Schlagwort-Archive: Hochmoor

Verwilderung fördern

LINK-NAME LINK-NAME

Vom Menschen unberührte Natur macht derzeit weniger als ein Viertel der Erdoberfläche aus. Den Forderungen, solche Flächen zur Stabilisierung des Bioplaneten zu vergrößern, steht die wachsende Weltbevölkerung und die auf Wachstum begründete Weltwirtschaft entgegen. Gibt es trotzdem Möglichkeiten, natürliche Funktionsabläufe zu vermehren?

Wildnis und Naturschutz

Die vom Menschen noch kaum veränderten Gebiet der Erdoberfläche machen gegenwärtig weniger als ein Viertel aus. 77% der Landfläche (ohne Antarktika) und 87% der Meere sind bis heute durch menschliche Aktivitäten verändert worden, der größte Teil davon in den letzten 50 Jahren (Watson, Allen u.a. 2018). Dies wird von vielen Ökologen als ein großes Problem angesehen, denn vom Menschen bisher kaum beeinflussten Wildnis-Gebiete gelten als wichtigster Puffer gegen den Verlust der biologischen Vielfalt und die Klimaveränderungen. Wildnisgebiete regulieren Wasserkreisläufe und Klimazyklen und schützen damit vor extremen Wetterereignissen. Außerdem stellen sie wichtige Referenzflächen für die Regeneration und Renaturierung degradierter Landflächen und Meeresgebiete dar. Die Degradation und Fragmentaktion naturnaher Restflächen verstärken die nachteiligen Auswirkungen der Klimaerwärmung auf die Biodiversität (Mantyka-Pringle u. a. 2012).

Den Erhalt von Wildnis ist deshalb ein wichtiges Naturschutzziel.

Aber was ist Wildnis? Ist es im Sinne Aldo Leopolds von Menschen unberührte Natur? Oder sind mit domestizierten Rindern und Pferden beweidete „halboffene Weidelandschaften“ ebenso Wildnis, wie dies Jan Haft in seinem Buch „Wildnis“ darstellt? Welche Rolle spielt Wildnis für die Biodiversität, für den Klimaschutz und für den Erhalt natürlicher Ressourcen? Haben Aufforstungsprogramme etwas mit Wildnis zu tun? Inwiefern ist der Naturschutz mit Wildnis-Vorstellungen verknüpft?

Viele Fragen. Ein Versuch, sie zu beantworten, lässt schnell erkennen, dass es recht unterschiedliche menschliche Vorstellungen von „wilder Natur“ und den Beziehungen der Menschen zu solcher Wildnis gibt.

Europäische Wildnis?

Die in Mitteleuropa seit der letzten Kaltzeit in etwa 12 000 Jahren – also einer erdgeschichtlich sehr kurzen Zeitspanne – entstandenen Landschaften waren von Anfang an vom Menschen beeinflusst. Die menschliche Nutzung hat ein kleinräumiges Mosaik von Lebensräumen geschaffen und zu einer Artenvielfalt geführt, die sich vermutlich ohne den Menschen und seine Nutztiere nicht oder zumindest nicht so schnell entwickelt hätte.

Eine kleinräumig strukturierte Kulturlandschaft hat sich in Mitteleuropa bis heute in einigen Gebieten erhalten (Foto W. Probst 14.9.2012)

Ein flächendeckender Urwald, wie er über die Jahrhunderte heute vermutlich ohne menschlichen Einfluss in Mitteleuropa entstehen würde, hätte sicher eine geringere Artenvielfalt aufzuweisen als die ursprüngliche, vorindustrielle Kulturlandschaft. Der Biologe und Naturfilmer Jan Haft belegt dies in seinem Buch „Wildnis“ mit gut recherchierten Zahlen und Aussagen von Experten (Haft 2023). Es ist deshalb verständlich, dass Naturschutz in Mitteleuropa in vielen Fällen mit Managementmaßnahmen verbunden ist, bei denen es darum geht, traditionelle Landbewirtschaftungsmaßnahmen nachzuahmen. Schilfbestände in Feuchtgebieten werden abgemäht und das Mähgut gut wird entfernt um einen Zustand magerer Feuchtwiesen zu erreichen, der alten Streuwiesen entspricht. Heiden und Moore werden maschinell oder von Hand von Gehölzen befreit (entkusselt), um einen Zustand herzustellen, der einer extensiven Beweidung entspricht. Feldhecken, die früher auch der Nutzholzgewinnung dienten, werden als Naturschutzmaßnahme weiterhin regelmäßig „auf den Stock gesetzt“, um das Durchwachsen zu Baumreihen zu verhindern und den für Kleinsäuger, Vögel, Reptilien und viele Wirbellosen wertvollen Heckencharakter zu erhalten. Alle diese Maßnahmen zielen auf den Erhalt von Landschaften ab, die man nicht als „unberührte Natur“ bezeichnen kann.

In den zwischeneiszeitlichen Warmzeiten allerdings war die Biodiversität ebenfalls deutlich höher. Ursache waren vermutlich die zahlreichen großen Herbivoren, deren Weidetätigkeit die Bildung geschlossener Urwälder verhinderte. Vielmehr herrschten offene, savannenähnliche Landschaften , wie sie heute zum Beispiel noch in Afrika zu finden sind. Dass es solche großen Pflanzenfresser seit dem Ende der letzten Kaltzeit in Europa nicht mehr gibt, ist vermutlich auf die Tätigkeit menschlicher Jäger zurückzuführen ( Sandom et al. 2014). Streng genommen könnte man deshalb diese voreiszeitliche Landschaft als die eigentliche mitteleuropäische Wildnis ansehen.

Nordamerikanische Wilderness

In Nordamerika ist der Naturschutz deutlich stärker mit dem Wildnisbegriff im Sinne von unberührter Natur verbunden als in Europa. Der Naturalist und Dichter Henry David Thoureau forderte schon 1862, dass jede amerikanische Stadt zur Bildung und Erholung ihrer Bevölkerung 200-400 ha Wildnis so bewahren sollte, dass darin nicht einmal die Spur eines geschnittenen Stockes zu erkennen wäre (nach Trommer 2023). Auch für den großen amerikanischen Naturschützer John Muir war die wilde, von Menschen unberührte Natur der zu schützende Idealzustand. Ebenso setzte sich der Wildtierbiologe Aldo Leopold (1887-1948) für die Bewahrung von Wildnis als einem von Menschen weitestgehend unbeeinflusstem Naturraum ein. Seine Schriften hatten großen Einfluss auf den 1964 beschlossenen Wilderness Act, mit dem ein System von vollständig geschützten Wilderness Areas geschaffen wurde (Henderson o.J.).

Diese unterschiedlichen Vorstellungen von Naturschutz in Nordamerika und Europa hängen sicherlich auch damit zusammen, dass die Landschaftsveränderungen in Nordamerika im 18. und vor allem im 19. Jahrhundert in atemberaubender Geschwindigkeit verliefen und deshalb im Laufe eines Menschenlebens sehr gut zu beobachten waren. Die europäischen Siedler bewirkten eine sehr rasche und drastische Veränderung und verhinderten von vorneherein die Entwicklung einer europäischen Verhältnissen vergleichbaren kleinräumig strukturierten Kulturlandschaft.

Agrarlandschaft in Illinois (Foto W.Probst 1989)

Außerdem war der Ausgangszustand nach der Eiszeit in Nordamerika biodiverser als in Europa. In Nordamerika konnten sich die Biodiversität nach der letzten Eiszeit  schneller regenerieren als in Europa, da die Biozönosen während der Kaltzeiten wegen der vorwiegend von Norden nach Süden streichenden Gebirge nicht so stark dezimiert wurden.  In Mitteleuropas war eine Rückzugsmöglichkeit nach Süden durch die Alpen weitgehend versperrt.

Allerdings sind auch in Nordamerika viele der vor den Kaltzeiten oder in Zwischenwarmzeiten noch existenten großen Pflanzenfesser einschließlich ihrer Prädatoren verschwunden. Es ist naheliegend, zu vermuten, dass auch hier menschlicher Einfluss, die Jagd, für das Aussterben entscheidend war. Ähnliche Entwicklungen kann man auch für Australien und Teile Asiens nachweisen. Lediglich in Afrika haben bis heute eine Vielzahl großer Herbivoren und Carnivoren überlebt. Dies wird damit in Verbindung gebracht, dass sich in Afrika Menschen und Großsäuger über lange Zeiträume parallel entwickelt haben.

Welche Wildnis wollen wir?

Aus diesen Überlegungen wird deutlich, dass nicht so ganz eindeutig ist, was jeweils unter „Wildnis“ , also einem ursprünglichen Naturzustand, gemeint ist und welche günstigen Wirkungen auf eine nachhaltige Entwicklung des Bioplaneten Erde sich daraus ergeben. Geht es um einen Zustand ohne jeglichen menschlichen Einfluss, also um Ökosysteme ohne Homo sapiens oder gehören auch sogenannte Naturvölker dazu? Welche Rolle spielen reich strukturierte Kulturlandschaften, wie sie bis zu Beginn der Industrialisierung in Europa vorherrschend waren? Wie sind die Veränderungen – man kann auch sagen Ausrottungen – zu bewerten, die schon durch Jäger und Sammler bei der Besiedelung Australiens  und Amerikas bewirkt wurden? Wo zieht man die Grenzen? Ist es wirklich notwendig, völlig unberührte (menschenfreie) Natur zu erhalten, oder können menschliche Aktivitäten teilweise dazu führen, dass Funktionen im Naturgeschehen wieder ablaufen, die vormenschlichen Bedingungen entsprechen? Geht es also mehr um „wilde“ Funktionsabläufe als den Erhalt eines menschenfreien Zustandes?

