zu Jahr gewissen Modeströmungen unterliegt). Eine Hilfe bei der Bestimmung bietet der Beihefter in UB 300. Die wichtigsten Unterschiede zwischen den Gattungen Picea (Fichte) und Abies (Tanne):

  1. Bei der Fichte fallen die herabhängenden Zapfen als Ganzes ab, bei der  Tanne die Schuppen einzeln von der aufrechten Zapfenachse
  2. Die Fichtennadeln haben braune Stielchen, die Tannennadeln grüne basale Scheibchen

Neben dem Buchs sind Nadelgehölze, v.a. Eiben, auch wichtige Elementen der Barockgärten, da sie extreme Beschneidung gut vertragen. Andere wachsen schon so, als wären sie beschnitten, z.B. Zuckerhutfichten oder Zwergfichten,  die man durch vegetative Vermehrung aus Hexenbesen kultiviert hat. Aus Gärtnereikatalogen lassen sich Bestimmungskärtchen für Zierkoniferen basteln,, die man alle bei einem Friedhofsbesuch finden kann. Auf eine interessante geschichtliche Spur führt der Name des Küstenmammutbaumes Sequoia sempervirens, amerikanisch „Redwood“. Diese Art, die mit 135 m auch den Höhenrekord eines Baumes und den Rekord des größten Lebewesens hält, wurde von Lampert 1824 als Taxodium sempervirens beschrieben und 1847 vom Wiener Botaniker und Coniferenspezialisten Endlicher in die eigene Gattung Sequoia gestellt, benannt zu Ehren des Cherokee-Indianers Sequoi Yah, der ganz selbständig eine Schrift für die Sprache der Cherokee entwickelte und 1838 eine Zeitung auf Englisch und Cherokee herausgab – im gleichen Jahr, als dieser Stamm auf Befehl des Präsidenten Martin van Buren aus seiner Heimat vertrieben und zu einem winterlichen Gewaltmarsch über 1500km nach Westen gezwungen wurde, dem Marsch der Tränen, auf dem 4000 von 10 000 der  Vertriebenen umkamen.

 

Rekorde

Nadelgehölze halten Rekorde. Hierher gehören

  • mit der Borstenkiefer aus den trockenen Gebirgszügen Arizonas die Pflanzenart, die das höchste Alter erreicht.
  • mit den Redwoods, den Küstenmammutbäumen in Kalifornien und Oregon und den Mammutbäumen in der Sierra Nevada die höchsten Bäume oder
  • mit Picea obovata und Larix dahurica aus Ostsibirien die kälteresistentesten Bäume, die auch noch an den kältesten bewohnten Orten der Erde, in Oimekon und Werchojansk gedeihen.

 

Menschen lieben Rekorde, deshalb ist es immer interessant, in der Schule mit Rekord haltenden Lebewesen zu motivieren. Aber es geht natürlich nicht nur um den Rekord, denn mit ihm sind besondere ökologische, physiologische und strukturelle Leistungen verbunden. So wie einem Basketballspieler seine langen Beine und Arme nutzen, so nutzen einem großen Baum seine leistungsfähigen Wassertransportsysteme und das Alter der Bäume wird im wesentlichen durch die Widerstandskraft ihres Holzes determiniert. Die Kälteresistenz wird einmal durch die xeromorphen wassersparenden Nadelblätter, vor allem aber durch physiologische Anpassungen, insbesondere spezielle, die Bildung von Eiskristallen hemmende Proteine (Antifrostproteine) bewirkt.