Wilde Weiden

Heckrinder-Bulle im Leimbach-Hepbacher Ried bei Markdorf, Baden-Württemberg (Foto Probst 2011)

Jan Haft zielt in seinem Buch „Wildnis“ genau auf dieses Funktionsverständnis von Wildnis ab, das im Naturschutz auch als „Prozessschutz“ bezeichnet wird. Dabei geht es ihm vor allem um die Ökosysteme mit großen Pflanzenfressern, die in vielen Gebieten der Erde vor dem Erscheinen des Menschen große Räume einnahmen. Diese vorzeitliche Wildnis könnte funktional wiederhergestellt werden durch domestiziert Weidetiere, deren Populationen nicht durch Carnivoren sondern durch den Menschen reguliert werden. Die mittlerweile an vielen Orten etablierten „halboffenen Weidelandschaften“ sind ein gutes Beispiel dafür, dass solche wilde Weiden der Biodiversität wirklich sehr förderlich sind und dass in solchen Gebieten viele bedrohte Arten sich wieder ausbreiten und regenerieren konnten. Zwei sehr gut dokumentiertes Beispieleaus meiner früheren Heimat sind die auf einem ehemaligen Truppenübungsplatz der Bundeswehr entstandene Weidelandschaft „Stiftungsland Schäferhaus“ bei Flensburg und das Stiftungsland Winderatter See – Kielstau (Janßen 2011-2020)

Das Prinzip dieser Art von Verwilderung lässt sich auf andere Bereiche ausweiten. Einige Beispiele:

Aufforstung

Bäume pflanzen und durch Trockenheit und Schädlingsbefall – vor allem Windbruch und Borkenkäfer –  geschädigte oder zusammengebrochenen Wälder durch Aufforstung zu regenerieren gilt nicht nur als eine wichtige Maßnahme des Klimaschutzes sondern auch des Naturschutzes und der Förderung der Biodiversität. Dem widerspricht zum Beispiel der Förster und Erfolgsautor Peter Wohlleben: „Wald kommt von ganz alleine zurück, das macht er seit 300 Millionen Jahren.“ Global gäbe es kein Beispiel dafür, dass gepflanzter Wald besser funktioniert, als ein Wald, der von selbst zurück wächst. Besonders widerspricht Wohlleben der Annahme, Bäumepflanzen sei eine unumstrittene Klimaschutzmaßnahme. Eine frisch gepflanzte Aufforstung stoße in den ersten Jahren bis Jahrzehnten mehr CO2 aus, als die neu gepflanzten Bäume aufnehmen könnten (Wohlleben in“Hart aber fair“ , 01.11.21).

Erfahrungen im Nationalpark Bayerischer Wald geben Wohllebens Auffassung recht. Nachdem in den 1990 er Jahren durch Borkenkäferbefall rund 60.000 ha Wald zugrunde gegangen waren, hielt die Nationalparkverwaltung trotz großer Proteste der Öffentlichkeit an ihrer Nichteingriffsstrategie fest. Die sich hervorragend regenerierenden Bergwaldflächen sind mittlerweile ein international bekanntes Beispiel für natürliche Waldregeneration (Bibelriether 2017).

Ackerbau

Die hohe Biodiversität einer kleinräumig strukturierten Kulturlandschaft, wie sie in früheren Jahrhunderten für Mitteleuropa typisch war, ist unbestritten. Viele hiesige Naturschutzmaßnahmen zielen deshalb darauf ab, alte bäuerliche Bewirtschaftungsformen zu simulieren. Dies geht aber nur auf verhältnismäßig kleinen, abgeschlossenen Naturschutzflächen. Großflächig dominieren weiterhin große, unstrukturierte Ackerflächen, da nur solche mit Großmaschinen rationell bearbeitet werden können. Wäre es nicht denkbar, dass eine zunehmende Digitalisierung der Landwirtschaft auch eine rationelle maschinelle Bearbeitung kleinräumig strukturierte Anbauflächen ermöglichen würde? Statt dinosaurierartiger Riesenmaschinen könnten kleine Agrarroboter Bearbeitung und Ernte übernehmen, die von Satelliten oder Drohnen gesteuert ganz gezielt eingesetzt werden könnten. Sie würden sich an einem verhältnismäßig engmaschigen Netz von Feldhecken und Feldgehölzen, Randstreifen und Saumbiotopen nicht stören. So könnte eine kostengünstige Produktion ermöglicht werden, ohne natürliche Funktionsabläufe vollkommen zu unterbinden.

Auch die arbeitsintensiven Methoden der Permamakulturen und der Agroforestry, die versuchen, natürliche Prozesse nicht zu unterdrücken sondern auszunutzen, könnten durch KI-Einsatz rentabler werden.

Landwirtschaft, die natürliche Funktionsabläufe zulässt (Grafik W. Probst)

KI in der Landwirtschaft

Der nächste Schritt in der technologischen Entwicklung intelligenter landwirtschaftlicher Maschinen könnte eine Art Schweizer Armeemesser sein: ein Roboter, der jede Pflanze individuell behandelt, nicht nur mit Herbiziden sondern auch mit angepassten Düngemitteln, Insektiziden und Fungiziden und gezielter Bewässerung, alles in einem Arbeitsgang und jeweils nur in der benötigten Menge. Die Folgen einer solchen. Behandlung von Einzelpflanzen statt von ganzen Feldern bedeutet nicht nur eine deutliche Reduktion benötigter Chemikalien und anderer Ressourcen. Es könnte schließlich auch zu einem Ende der Monokulturen führen, einem Ende von Kornfeldern oder Sojafeldern soweit das Auge reicht, die heute der Normalfall sind. Monokulturen laugen Böden aus und sind riskant, da solche nur von einer Pflanzenart bewachsene Felder für Schädlingsbefall und andere Katastrophen besonders anfällig sind.“ (Übersetzt aus Little, A. (2019): The fate of food. What we’ll eat in a bigger,hotter,smarter World. London: Oneworld Publications, p.106)

Paludikultur

Bis vor 200 Jahren waren Torfmoore die letzten unberührten Naturlandschaften Mitteleuropas. Durch Entwässerung und Bodenbearbeitung, Torfstich zur Brennmaterialgewinnung und später für Blumenerde und Gärtnereibedarf führten zum weitgehenden Verschwinden ursprünglicher Moore mit aktiver Torfbildung. Im Zuge der Klimaerhitzung hat man festgestellt, dass die Torfbildung unter Mooren eine sehr effektive Form der Kohlenstoffspeicherung darstellt. Deshalb werden seit einiger Zeit große Anstrengungen unternommen, um aktive Moore zu regenerieren. Dies muss aber nicht unbedingt zur Herstellung des ursprünglichen Zustandes führen. Eine Alternative sind die sogenannten Paludikulturen, bei denen auf wieder vernässten Torfböden nutzbare Pflanzenproduktion betrieben wird. Geerntet werden können nicht nur Schilf und Sauergräser sondern auch Torfmoose, aus denen ein für Gärtnereizwecke besonders wertvolles, dem Hochmoortorf entsprechendes Grundsubstrat gewonnen werden kann. Die Kohlenstoff-speichernden Torfschichten bleiben erhalten. Auch weitere ökologische Funktionen wie Regulierung des Wasserhaushaltes und Erhalt von Lebensräumen für moortypische Tiere und Pflanzen blieben – zumindest teilweise – erhalten (Tanneberger, Schroeder 2023)

Migration

Arten, die sich in einem Gebiet ausgebreitet und etabliert haben, in dem sie zuvor nicht heimisch waren, nennt man Neobiota (auch Neobionten, Sing. der Neobiont). Enger gefasst versteht man darunter nur solche Arten, für deren Einbürgerung indirekt oder direkt menschliche Aktivitäten verantwortlich waren. Arten, die sich ohne menschlichen Einfluss ausgebreitet haben, werden dann als Neueinheimische (Neonative) bezeichnet. Besonders wichtig für Neobiota im engeren Sinne ist der weltweite Güterverkehr.

Nach einer Recherche von Kleunen et al. 2015 wurden bs dahin weltweit 13.168 Pflanzenarten durch menschliche Aktivitäten in neuen Gebieten eingebürgert. Besonders neobiontenreich ist Nordamerika, die größte Anzahl der weltweit neu eingebürgerten Arten stammt aus Europa. Beides hängt vermutlich direkt mit der Kolonisation zusammen, die von Europa ausging.

Vom Naturschutz wird diese menschenbedingte Migration zumeist als großes Problem angesehen, da neu eingewanderte Arten etablierte, heimische Arten verdrängen und Ökosysteme verändern können. Der Naturschutz versucht deshalb, diese Migration zu verhindern und die Migranten wenn möglich wieder aus den neu eroberten Gebieten zu verdrängen. Tatsächlich haben Neobiota teilweise zu drastischen Veränderungen der ursprünglichen Ökosysteme beigetragen. Dies gilt besonders für pazifische Inseln, die von europäischen Kolonisatoren nicht nur mit landwirtschaftlichen Nutzpflanzen und Nutztieren (Schweine, Ziegen) sondern auch mit Ratten und europäischen Wildpflanzen von Äckern und Weiden „geimpft“ wurden. Die sehr speziellen Ökosysteme hatten solchen im wahrsten Sinne des Wortes invasiven Arten nichts oder wenig entgegenzusetzen und viele auf den Inseln endemisch Arten wurden ausgerottet.

Andererseits ist Migration ein sehr natürlicher Vorgang, der für die Geschichte des Lebens auf der Erde eine entscheidende Rolle gespielt hat. Mancuso (2021) bezeichnet Migration nicht ganz zu Unrecht sogar als „Essenz des Lebens“. Allen Lebewesen, so Mancuso, sei ein „Wandertrieb“ eigen, das Bestreben, sich möglichst effektiv auszubreiten, das Verbreitungsareal zu vergrößern. Durch solche Wanderungen bedingte Veränderungen wären für die Entwicklung des Lebens auf unserem Planeten – nicht zuletzt auch für die Evolution des Menschen – von großer Bedeutung. Vom Menschen geförderte oder verursachte Migration ist nicht etwas grundsätzlich anderes als natürliche Migration, allerdings kann vom Menschen geförderte Ausbreitung natürliche Ausbreitungsschranken schneller überwinden und auch große Entfernungen können durch moderne Verkehrsmittel schnell überbrückt werden.