Reptilien unter den Pflanzen

Nadelgehölze sind Nacktsamer, Gymnospermen. Sie nehmen im Pflanzenreich dieselbe Stellung ein, wie die Reptilien bei den Wirbeltieren.. Das soll nun näher begründet werden. Die ersten großen Pflanzen. die im Erdaltertum vor gut 400 Mill.Jahren, im ausgehenden Silur, im Devon und im Karbon die Festländer der Erde eroberten und auch damals schon große Wälder bildeten, waren überwiegend Sporenpflanzen: Urfarne, Farne, Schachtelhalme und Bärlappe. Zwar kam bei den Bärlappen auch schon so etwas ähnliches wie Samenbildung vor, aber parallel dazu entwickeln sich schon im ausgehenden Devon und zu Beginn des Karbons die ersten Nacktsamer aus den Verwandtschaftsgruppen, die man auch heute noch in dieser Kategorie einordnet. Der besondere Vorteil der Samenbildung ist ja eine weitergehende Emanzipation vom Wasser. Die freien Gametophyten, die kleinen Vorkeime der Farnpflanzen, sind auf hohe Feuchtigkeit angewiesen. Die Befruchtung erfolgt über Spermatozoiden im wässrigen Milieu. Bei den Samenpflanzen wird dieses alles ins Innere von festen Hüllen verlegt. Zwar kommt es da zunächst auch noch zur Ausbildung von Spermatozoiden, doch schlüpfen diese erst aus den Mikrosporen, die man nun Pollenkörner nennt, wenn diese auf den Samenanlagen gelandet sind. Die ganze Gametophytengeneration mit dem neuen Sporophytenembryo wird in eine neue Verbreitungseinheit, in den Samen, hineinverlegt. Wie dies stammesgeschichtlich schrittweise vonsttten gegangen ist, kann man sich auf grund von Fossilfunden recht gut vorstellen. Wenn diese Samen dann auch noch mit  Nährstoffvorräten versorgt werden, dann entstehen recht große Gebilde, wie z.B. bei den sogenannten „Palmfarnen“. Diese an Baumfarne und Palmen erinnernden Pflanzen entstanden im Karbon, sie hatten ihre stärkste Verbreitung im Erdmittelalter, in Trias, Jura und Kreide, zusammen mit den Dinosauriern. Es ist deshalb sehr passend, wenn im Arboretum Thiensen bei Ellerhoop eine große Dinosaurierplastik zwischen die ins Freiland ausgepflanzten Cycadeen gestellt wurde. Die heutige reliktartige Verbreitung der Cycadeen deutet übrigens auf die erdgeschichtliche Entwicklung der Kontinente hin. In der Zeit, als diese Pflanzenklasse besonders zahlreich vertreten war, war der große Südkontinent Gondwana eine einheitliche Festlandsmasse, die aus den heutigen Kontinenten Südamerika, Südafrika, Indien und Australien gehörten –  die Gebiete in denen man auch heute noch die meisten Cycadeen findet.

Der etwas irreführende deutsche Name „Palmfarn“ könnte als Aufhänger für einen Unterricht dienen, der am Beispiel dieser lebenden Fossilien den Übergang von  Sporen- zu Samenpflanzen behandelt. Warum der Vergleich mit den Reptilien? Während Moospflanzen und Farnpflanzen mit ihren relativ ungeschützten austrocknungsempfindlichen Gametophyten noch sehr wasserabhängig sind, ist die Samenbildung der entscheidende Schritt zur Emanzipation vom Wasser. Sie hat ihre genaue Entsprechung bei der Entwicklung der Wirbeltiere mit dem Übergang von den Amphibien zu den Reptilien, mit der Bildung der Eihäute (Amnion und Chorion) und trockenheitsresistenter Eier, die nicht mehr ins Wasser abgelegt werden müssen.

Dokumente der Erdgeschichte

Nadelgehölze sind damit Dokumente der Erdgeschichte. Formen, die im Erdaltertum und im Erdmittelalter entstanden sind und weit verbreitet waren, haben sich an einigen Standorten bis heute als „lebende Fossilien“ erhalten. Das gilt nicht nur für die  Palmblatt-Nacktsamer, auch für den Ginkgobaum,  und auch für Nadelgehölze im engeren Sinne, wie Urweltmammutbaum, Araukarie oder die erst vor einem guten Jahrzehnt entdeckte Wollemie Pine.