Um den Artenbestand von Inseln zu erklären, haben  MacArthur und Edward O. Wilson 1967 die mittlerweile breit akzeptierte Gleichgewichtstheorie der Inselbesiedelung entwickelt. Danach stellt sich – qualitativ leicht zu beschreiben – auf jeder Insel ein Gleichgewicht zwischen Einwanderungsrate und Aussterberate der Arten ein. Je mehr Arten auf einer Insel vorhanden sind, desto geringer ist die Einwanderungsrate. Entweder, da keine Arten zur Einwanderung mehr zur Verfügung stehen, oder, da es keinen Platz mehr für die neu zugekommenen Arten gibt, da also keine „Nischenbildung“ mehr für sie möglich ist. Umgekehrt ist die Aussterberate umso größer, je mehr Arten auf der Insel sind. Steht  genügend Zeit zur Verfügung, stellt sich ein Gleichgewicht ein, eine bestimmte Artenanzahl. Die Zusammensetzung der Arten, das Artenspektrum, kann sich oder muss sich allerdings weiter ändern, da ja immer Arten aussterben und Arten einwandern, jeweils in einer Rate, die dem Gleichgewicht entspricht. Ohne Migration würde die Artenanzahl auf Inseln danach kontinuierlich abnehmen. Dies gilt aber natürlich auch für andere mehr oder weniger abgeschlossene Gebiete und vermutlich sogar für ganze Kontinente.

Die meisten Neobiota haben sich gut in die Ökosysteme integriert, ohne dass nachteilige ökologische Auswirkungen erkennbar wären. Eine gezielte Bekämpfung ist deshalb in den meisten Fällen nicht notwendig und – wenn sich die Arten schon weit verbreitet haben – auch wenig erfolgversprechend. Die Ausbreitung und Etablierung von Neobiota kann bei sich veränderndem Klima sogar eine Stabilisierung von Ökosystemen bedeuten. Auch das Bundesamt für Naturschutz empfiehlt deshalb eine weitgehende Akzeptanz der Neubürger und eine Bekämpfung nur in begründeten Einzelfällen.

Verkehr

Die Hauptprobleme, die sich durch privaten und öffentlichen Verkehr ergeben, sind die Zerschneidung der Landschaft und die Produktion schädlicher Abgase. Das zweitgenannte Problem versucht man durch „grüne Energie“ und Abschaffung von Verbrennungsmotoren zu beheben. Das erste Problem ist für die natürliche Funktionsabläufe in einer Landschaft besonders gravierend. Es könnte zum Teil dadurch behoben werden, dass die Zerschneidungseffekte von Verkehrswegen durch grüne Brücken vermindert werden, noch effektiver durch großzügigen Brücken- und Tunnelbau. Dabei spielt die fachgerechte Ausführung und Unterhaltung der Grünverbindungen eine entscheidende Rolle (Peters-Ostenberg, Henneberg 2023).

Auch durch Alleen kann der schädliche Zerschneidungseffekt von Verkehrswegen gemindert werden. Außer ihrer Bedeutung als vernetzendes Element stellen sie selbst vielseitige Lebensräume dar.

Städte und Siedlungen

Zwischen 1985 und 2015 hat die die Ausdehnung von Städten und Siedlungen jährlich um 9687 km² zugenommen, mit steigender Tendenz (Liu et al. 2020). Damit ist der Flächenverbrauch der Städte schneller gewachsen als die Bevölkerung. Für eine nachhaltige Entwicklung müssen Städte deshalb „ökologischer“ werden. Damit ist gemeint, dass Funktionsabläufe in dem Ökosystem Stadt stärker den Funktionsabläufen in einem natürlichen Ökosystem entsprechen sollen. Eine Stadt mit großen Grünanlagen wie Parks und Gärten bietet zwar eine hohe Lebensqualität und eine bessere Ökobilanz. Dies geht aber insofern auf Kosten der Umgebung, als sie mehr Fläche für denselben umbauten Raum benötigt. Eine Erfolg versprechende Möglichkeit für dicht bebaute Großstädte ist die Integration von Bauwerken und Grünanlagen.

Neben Minderung des Klimawandels durch eine Verbesserung der CO2-Bilanz können dadurch auch die Auswirkungen einer Klimaerwärmung verringert werden (Lass u. a. 2022). Schließlich wirken mit Sachverstand begrünte Städte auch dem Verlust der Biodiversität entgegen.

Dächer

Schon lange zählt es zu Attributen ökologischer Bauweise, Dächer zu begrünen. Die Etablierung und Ausgestaltung solcher Dachgärten und Wiesen ist aber noch sehr stark ausbaufähig, wie man auf Luftbildern von Städten leicht erkennen kann. Begrünte Dächer können durch Brücken vernetzt werden. Durch treppenartige Anordnung von Gebäudeteilen können Verbindungen zur Grundfläche hergestellt werden. Beim Bewuchs selbst könnte dem Prinzip „Wachsen lassen“ mehr Raum gegeben werden.

Vernetzung von begrünten Dächern (Grafik W.Probst)

Fassaden

Auch begrünte Fassaden gibt es schon lange, aber eher an alten Bauernhäuser auf dem Land als an mehrgeschossigen Stadthäusern, Bankhochhäusern und Industrieanlagen. Außerdem sind die bisher architektonisch verwirklichten Grünfassaden gärtnerisch aufwändige Konstruktion, die eine hohe Wartung benötigen. Ziel müsste es sein, möglichst wartungsarme sich selbsterhaltende Systeme zu erzeugen.

Eine Möglichkeit für eine schnelle flächenhafte Begrünung wären Module, die mit einfachen Mitteln an Fassaden angebracht werden können und die durch Anschluss an eine Bewässerungsanlage wartungsarm sind. Die Elemente könnten aus einem Gerüst bestehen, an dem mehrere auswechselbare Pflanzgefäße aufgehängt werden. Fensterfassaden könnten  durch berankte Schnurgerüste – Hopfenfeldern vergleichbar – begrünt und beschattet werden.

Fassadenbegrünung mit vorgefertigten Modulen (Grafik W. Probst)

Ein interessanter Vorschlag sind vorbegrünte Pflanzennetze. Solche „Urban Pergolas“ sollen als Verschattungssystem der Aufheizung von Fassaden entgegenwirken und die Städte in einen „diversen Großstadtdschungel“ verwandeln. Die Pflanzennetze können an einem oder zwischen mehreren Gebäuden angebracht werden und dadurch Grünflächen schaffen, ohne andere Nutzungen den Platz wegzunehmen (Urban Pergola 2021).

Balkone

Eine weitere Möglichkeit der vertikalen Begrünung, die in wenigen Beispielen schon verwirklicht ist, wäre die Ausgestaltung von Pflanzbalkonen mit Sträuchern und Bäumen (Boeri 2015).

Hochhäuser als Gewächshäuser, „Vertical Farming“

Diese platzsparende Form der Landwirtschaft setzt einen preisgünstigen Zugang zu alternativen Energien voraus, wird aber heute schon als eine wichtige, nachhaltige und zukunftsfähige Ergänzung zur Flächen gebundenen Landwirtschaft gesehen:

Die Fluggesellschaft Emirates Airline plant deshalb die größte Vertical Farm der Welt neben dem Flughafen von Dubai. Singapur plant schwimmende Vertical Farms.

Wenn es in der Zukunft gelingt, den Kraftfahrzeugverkehr weitgehend aus den Stadtzentren herauszuhalten, werden dort auch keine Parkhäuser mehr benötigt und diese könnten zu „Plantscrapern“ werden (Despommier 2011).

Ritzen und Fugen

Der portugiesische Stadtplaner und Architekt Ángel Panero Pardo stellte auf dem großen Platz vor der Wallfahrtskathedrale von Santiago de Compostela während der Corona Pandemie fest, dass sich dieser Platz nach dem Ausbleiben der Pilger in ein Biotop für Wildkräuter verwandelt hatte. Die Fugen zwischen den Pflastersteinen waren grün. Der Stadtplaner überlegte, dass dieser zusätzliche Pflanzenwuchs sich eventuell positiv auf das Stadtklima auswirken könnte. Die Botaniker der Universität von Santiago de Compostela wurde mit einer Untersuchung beauftragt und sie stellten mit einer Wärmebildkamera fest, dass die bewachsenen Ritzen eine bis zu 28 °C niedrigere Oberflächen-temperatur aus aufwiesen als die Steine (Prinz 2023).

Dieses Ergebnis fand in den Medien einen breiten Widerhall, obwohl es eigentlich nicht so verwunderlich ist. Wenn man Fugen und Ritzen in Pflastern und Mauern nicht länger von jedem Bewuchs frei hält, sondern Bewuchs zulässt, hat dies einen messbar positiven Einfluss auf das Stadtklima.

Gehsteigkante mit Acker-Winde, Oberteuringen, 27.7.2016 (Foto W. Probst)

Gärten

Ein besonders großes Potenzial stellen Privatgärten dar, die vor allem in den Randbereichen der Städte in  Vierteln mit Einfamilien- und Reihenhäusern konzentriert sind. Hier gilt meist das Prinzip, dass nur wachsen darf, was gepflanzt wurde. Der Garten darf nicht „verwildern“. „Un“kraut jäten ist deshalb  neben Rasen mähen und Hecken schneiden die häufigste Beschäftigung des Hobbygärtners. Um das Unkraut ohne zu viel manuelle Tätigkeit fern zu halten, hat sich schon vor einigen Jahrzehnten verbreitet, die Beete mit einer Schicht aus keimungs- und wachstumshemmendem Rindenmulch zu bedecken.Seit einigen Jahren wird eine noch pflanzenfeindlichere Methode, das Auskiesen von Gartenflächen, immer beliebter.