Nacktsamer und Bedecktsamer

Ich wollte das UB-Heft zunächst „Nacktsamer“ nennen. Das stieß aber auf Widerstand bei der Redaktion, da man meinte, der Begriff wäre irreführend und niemand könnte damit das verbinden, was gemeint wäre. Nun ist es aber so, dass diese Bezeichnung für die ganze Pflanzengruppe charakteristischer ist, als die Bezeichnung „Nadelgehölze“ oder „Koniferen“ (=“Zapfenträger“). Denn weder nadelförmige Blätter noch die Ausbildung von zapfenartigen Fruktifikationsorganen ist auf diese Gruppe beschränkt und außerdem gibt es eben, wie gesagt Verwandte, die ganz anders aussehen. Die genannten Palmfarne, die man besser palmblättrige oder wedelblättrige Nacktsamer nennen sollte, sind ein Beispiel. So bizarre Gestalten wie Welwitschia mirabilis aus der Namib Wüste, die schachtelhalmähnlichen Ephedra-Arten oder die wie normale Laubbäume aussehenden Gnetum-Arten wären andere Beispiele. Selbst bei den Nadelgehölzen im engeren Sinne gibt es Bäume, die wie normale Laubbäume aussehen, etwa die sogenannte Kauri-Fichte in Australien. Das entscheidende gemeinsame Merkmal dieser Gruppe ist also tatsächlich die Anordnung und der Aufbau der Samenanlagen und Samen. Diese Gebilde sitzen bei den Nacktsamern offen am Ende von kurzen Sprossen  wie bei der Eibe – oder auf Schuppen. Im Gegensatz dazu sind sie bei den Bedecktsamer in einen Fruchtknoten eingeschlossen, der aus einem oder mehreren Fruchtblättern gebildet wird. Diese heute viel artenreichere Gruppe entstand aber erst vor etwa 150 Mio. Jahren, nachdem es schon  rund 200 Mio. Jahre lang Samenpflanzen, nämlich Nacktsamer, gegeben hatte.   Die Samenanlagen und Samen sind sehr nährstoffreich. Manche schmecken auch den Menschen gut, wie Pinienkerne oder Zirbelnüsse. So war es sicher eine sinnvolle Erfindung der Evolution, diese Leckereien vor Fressern besonders zu schützen: die Bedecktsamer machen das durch das Einhüllen in die Fruchtblätter. Wie das am Anfang ausgesehen hat, das kann man heute z.B. noch bei den Magnolien sehen. Der eigentliche Vorteil dieser Umhüllung stellte sich – wie oft bei Evolutionsabläufen – aber erst danach heraus: Er lag in der großen morphologischen Plastizität der Fruchtblätter, die zu den ungeheuer vielen Fruchttypen mit den verschiedensten Verbreitungsmechanismen führte. So wie bei den Bedecktsamern der Fruchtknoten empfindlichen Samenanlagen vor dem Gefressenwerden schützt, so haben die Koniferen, die Zapfenträger, einen sehr kompakten Samenstand ausgebildet, bei dem die Samen zwischen den Schuppen des Zapfens ebenfalls sehr gut geschützt sind. Bei manchen Pyrophyten (Feuerpflanzen) sind diese Zapfen so fest geschlossen, dass sie nur durch einen Waldbrand geöffnet werden können – z.B. bei Pinus contorta.   Solche Nadelholzzapfen sind ästhetisch ansprechende Sammelobjekte. Die Samenschuppen sind in sehr regelmäßigen Spiralen angeordnet und zwar so, dass normalerweise nie zwei Schuppen übereinanderstehen, sie bilden keine Orthostichen, sondern Spirostichen, Spiralen. Der Winkel zwischen zwei Blattanlagen beträgt ca. 137° 30’. Dieser „Limitdivergenzwinkel“ teilt den Kreis im Goldenen Schnitt.   Nach botanischer Definition sind Blüten endständige Sporophyllstände. Samen enthalten Megasporangien, die Schuppen könnte man also als Megasporophylle auffassen. Dann wären Zapfen Blüten. Nun sitzen aber oft zwischen den Samenschuppen Deckschuppen – besonders auffällig z.B. bei der Douglasie. Die Erklärung hierfür liefern Fossilien aus dem späten Erdaltertum, z.B. die Gattung Lebachia: Samenschuppen sind aus Kurzsprossen entstanden, die Deckschuppen sind die dazugehörigen Tragblätter. Danach sind Koniferenzapfen Blütenstände, jede Schuppe mit den zwei Samenanlagen ist eine Einzelblüte.