Dabei gibt es viele Möglichkeiten, natürliche Funktionsabläufe im Garten zuzulassen oder sogar zu fördern und so eine „Verwilderung“ zu ermöglichen, die durchaus ästhetischen Ansprüchen gerecht werden kann:

  • Zierpflanzen, die gut gedeihen, fördern, auf solche, die schlecht wachsen oder sehr viel Pflege benötigen, verzichten,
  • auf Pestizide verzichten oder sie nur sehr gezielt bei einzelnen befallenen Pflanzen einsetzen,
  • Wildpflanzen nur entfernen, wenn sie gewünschte Zier- oder Nutzpflanzen schädigen oder verdrängen,
  • Wildpfanzen unter Hecken oder Sträuchern wachsen lassen,
  • Rasenflächen, die rein ornamentale Funktion haben, zu mageren (nicht gedüngten), höchstens zweimal im Jahr gemähten Wiesen umwandeln,
  • Abstellflächen (z.B. Autostellplätze) nicht pflastern oder asphaltieren, sondern als Schotterrasen gestalten,
  • Einfahrten mit unterbrochenen Pflastersteinen befestigen, die Bewuchs und Wasserversickerung ermöglichen,
  • abgeblühte Blütenstände und abgestorbene  Fruchtstände wenigstens teilweise stehen lassen, auch über Herbst und Winter (Vogelfutter, Überwinterungsplätze für Insekten)
  • Gartenabfälle vor Ort kompostieren,
  • aus Strauch- und Baumschnitt Reisighaufen anlegen,
  • Gartenmauern als Trockenmauern anlegen, Mauerritzen können zur schnelleren Begrünung mit passenden Pflanzen geimpft werden (Zimbelkraut, Mauerraute, Schöllkraut, Polster von Mauermoosen wie Drehzahnmoos, Kissenmoos)
  • Abwechslungsreiche Besiedelungsflächen schaffen (Sandflächen, Lehmböden, humusreiche Böden, Stein- bzw. Bauschutthaufen),
  • Regenwasser vom Dach (und versiegelten Flächen) in Zisterne sammeln und als Gießwasser (ggf. auch für Teich /Bachlauf) nutzen.

Städte mit grünem Pelz

Ergänzend zu den genannten Maßnahmen können Verkehrswege, insbesondere Straßen und Schienenverkehr, wie U-Bahnen unter die Oberfläche verlegt werden, wodurch Platz für bodenständige Grünanlagen aber auch Rad- und Fußwege gewonnen würde.

So könnten schließlich Städte entstehen, die ganz in einem grünen Pelz eingehüllt sind und die sich fast übergangslos in die umgebende Landschaft einfügen (vgl. Jean Nouvel 2014, Boeri 2015).

Verwilderung zulassen                               

Ein Garten, in dem verhältnismäßig wenig pflegerische Eingriffe vorgenommen werden, „verwildert“. Diese Art von Verwilderung ergibt sich aus natürlichen Funktionsabläufe, die nicht durch menschliche Eingriffe unterbrochen werden. Wenn man sich bei allen Eingriffen und Pflegemaßnahmen – Manipulationen der Natur – überlegt,  welche Ziele mit Ihnen verfolgt werden sollen und ob diese Ziele notwendig und sinnvoll sind, wird man schnell erkennen, dass man auf viele Eingriffe verzichten könnte. Ein solcher Verzicht ist ein Schritt in Richtung Wildnis, wenn man unter Wildnis Vewilderung, das Zulassen natürlicher Prozesse, versteht.

Quellen

Bibelriether, H. (2017): Natur Natur sein lassen. Die Entstehung des ersten Nationalparks Deutschlands: Der Nationalpark Bayerischer Wald. Freyung: Lichtland

Blanc.P. (2009): Vertikale Gärten, Die Natur in der Stadt. Stuttgart: Ulmer

Boeri, S. (2015): A vertical Forest. Milano: Editione Mantova

Bundesamt für Naturschutz: Neobiota – Gebietsfremde und  invasive Arten in Deutschland. https://neobiota.bfn.de/

Crutzen, P. J. (2002): Geology of mankind. Nature 415, p.23

Daily, G. C. (2001): Ecological forecast. Nature 411, p.245

Despommier, D. (2011): The vertical  farm: Feeding the world in the 21th century. Picador (Nachdruck der Ausgabe von 2010)

Fløjgaard, C. et al. (2021): Exploring a natural baseline for large-herbivore biomass in ecological restoration

Haft, Jan. Wildnis: Unser Traum von unberührter Natur (German Edition) (S.141). Penguin Verlag. Kindle-Version.

Hendersen, D. : American Wilderness Philosophy. In: Internet Encyclopedia of Philosophy (IEP)  http://www.iep.utm.edu/am-wild/ 

http://eh-da-flaechen.de/

Hupke, K.-D. (2015):: Naturschutz. Ein kritischer Ansatz. Heidelberg: Springer Spektrum

Janßen,W. (2011-2020): Jahresberichte des Fördervereins für Natur und Umwelt Winderatter See – Kielstau. https://winderattersee-kielstau.de/?page_id=236

Kleunen, M. van et al. (2015): Global exchange and accumulation of non nativ plants. Nature 525, pp. 100–103

Lass, W., Reusswig, F, Walther, C.; Niebuhr, D.; Schürheck, T. Grewe, H. A. (2022): Hitzeaktionsplan für das Land Brandenburg (HAP BB). Gutachten, 20.9.22, Potsdam.

Liu, Xiaoping et al. (2020): High spatiotemporal resolution mapping of global urban change from 1985 to 2015: Nature Sustainability 3, pp.564-570.

Mantyka-Pringle, C. S., Martin, T. G., Rhodes, J. R. (2012): Interactions between climate and habitat loss effects on biodiversity: a systematic review and meta-analysis. Global Change Biology 18, pp. 1239-1252

MacArthur, R. H., Wilson, E. O (1967): The Theory of Island Biogeography. Princeton: University Press

Mancuso, S. (2021): Die Pflanzen und ihre Rechte. Eine Charta zur Erhaltung unserer Natur. Stuttgart: Klett-Cotta

Mrasek, V. (2019): Kann Aufforstung das Klima retten? Deutschlandfunk 5.11.2019 https://www.deutschlandfunk.de/waldwunschdenken-kann-aufforstung-das-klima-retten-100.html

Nickel et al. (2016): Außerordentliche Erfolge des zoologischen Artenschutzes durch extensive Ganzjahresbeweidung mit Rindern und Pferden: Ergebnisse zweier Pilotstudien an Zikaden in Thüringen, mit weiteren Ergebnissen zu Vögeln, Reptilien und Amphibien. Landschaftspflege und Naturschutz in Thüringen, 53, S. 5 – 20

Peters-Ostenberg, E., Henneberg, M. (2023): Zerschneidug – Entschneidung – Brücken bauen. In: : Riedel, W. (Hrsg., 2023): Zwischen Wildnis und Energielandschaft. Husum, S. 87-96

Perino, A. et al. (2019): Rewilding complex ecosystems. Science 364 https://science.sciencemag.org/content/sci/364/6438/eaav5570.full.pdf

Prinz, U. (2023): Mit Superkräutern gegen den Hitzestress.  https://www.spektrum.de/news/bewachsene-fugen-superunkraeuter-gegen-hitzestress/2142636#

Probst, W. (2020): Der grüne Pelz. https://www.wilfried-probst.de//der-gruene-pelz/

Probst, W. (2021): Naturschutz auf neuen Wegen. Unterricht Biologie 465 (Jg.45). Hannover: Friedrich

Probst, W., Hrsg. (2017): Saumbiotope – Grenzen und Übergänge. UB 425. Seelze: Friedrich

Probst, W. (2017): Wachsen lassen – Naturschutz an Rändern, Säumen und Kanten. https://www.wilfried-probst.de//wachsen-lassen-naturschutz-an-raendern-saeumen-und-kanten/

Prominski, M., Maaß, M., Funke, L. (2014): Urbane Natur gestalten. Basel: Birkhäuser

Randers, J. (2012).: 2052 – eine globale Prognose für die nächsten 40 Jahre. München: Oekom , Ausblick 7-4

Redford, K. H. (2017):  The role of Synthetic Biology in conserving the new nature https://reefresilience.org/de/assisted-evolution-a-novel-tool-to-overcome-the-conservation-crisis-2/

Sandom, C. J. et al. (2014): High herbivore density associated with vegetation diversity in interglacial ecosystems. In: Proceedings of the National Academy of Sciences of the United States of America, 111, 11, S. 4162 – 4167

Schilk,, D. (2019): Die Wiederbegrünung der Welt. Klein Jasedow: Drachen-Verlag

Tanneberger, F., Schroeder, V. (2023): Das Moor. München: dtv

Trommer, G. (2023): Der wilde Rest. In: Riedel, W. (Hrsg., 2023): Zwischen Wildnis und Energielandschaft. Husum, S. 195-218

Van Kolfschoten, T. (2000): The Eemian mammal fauna of central Europe. Netherlands Journal of Geosciences 79, 2,3, S. 269 – 281

Watson, J. E. M., Allen, J. A. u. a.: (2018): Protect the last of the wild. Nature 563, pp. 27-30

Weinzierl, H. (2007): Einführung zum Fachsymposium „Mehr Wildnis, die Zeit ist reif“. S. 6-8 in: Deutscher Naturschutzring (Hrsg.): Mehr Wildnis, die Zeit ist reif. Fachsymposium. Bonn

Wohlleben, P. (2013): Der Wald –ein Nachruf. München: Ludwig

Moore

LINK-NAME LINK-NAME

Der Schutz und die Wiederherstellung von Mooren gilt schon seit langem als wichtige Naturschutzaufgabe. Dabei ging es zunächst in erster Linie um die schützenswerten Lebensgemeinschaften mit ganz besonderen, in der übrigen Landschaft seltenen oder fehlenden Arten. Erst durch die hohe Aktualität der Klimakrise rückte die Bedeutung der Moore als Kohlenstoffspeicher in den Vordergrund. Aber auch ihre Bedeutung für den Wasserhaushalt und den Stickstoffkreislauf befördert aktuelle Moorschutzmaßnahmen.

Feuchtbiotope

Unter Feuchtbiotopen versteht man Lebensraumtypen, die über einen längeren Zeitraum des Jahres bis zur Landoberfläche mit Wasser gesättigt sind. Weiter gefasst werden auch Seen und Fließgewässer und von Salzwasser bestimmte Lebensräume wie das Wattenmeer mit einbezogen. Obwohl solche Feuchtgebiete nur etwa 6 % der Erdoberfläche einnehmen, erbringen sie rund ein Viertel der Nettoprimärproduktion. Sie haben eine besondere Bedeutung als Grundwasserfilter, für Überschwemmungsschutz, in vielen Fällen als Kohlenstoffsenke und als Rast- und Überwindungsplätze für Wasser- und Watvögel.

Man unterscheidet zum Beispiel Moore, Brüche, Auwälder, Riede und Sümpfe. Für die Einteilung ist wichtig, ob Torfbildung stattfindet oder nicht und wie die Wasserversorgung des Gebietes erfolgt. Auch das Vorhandensein oder Fehlen von Bäumen und anderen Gehölzen spielt für die Unterscheidung eine wichtige Rolle.

Abb. 1 Überblick über die verschiedenen Feuchtbiotope in Mitteleuropa

Moore als Kohlenstoffspeicher

Für die Kohlenstoffspeicherung von besonderer Bedeutung sind Moore. Sie entstehen auf wasserdurchtränkten Böden, in denen wegen des Sauerstoffmangels die anfallenden Pflanzenreste nur sehr langsam zersetzt werden. Da die Produktion von organischer Substanz rascher erfolgt als ihr Abbau, kommt es zur Ablagerung von Torf. Dabei ist „Moor“ ein geografischer bzw. botanischer, „Torf“ ein mineralogisch-petrografischer Begriff. Bodenkundlich ist Torf definiert durch seinen hohen Glühverlust (bei 550 °C):Torf: 100-75 %, anmooriger Boden: 74-15 %, Mineralboden: unter 15 %.

Wenn Torfschichten eine Mächtigkeit von über 30 cm haben werden diese Gebiete als Moore bezeichnet, unabhängig davon, ob dort noch eine neue Torfbildung stattfindet oder nicht. Bei einer geringeren Torfschicht oder einem geringeren Torfanteil im Boden spricht man von „Anmoor“. Der Überbegriff für beide ist „organische Böden“. Im Gegensatz dazu haben mineralische Böden einen geringeren organischen (Humus-)Anteil und einen höheren Anteil aus verwittertem Gestein.

Beim Abbau der organischen Substanz unterscheidet man:

Verwesung durch aerobe Mikroorganismen: Völliger Abbau zu Kohlenstoffdioxid und Wasser sowie anorganischen Mineralstoffen (Nitrate, Phosphate….).

Vermoderung: Unvollkommene Verwesung bei unzureichendem Sauerstoffzutritt.

Fäulnis: Vollzieht sich unter Sauerstoffabschluss; es bilden sich durch anaerobe Bakterien vor allem Methan und Schwefelwasserstoff, aber auch Ammoniak und Lachgas; Bildung von Faulschlamm, Mudde (Seesediment mit relativ hohem organischem Anteil).

Vertorfung beginnt bei behindertem Sauerstoffzutritt mit Vermoderung, später folgt unter Luftabschluss eine sehr langsame Fäulnis. Schnell zersetzen sich die Zellinhalte aus Proteinen, Zuckern und Stärke. Langsamer werden die Stoffe der Zellwände abgebaut, zuerst Pektine und Hemizellulosen, dann die Zellulose zuletzt der Holzstoff Lignin. Sehr schwer zersetzen sich außerdem Fette, Harze,Wachse, Kutin und Sporopollenin. Pollenkörner und Sporen bleiben in Torf deshalb sehr gut erhalten. Durch ihre Funde in gut datierbaren Torfschichten kann man deshalb auf die Vegetation früherer Zeiten schließen (Pollendiagramme).

Abb. 2 Torfbildung

Für die Eigenschaften des Torfes (Struktur, Anteil an Mineralstoffen, Huminstoffen, pH-Wert, Wassergehalt) ist die Pflanzengemeinschaft wichtig, aus deren Ablagerungen er entstanden ist. Immer handelt es sich dabei um Pflanzengemeinschaften feuchter Standorte.

Abb. 3 Torfbildung von unterschiedlichen Pflazengemeinschaften (verändert nach Overbeck 1975)

Die Anhäufung von organischem Material in aktiven Mooren ist standortabhängig. Aus Messungen ergibt sich ein Torfwachstum von 1± 0,8mm im Jahr. Die großen Unterschiede kommen durch die unterschiedliche torfbildende Vegetation und die klimatischen Bedingungen zustande.

In jedem Fall wird der Atmosphäre solange Kohlenstoff entzogen, solange mehr Torf gebildet als abgebaut wird. Moore gelten daher als Kohlenstoffsenken. Für die langfristige Kohlenstoffakkumulation unterschiedlicher Torfarten hat man Werte zwischen 0,15 und 1,3  t C ha-1 a-1 ermittelt (Tepel 2007/08). Das unterscheidet Moore von Wäldern, deren Senkenwirkung mit dem Erreichen des Klimaxstadiums beendet ist, da sich dann Einlagerung und Abgabe die Waage halten. Aber auch  trockengelegte, kultivierte oder anderweitig genutzte Moore können von Kohlenstoffsenken zu Kohlenstoffquellen werden, da ihr Kohlenstoffspeicher durch aerobe oder anaerobe Zersetzungsvorgänge abgebaut wird. Bei aerobem Abbau wird Kohlenstoffdioxid, bei anaerobem Methan freigesetzt. In ausgetrockneten Mooren wird dies in den oberen Schichten jedoch schnell zu CO2 oxidiert (Abb. 4). Durch Vernässung kann die Torfbildung wieder in Gang gebracht und damit die Wirkung als Kohlenstoffsenke wiederhergestellt werden.

Abb.4  Moore als Kohlenstoffsenken und -quellen

Etwa 3 % der Landfläche der Erde sind von Mooren oder Anmooren bedeckt. Das entspricht einer Fläche von 4 Millionen km². Die größten Moorflächen finden sich in Kanada, Alaska, Nordeuropa und Sibirien, aber auch in tropischen Waldgebieten von Südostasien, im Amazonasbecken und im Kongo-Regenwald wurden große Torfflächen nachgewiesen (Page/Rieley/Wüst 2006, Dargie et al. 2017). In Mitteleuropa sind ursprünglich etwa 5 % der Landfläche von Mooren bedeckt. Sie sind alle nach der Eiszeit beginnend vor etwa 15.000 Jahren entstanden und zwar in den von Gletschern überformten Gebieten Norddeutschlands und am Alpenrand. Einige Moore gibt es auch in den Mittelgebirgsräumen, beispielsweise im Hohen Venn und im Schwarzwald.

Tab.1 Aufteilung der Landfläche auf der Erde (2019) (nach Jäger 2020)

 Fläche in106 km2Anteil an der Landfläche in %
gesamte Landfläche149 
landwirtschaftlich genutzte Fläche5134
Wälder3926
Gletscher, Wüsten u.Ä.4329
Busch128
Siedlungen1,51
Seen, Flüsse1,51
  in den genannten Flächen enthalten:  
Moore und Anmoore (organische Böden).ca.43
Tab.1 Aufteilung der Landfläche auf der Erde (2019) (nach Jäger 2020)

Global ist die Menge an organisch gebundenen Kohlenstoff in den Böden ungefähr dreimal so groß wie die Kohlenstoffmenge in allen Lebewesen zusammen und doppelt so groß wie der Kohlenstoffgehalt der Atmosphäre.

SystemKohlenstoffvorrat (in Gt)
Böden insgesamt1500
Moorbödenca.500
Landpflanzen560
Atmosphäre750
Ozeane38.000
Marines Plankton3
Tab. 2 Kohlenstoffvorräte in Gigatonnen für unterschiedliche Systemkompartimente des Kohlenstoffkreislaufs (nach Trepel 2007/08). Dank des mittlerweile (2022) auf 416 Vol ppm angestiegenen CO2-Gehalts der Atmosphär beträgt der Kohlenstoffvorrat derzeit ca. 850 Gt.