Erdklima und Stoffkreislauf

Man sollte jedoch nicht meinen, Nadelgehölze wären in der Gegenwart versprengte und vereinzelte Relikte. Auch heute noch gibt es riesige Nadelwälder, die durchaus für den Stoffkreislauf der Biosphäre und damit auch für das Erdklima bedeutend sind. Ich meine die riesigen borealen Nadelwälder, die sich von Kanada und Alaska über Sibirien bis nach Skandinavien erstrecken, teilweise über mehr als 20 Breitengrade. Ihre Ausbreitung oder Zurückdrängung hat wegen der gespeicherten Kohlenstoffmengen erheblichen Einfluss auf das Erdklima. Die unüberlegte Ausbeutung der Redwood- und Mammutbaumwälder in der zweiten Hälfte des 19. Jahrhunderts war Ausgangspunkt für die Naturschutzbewegung in den Vereinigten Staaten und auf der ganzen Welt und der Anlass für die Gründung der ersten Nationalparks. Noch heute sind die letzten Nordamerikanischen Urwälder, vor allem in Kanada, von unüberlegter kommerzieller Nutzung bedroht und Naturschutzorganisationen wie Greenpeace kämpfen um ihren Erhalt.

Wirtschaft

Zweifelsohne haben Nadelgehölze eine große wirtschaftliche Bedeutung. Viele Arten wachsen schnell, schneller als die meisten Laubbäume und gerade für die Papierproduktion sind sie deshalb besonders wichtig. Auch das Harz von Nadelgehölzen war lange Zeit ein wichtiger Rohstoff und bis heute zeugen viele Ortsnamen und Familiennamen davon. Besonders viele mitteleuropäische Namen sind mit der Kiefer verbunden: Familiennamen wie Kiefer, Kienke, Künast, Kienast, oder Ortsnamen wie Kienitz, Kienbaum, – waren doch Kienspäne lange Zeit die wichtigste Beleuchtung für arme Leute. Auch der vormals wichtige Rohstoff Pech (Harz) wurde von Pechern v.a. aus Schwarz-Kiefer gewonnen. Die Waldkiefer ist der Baum des Jahres 2007. Wirtschaftliche Ausbeutung von Urwäldern betrifft nicht nur die tropischen Regenwälder sondern bis heute auch Wälder der gemäßigten Zonen, z.B. immer noch in Kanada. In Südchile wurde das Pendant zum Küstenmammutbaum, die Alerce (Fitzroya cupressoides), die ebenfalls riesengroß und uralt werden kann, durch Raubbau praktisch ausgerottet. Ihr äußerst widerstandsfähiges Holz wächst sehr langsam

Entdeckungen

Immer wieder gab es in der Neuzeit Entdeckungen von Nadelholzarten, die der Wissenschaft bis dahin verborgen geblieben waren. Die erste dieser spektakulären Neuentdeckungen war der Ginkgo-Baum, der schon 1690 von dem Japan-reisenden Arzt Engelbert Kämpfer zum ersten Mal beschrieben wurde. Dann folgten Küsten-Mammutbaum und Berg-Mammutbaum im 18. und 19. Jahrhundert und im 20. Jahrhundert der Urweltmammutbaum sowie 1994 in den Blue Mountains – knapp 200 km von der Metropole Sidney entfernt – Wollemia nobilis, die sogenannte .Wollemie-Pine, ein Araukariengewächs, das man zuerst fossil entdeckt hatte, ganz ähnlich wie den Urweltmammutbaum aus China. Jüngste Nadelbaumentdeckung des 21. Jahrhunderts ist die vietnamesische Goldzypresse (Xanthocyparis vietnamensis), die 2002 von englischen und vietnamesischen Botanikern in einem abgelegenen Berggebiet Vietnams nahe der chinesischen Grenze entdeckt wurde. Zu all diesen Entdeckungen gibt es interessante spannende Geschichten, die mittlerweile auch im Internet leicht zugänglich sind.   Damit bin ich am Ende meines Vortrags, der Ihnen nur einen kurzen Einblick in das Themenkaleidoskop der Nacktsamer geben konnte. Mehr findet sich in dem UB-Heft 300 und natürlich im Internet.