Nach einer Datenauswertung von Yu et al. von 2010 zeigt sich, dass die Kohlenstoffspeicherung nach der letzten Kaltzeit in den Mooren der Nordhemisphäre am höchsten war, wobei höchste Akkumulation im frühen Holozän lag. Deutlich weniger Kohlenstoff wurde in tropischen Moorgebieten vor allem vor 4000-8000 Jahren akkumuliert, während die Moore der Südhemisphäre – vor allem in Patagonien gelegen – vor allem während einer  Wärmeperiode vor 15-20.000 Jahren Torfschichten aufgebaut haben

RegionFläche (km2)C-Speicher(Gt)durchschnittliche C-Speicherung
(gCm-2a-1) seit der letzten Vereisung
Nordhemisphäre4 000 000547 (473-621)18,6
Tropen368 00050(44-55).12,8
Südhemisphäre45 00015 (13-18)22,0
Tab. 3 Überblick über die Moorflächen der Erde und ihre Kohlenstoffspeicherung (nach Yu et al. 2010)
 Fläche in haGespeicherte Kohlenstoff in G t
Organische Böden in der EU31 000 00017
Organische Böden in Deutschland1 823 922mindestens 1,3
Tab. 4 Organische Böden in Europa und ihre Kohlenstoffspeicherung (nach Jäger 2020)

Für die Klimaerwärmung spielt vor allem die Vernichtung von Kohlenstoffvorräten in den Moorböden weltweit eine wichtige Rolle. Torfbrände in Südostasien haben zum Beispiel in den letzten Jahrzehnten den stärksten Anstieg der CO2-Emissionen in der Atmosphäre bewirkt (Page et al 2002, Rieley et al. 2006). In Deutschland spielt vor allem die landwirtschaftliche Nutzung von Moorböden eine entscheidende Rolle für die Freisetzung von Kohlenstoffdioxid.

Bereiche in Mt CO2– Äquivalente pro Jahr
aus allen Bereichen in Deutschlandca. 900
aus Landwirtschaft (ohne die Herstellung synthetischer Düngemittel)103,5
aus organischen Böden, die als Acker und Grünland genutzt werden38
Tab. 5 Treibhausgasemissionen in Deutschland (nach Jäger 2020)

Moortypen und ihre Entstehung

Je nach Umweltbedingungen entstehen unterschiedliche Moortypen. Sie unterscheiden sich vor allem darin, woher das Wasser kommt, welche Salze im Wasser gelöst sind und welche Pflanzenarten deshalb dort gedeihen können. So werden die regenwasserabhängigen Hochmoore oder Regenmoore den Niedermooren gegenübergestellt, die ihren Wasservorrat aus dem Grundwasser oder aus Oberflächengewässern erhalten. Regenwasser ist sehr mineralstoffarm. Der Mineralstoffgehalt der Gewässer, die Niedermoore speisen, kann sehr unterschiedlich sein. Nach der Herkunft des Wassers kann man sehr verschiedene Niedermoortypen unterscheiden.

Niedermoore (Wasserversorgung durch Oberflächenabfluss und Grundwasser)

  • Verlandungsmoore
  • Versumpfungsmoore
  • Überrieselungsmoore, Durchströmungsmoore
  • Quellmoore
  • Flussüberflutungsmoore

Niedermoore können je nach Nährmineralien und Kalkgehalt zahlreiche seltene Pflanzenarten beherbergen, zum Beispiel Seggen-Arten und Orchideen.

Hochmoore (Wasserversorgung nur durch die Niederschläge)

  • allmählich aus mineralstoffarmem Niedermoor (über Verlandung oder Versumpfung)
  • direkt (Wurzelechtes Hochmoor) auf feuchtem, nährmineralarmen Böden
Abb. 5 Moortypen

Hochmoore

Aufbau und Hochmoortypen

Abb. 6 Aufbau eines mitteleuropäischen Hochmoors

Das Aussehen und der Aufbau der Regenmoore verändert sich von dem sehr atlantischen Klima des äußersten Westeuropas zum kontinentalen Klima Osteuropas. Die Deckenmoore Schottlands und Irlands haben sich aus ursprünglich bewaldeten Gebieten durch menschlichen Einfluss, insbesondere durch Beweidung, an waldfreien Standorten entwickeln können.

Abb. 7 Aussehen der Regenmoore in unterschiedlichen Klimabereichen Europas

Nach Norden schließt an die Zone der echten Hochmoore die Zone der Aapamoore an. Sie sind im kalt gemäßigten Klima zirkumpolar verbreitet und bestehen aus hangparallel verlaufenden Wällen und Senken. Die Wälle haben Hochmoorcharakter (ombrotroph), die Senken Niedermoorcharakter (minerotroph). Noch weiter nach Norden, nördlich der Baumgrenze, folgt die Zone der Palsenmoore, deren hügelartige Strukturen an mehrjähriges Bodeneis gebunden sind. Noch weiter nach Norden folgen auf durchgehend gefrorenen Permafrostböden Polygonmoore, deren polygonartige Strukturen durch Frosttrockniss entstanden sind, als nach einer längeren Feuchtperiode im Atlantikum (7270-3710 v. Chr.) das Klima kälter wurde. Dieser Moortyp ist typisch für Nordostsibirien und er ist besonders vom Klimawandel bedroht (POLYGON, Uni Greifswald 2011-2014).

Abb.8 Nördliche Moore

Torfmoose und Hochmoorwachstum

Voraussetzung für die Hochmoorbildung ist die Ansiedlung von Torfmoosen (Gattung Sphagnum).Torfmoose können aufgrund ihres anatomischen Baus das 20 bis 30 fache ihres Trockengewichtes an Wasser aufnehmen und speichern. Außerdem gestattet ihnen ein besonderer Ionenaustauschmechanismus selbst aus extrem nährmineralarmen Wasser die wenigen enthaltenen Kationen im Austausch gegen H+– Ionen herauszufangen. Dies bewirkt eine sehr starke Ansäuerung des Wassers (bis zu pH 3 (Dierßen u. Dierßen 2008) und damit eine weitgehende Ausschaltung von Konkurrenten. Als  Ionenaustauscher wirken dabei vor allem bestimmte Substanzen in der Zellwand. Ob die so herausgefangenen Ionen tatsächlich der Mineralstoffzufuhr der Sphagnum-Pflanze dienen, ist allerdings fraglich.. Möglicherweise ist entscheidend, dass auf diese Weise für die Sphagnumzellen giftige Calcium- und Aluminiumionen aus dem aufsteigenden Wasser entfernt werden.

Abb. 9 Morphologie der Torfmoose (Sphagum magellanicum)

Abb. 10 Räumliche Darstellung eines Sphagnum-Blättchens mit toten Hyalocyten ( Wasserspeicherzellen) und lebenden Chlorocyten

Die Torfmoospolster und – decken wachsen immer höher über den Grundwasserspiegel hinaus und in dem abgestorbenen Moostorf hält sich das Regenwasser wie in einem Schwamm. So können bis zu 5 m über das Relief emporgewölbte Torfschilde entstehen, aus denen am Rand ständig  saures, nährsalzarmes Wasser abfließt und sich über das Randgehänge in dem sogenannten Randsumpf („Lagg“) ansammelt. Dieser Randsumpf ist dadurch etwas mineralstoffreicher als die Moorhochfläche.

Dabei wächst die Torfmoosdecke nicht gleichmäßig in die Höhe. Man unterscheidet zwischen höheren Bulten und tieferen Schlenken. In den Schlenken ist der Zuwachs am stärksten, dadurch werden aus Schlenken mit der Zeit Bulte und umgekehrt.

Abb. 11 Bult-Schenken-Komplex (Abbildung aus Probst, W. 1978)

In vielen Veröffentlichungen wird angegeben, dass das Torfwachstum in Mitteleuropa etwa 10 cm pro 100 Jahre beträgt. Die größten Torfmächtigkeiten, die man erbohrt hat, liegen um 10 m. Dies würde einer Entstehung unmittelbar nach dem Ende der Eiszeit entsprechen. Allerdings sind die Wachstumsraten – wie schon oben ausgeführt – stark von den jeweiligen Umweltbedingungen abhängig. Außerdem kann man davon ausgehen, dass sich das Hochmoorwachstum mit zunehmender Höhe verlangsamt, da sich der schwerkraftbedingte Wasserabfluss verstärkt und außerdem Zersetzungsvorgänge in den tieferen Schichten und zunehmender Druck der darüberliegenden Schichten zu einem Zusammensacken führen.

In dem obersten halben Meter eines Hochmoores lässt sich ein Torfbildungshorizont (Akrotelm, von lat. telma = Moor) von einem Torfablagerungshorizont (Katotelm) unterscheiden. In einer obersten etwa 2-5 cm dicken Schicht des Akrotelms sind die Torfmoose photosynthetisch aktiv (euphotische Zone). An der Untergrenze dieser Schicht beträgt die Lichtintensität noch etwa 1 % des Oberflächenwertes. In der anschließenden aphotischen Zone, einer 10-50 cm dicken Schicht, sind die Torfmoose weitgehend abgestorben.  Sie ist noch von lebenden Wurzeln der Gefäßpflanzen durchzogen. Abgestorbene Pflanzenteile werden von Bakterien und vor allem von Pilzen aerob abgebaut. Der Stickstoffgehalt ist hier noch niedriger als in der Oberflächenschicht (C/N bis 75 gegenüber C/N  50 in der Wachstumszone der Torfmoose, Dierßen und Dierßen 2008).

Unterhalb der aphotischen, noch sauerstoffhaltigen Zone folgt das Katotelm, beginnend mit einer Verdichtungszone von  2-15 cm Mächtigkeit. Die Pflanzenreste sind hier schon stärker zersetzt und werden durch das aufliegende Gewicht verdichtet. Darunter folgt ein mehr oder weniger ausgedehntes Torflager. Wegen der starken Verdichtung ist es nur wenig wasserdurchlässig. Der im Wasser enthaltene Sauerstoff ist deshalb schnell verbraucht und die weiteren Zersetzungsvorgänge werden nun von Anaerobiern übernommen, wobei vor allem Methan gebildet wird .

Abb. 12 Hochmoorschichtung
Abb. 13 Sumpf-Torfmoos (Sphagnum palustre). Der Übergang von der euphotischen in die aphotische ist gut an der Farbänderung zu erkennen.

Aus der weiteren Schichtenfolge lässt sich die Entstehungsgeschichte des Moores ableiten. In der Abbildung ist die Schichtenfolge in einem Verlandungs-Hochmoor dargestellt.

Abb. 14 Schichtenfolge in einem Verlandungs-Hochmoor

Das Torfmoos-Mikrobiom und mögliche symbiotische Beziehungen

Die Erforschung des Mikrobioms der Sphagnumpflanzen ist noch in ihren Anfängen und erst durch neueste Möglichkeiten der Genomsequenzierung (next generation sequencing) wurden Fortschritte erzielt. Zunächst ging es um den Nachweis der verschiedenen beteiligten Mikrobionten. In den Sphagnumpflanzen befinden sie sich vor allem in den wasserspeichernden Hyalocyten, in den lebenden Chlorocyten konnten nur wenige Bakterien nachgewiesen werden. Man kann die Hyalocyten geradezu als kleine Kulturgefäße für Mikroben ansehen, von denen die Moose profitieren. Wie Untersuchungen an lebenden Sphagnumköpfchen zeigten, enthalten sie vor allem Proteobakterien und Acidobakterien. Cyanobakterien und Archäen spielen kaum eine Rolle (Kostka et al. 2016).

Untersuchungen zur Funktion des Mikrobioms ergaben eine besondere Bedeutung  methanotropher Proteobakterien, die gleichzeitig azidotroph sind, also N2 assimilieren. Dies könnte erklären, warum die Stickstoffspeicherung in Sphagnummooren in Gebieten mit sehr geringen Konzentrationen von Stickstoffverbindungen in der Luft deutlich höher ist als der daraus zu erwartende Stickstoffgehalt. Das „Futter“ für die methanotrophen Bakterien liefert das in tieferen Moorschichten von methanogenen Bakterien und Archäen produzierte Methan. Der Sauerstoff wird auch von den Photosynthese betreibenden Sphagnumköpfchen bereitgestellt. Möglicherweise könnten die Bakterien auch von den Torfmoos-Chlorocyten abgegebenen Kohlenhydraten profitieren. Durch Isotopmarkierung konnte nachgewiesen werden, dass sich der Luftstickstoff tatsächlich in Proteinverbindungen der Sphagnen wieder finden lässt (Vile et al. 2014). Dorthin könnte er durch direkte Abgabe von Stickstoffverbindungen (zum Beispiel Ammonium) durch die methanotrophen Bakterien oder über die Freisetzung von Stickstoffverbindungen aus abgestorbenen Bakterien gelangt sein. Auch Konsumenten der Bakterien könnten die Sphagnen über ihre Ausscheidungen düngen. Die Hinweise verdichten sich, dass es sich bei diesen Stoffwechselbeziehungen um eine echte Symbiose handelt, vergleichbar mit Knöllchenbakterien und Leguminosen.

Abb.15 Mögliche Stoffumsätze in der obersten Torfmoosschicht. Zwischen Sphagnen und methanotrophen Proteobakterien besteht eine symbiotische Beziehung.
Abb. 16 Beziehungen zwischen Sphagnum und methanotrophen Proteobakterien

Es wäre denkbar, dass ein erhöhter Eintrag von Stickstoffverbindungen aus der Luft zu einer Verringerung der N2 Assimilation führen würde. Dies könnte wiederum die Methanabgabe der Moore beeinflussen (erhöhen) (Vile et al. 2014).

Pflanzen und Tiere

Auf wachsenden Hochmoorflächen kommen nur wenige Gefäßpflanzenarten vor. Neben dem Scheidigen Wollgras (Eriophorum vaginatum, vgl. Titelbild) sind dies die Heidekrautgewächse Moosbeere (Vaccinium oxycoccus) und Rosmarinheide (Andromeda polyfolia) sowie der insektenfressende Rundblättrige Sonnentau (Drosera rotundifolia). An trockeneren Bereichen können sich als weitere Heidekrautgewächse Gewöhnliche Glockenheide (Erica vulgaris) und Besenheide (Calluna vulgaris) ansiedeln, im Randbereich auch Heidelbeeren (Vaccinium myrtyllus), Preiselbeeren (Vaccinium vitis-idaea) und Rauschbeeren (Vacciinium uliginosum), in von atlantischem Klima geprägten Bereichen Norddeutschlands auch der Gagelstrauch (Myrica gale) und die Krähenbeere (Empetrum nigrum), in Bereichen mit etwas kontinentalerem Klima Nordostdeutschlands der in Deutschland sehr selten gewordene Sumpf-Porst (Rhododendron tomentosum, Syn.:Ledum palustre). Weitere Hochmoorpflanzen sind In feuchteren Bereichen das Weiße Schnabelried (Rhynchospoa alba), Schmalblättriges Wollgras (Eriophorum angustifolium) und weitere Zypergrasgewächse.

Abb. 17 Beispiele für Gefäßpflanzen des Hochmoors

Auch die Fauna der Hochmoore besteht vorwiegend aus Spezialisten. Für Fische ist das Wasser zu sauer, wegen des Calciummangels fehlen Schnecken, Muscheln und Krebse. Typische Hochmoor-Insekten sind zum Beispiel die Hochmoor-Mosaikjungfer (Aeschna subarctica) und der Hochmoor-Perlmutterfalter (Boloria aquilonaris), dessen Raupe sich von Moosbeeren ernährt. Unter den Wirbeltieren sind vor allem der Moorfrosch und die Kreuzotter – oft in ihrer schwarzen Variante – zu nennen Regelmäßig in Hochmooren anzutreffende Vögel sind zum Beispiel Großer Brachvogel, Goldregenpfeifer, Kranich, Birkhuhn, Sumpfohreule, Krick – und Knäkente.

Tropische Moore

Torfbildung findet vor allem in kühleren Klimaregionen statt, wo der Abbau organischer Substanz insgesamt langsamer verläuft. Aber es gibt auch Torfgebiete unter tropischen Sumpfwäldern, zum Beispiel im Amazonasgebiet, im Kongobecken und in Indonesien. Voraussetzung sind hohe Niederschläge – deutlich über 2000mm im Jahr – welche die Evaporation übersteigen.

Die großen Torflagerstätten in der zentralen Senke des Kongobeckens, der sogenannten Cuvette Centrale, wurden erst vor wenigen Jahren entdeckt und vermessen. Die Torfschichten sind zwischen 2,4 und 5,9 m dick (Dargie et al. 2022). Die Wissenschaftler stellten fest, dass die Torflager immer unter bestimmten Waldgesellschaften auftreten, deren Ausdehnung sie mithilfe von Satellitenbildern auf 145.000 km² berechnen konnten. Das sind knapp 10 % des gesamten Kongobeckens. Nach Berechnungen der Forscher könnten in diesem Torflager 30,6 Milliarden t Kohlenstoff gespeichert sein.

Die Fläche der Moorgebiete in Südostasien wird auf 230.000 km² geschätzt (Page, Riley, Wüst 2006). Sie sind stark bedroht durch Brandrodung und Umwandlung in Agrarflächen. In unberührten Zustand haben diese Moore einen niedrigen pH-Wert (3-4) und niedrige Nährmineraliengehalte. Der Gehalt an organischem Kohlenstoff übertrifft 50 %, während der Stickstoffgehalt bei 2 % liegt. Im Gegensatz zu nördlichen Hochmooren ist der Ligningehalt des Torfes hoch und der Zellulosegehalt relativ niedrig. Dies hängt damit zusammen, dass die Vegetation dieser tropischen Moore vor allem aus Gehölzen besteht. Ihre Kohlenstoffspeicherung wird auf 50-70 Gigatonnen geschätzt, der jährliche Zuwachs ist unter günstigen Bedingungen drei bis viermal so hoch wie bei nördlichen Regenwassermooren.

Mensch und Moor

Brennstoff

. In Irland, Finnland und Schweden gibt es bis heute Stromkraftwerke, die mit Torf betrieben werden. Früher wurden die in Ziegelform gebrachten Torfbriketts an der Luft getrocknet, bevor sie als Brennmaterial genutzt werden konnten. In manchen Mooren wurden die Flächen kleinparzellig aufgeteilt, und die einzelnen Parzellen wurden von unterschiedlichen Landwirten zur Brennstoffgewinnung genutzt. Aus den kleinen Torfstichen solcher Moore ist – bei mäßiger Entwässerung – eine Regeneration möglich.

Abb. 18 Besitzverhältnisse im Jardelunder Moor bei Flensburg (Katasterplankarte 1:5000, Stand 1978)

Braunkohle und Steinkohle sind fossile Torfe.

Gartenbau

Heute dient der Torfabbau vor allem der Gewinnung von Pflanzensubstrat in der Gärtnerei, für Presstöpfe zur Sämlingsanzucht und für Wurzelballen der meisten im Handel angebotenen Pflanzen, sowie für die meisten käuflichen Blumenerden. Im Gegensatz zum Brennmaterial ist zu diesem Zweck Weißtorf besonders gut geeignet. Es handelt sich um ein sehr einheitliches Substrat mit ausgezeichneter Wasseraufnahmefähigkeit und der Fähigkeit zur Mineralstoffspeicherung. Sein niedriger pH-Wert kann durch Kalkung bis über den Neutralpunkt hinaus verändert werden. So können mit diesem Grundsubstrat sehr unterschiedliche Pflanzsubstrate hergestellt werden.

2018 wurden in Deutschland etwa 3,7 Millionen m³ Torf abgebaut – von 2002-2009 waren es nach Auskunft der Bundesregierung noch durchschnittlich 8,2 Millionen m³ pro Jahr – und rund 4,1 Millionen m³ importiert, vor allem aus dem Baltikum. Allerdings wurden in Deutschland seit den 1980er Jahren keine intakten Moore mehr für den Abbau freigegeben, sondern nur noch  Gebiete, die vorher landwirtschaftlich genutzt wurden. Die zu entnehmenden Torfmengen werden genau vorgegeben und es besteht eine Renaturierungspflicht für die Abbauer (Bundesinformationszentrum Landwirtschaft 2020). Alte Abbauverträge sind davon allerdings nicht berührt (s.u. Reichermoos) .

Ein völliger Verzicht von Torf im Erwerbsgartenbau wäre prinzipiell möglich aber sehr aufwendig, denn alle Ersatzsubstrate haben keine so guten und einheitlichen Eigenschaften wie Hochmoortorf. Infrage kommen Grünkompost, Rindenhumus Holzfasern. Kokosfasern, Blähton oder Perlit (Amberger-Ochsenbauer, Meinken 2020).

Medizin

Für Medizin und Körperpflege spielen Moorbäder und Moor-(Fango) packungen (von lat. fango = Schlamm, Schlick) eine wichtige Rolle. Der dickflüssige Brei aus Schwarztorf wird mit Temperaturen von 38-40° verwendet. Neben der Wärme sollen vor allem die im Torf enthaltenen Huminsäuren nicht nur die Haut weich machen und die Durchblutung fördern, sondern auch eine günstige Wirkung auf das endokrine System ausüben.

Abtorfung im Reichermoos bei Vogt, Kreis Ravensburg. Für die Heilbäder in Bad Wurzach, Bad Waldsee, und Bad Buchau soll dieser Torf nach der Regionalplanung von 2021bis zum Jahr 2070 sich abgebaut werden. 1970 verpachtete das Land Baden-Württemberg den Torfabbau im Reicher Moos. Die Pächter fräßen der Torf mit riesigen Maschinen ab. Dagegen wendet sich eine Bürgerinitiative. (Foto W. Probst, 5.7.1983)

Filtermaterial

In der Aquaristik und in der Teichwirtschaft wird Torf als Filtermaterial zur Herabsetzung des pH-Wertes und der Carbonathärte verwendet. Außerdem sollen die Fulvosäuren im Schwarztorf die Schleimhäute der Fische vor bakteriellen Infektionen schützen. Durch Torffilterung kann man das Aquarienwasser den Verhältnissen in tropischen Schwarzwasserflüssen annähern, aus denen viele Zierfische stammen. Als natürlicher Ionenaustauscher kommt Torf auch in der chemischen Industrie zum Einsatz. Aus Torf lässt sich auch Aktivkohle zur Filterung herstellen, die vor allem in Chemielabors zum Einsatz kommt.

Weitere Nutzungen

Torffasern eignet sich zur Herstellung von Isolationsmaterial, sie lassen sich zu leichten und warmen Textilien und Unterlagen verarbeiten. Bis heute dienen Torffasern als natürlicher Füllstoff für Matratzen, Bettdecken und Kissen.

Vor allem im Pferdeställen wurde Torf als Einstreu genutzt.

 Moorkultivierung

Die großen Moorflächen vor allem in Norddeutschland aber auch im süddeutschen Alpenvorland waren lange Zeit landwirtschaftlich nicht zu nutzen. Um die Ernährung der wachsenden Bevölkerung sicherzustellen, wurden deshalb immer wieder Versuche unternommen solche Moorflächen für die landwirtschaftliche Produktion nutzbar zu machen.

Die sogenannte Fehnkultur (von niederländisch Veen = Moor) wurde in den Niederlanden entwickelt aber schon im 17. Jahrhundert auch in Nordwestdeutschland angewandt. Dabei wurden zunächst tiefe Entwässerungskanäle angelegt, durch die der gestochene Torf mit Schiffen abtransportiert werden konnte. Auf dem Rückweg wurde von den Schiffen dann Schlick mitgebracht und vor allem mit dem Weißtorf vermischt. Beidseitig der Kanäle entstanden nach und nach typische Fehnsiedlungen.

 Vor allem Im Laufe des 18. und 19. Jahrhunderts wurden in Deutschland verschiedene weitere Arten der Moorkultivierug entwickelt. Dabei spielten Entwässerung, Abtorfen, Brennen, Tiefpflügen zur Vermischung mit dem mineralischen Untergrund und Kalkdüngung eine wichtige Rolle. Oft wurde die schwierige Bearbeitung der Torfböden durch neue Siedler geleistet, die aus ihrer Heimat durch Not oder Verfolgung vertrieben worden waren.

Alle Kultivierungsmaßnahmen führten dazu, dass die Torfneubildung und -ablagerung gestoppt wurde und dadurch aus der Kohlenstoffsenke durch anaeroben Abbau der Torfschichten eine Kohlenstoffquelle wurde.

Paludikultur

Eine neue Form der Moornutzung ist die „Paludikultur„. Kulturpflanzen sind hier die Torfmoose, die großflächig unter Hochmoorbedingungen kultiviert werden. Die Torfmoosernte soll den Torfabbau ersetzen. Dadurch wird die Kohlenstofffreisetzung der üblichen Moorkultivierung verhindert und eine ökonomisch tragbare Alternative aufgezeigt. Nasskulturen können außer auf Hochmoorstandorten auch auf Nieder- und Zwischenmooren und anderen kohlenstoffspeichernden Feuchtgebieten entwickelt werden. Die produzierte Biomasse aus Schilf, Binsen, Sauergräsern und anderen Feuchtpflanzen könnte als Material für unterschiedliche Baustoffe verwendet werden (Wichtmann, Schröder, Joosten, 2016).

Möglichkeiten des Moorschutzes

Nach Dierßen und Dierßen (2008) gibt es im Prinzip drei Möglichkeiten des Schutzes:

  1. Bewahren eines derzeitigen Zustandes bzw. zulassen einer natürlichen Sukzession ohne Eingriffe
  2. Pflegen eines aktuellen wünschenswerten Zustandes
  3. Entwickeln eines Zustandes, der den jetzigen Zustand verbessert, durch geplante Pflege und Steuerungseingriffe (Restitution)

Die erste Vorgehensweise bietet sich an, wenn der derzeitigen Zustand sehr gut ist und sich durch Eingriffe kaum verbessern lässt oder wenn man erwarten kann, dass eine natürliche Sukzession zu einem wünschenswerten Zustand führt. Ein intaktes Hochmoor mit funktionierendem Bult-Schlenken-Komplex sollte vor Eingriffen abgeschirmt werden. Aber auch ein teilweise abgetorftes Hochmoor, bei dem sich in Torfstichen gute Sukzessionen mit Torfmoosen entwickeln, kann man am besten sich selber überlassen.

In vielen Fällen kann man erkennen, dass ein derzeitiger guter Zustand dabei ist, sich zu verschlechtern. So können noch vorhandene Bult-Schlenken-Komplexe bei zunehmender Austrocknung immer stärker von Besenheide besiedelt werden und ihr Wachstum einstellen. In diesem Fall könnten Maßnahmen gegen die Entwässerung und Austrocknung den besseren Zustand erhalten. Auch das starke Aufkommen von Baumwuchs, vor allem von Birken, ebenfalls im Zusammenhang mit Austrocknung aber auch mit Nährmineraleintrag, kann durch Entfernen des Birkenaufwuchses gebremst werden. In jedem Fall ist bei allen Maßnahmen eine gründliche Analyse der Wirkungszusammenhänge Voraussetzung für einen Erfolg.

Besonders schwierig ist die Restitution, im Hinblick auf Hochmoore also die Entwicklung relativ nährmineralreicher und von menschlichen Aktivitäten stark beeinflusster Flächen zurück zu nährmineralarmen, vom Regenwasser abhängigen Torfmoosflächen. Dies liegt vor allem daran, dass sich in der von Landwirtschaft, Siedlungen und Verkehr geprägten mitteleuropäischen Kulturlandschaft Düngemitteleintrag und Entwässerung kaum vermeiden lassen.

Abb. 19 Wiedervernässte Fläche im Wurzacher Ried

Moore im Biologieunterricht

Mögliche Unterrichtsthemen

Vom Gletschersee zum Hochmoor – ein Beispiel für nacheiszeitliche Landschaftsentwicklung

Für einige mitteleuropäische Moore ist die Entwicklung vom Eisstausee am Ende der letzten Kaltzeit bis zum Hochmoor gut dokumentiert. Diese zeitliche Entwicklung lässt sich bei einer Reise in den Untergrund nachvollziehen.

Abb. 20 Mit den verschiedenen Sedimentschichten eines Moores kann man in die Vergangenheit reisen

Speicher, Senken, Quellen? – Wie Moore sich auf die Treibhausgase der Atmosphäre auswirken  

Der aus wenig zersetzen pflanzlichen Abfallstoffen bestehende Torf ist ein Kohlenstoffspeicher. Aber ob solche in Mooren gebundene Torfschichten Senken oder Quellen für Treibhausgase sind, hängt von den aktuellen Bedingungen ab. Für den Schutz und die Restitution von Mooren sind die Kenntnisse dieser Zusammenhänge eine wichtige Voraussetzung.

Vom Moos zur Landschaft – Morphologie und Physiologie der Torfmoose als Voraussetzung für die Hochmoorbildung erkennen

Die mikroskopische Untersuchung von Torfmoosen lässt erkennen, welche morphologischen Voraussetzungen ihrer ausgezeichneten Wasserspeicherfähigkeit zugrunde liegen. Wasserspeicherung, kapillare Wasserleitung und durch Torfmoose bedingte Veränderung des Elektrolytgehalts lassen sich experimentell untersuchen. Aus den Ergebnissen erklärt sich die Bedeutung der Torfmoose für die Hochmoorbildung.

Abb. 21 Mikroskopische Untersuchungen an Torfmoosen lassen die morphologischen Grundlagen ihrer Wasserspeicherfähigkeit erkennen (aus Probst 1987)
Abb. 22 Wasserspeicherfähigkeit von Torfmoosen (aus Probst 1987)

Die Ionenaustauschfähigkeit von Torfmoosen kann man nachweisen, indem man die Moose Wasser mit Elektrolytgehalt aussetzt. Das zu prüfende Moospolster – etwa zwei Hand voll – wird in einem Küchensieb mehrfach mit destilliertem Wasser ausgespült und ausgedrückt, dann werden vier gewichtsgleiche Teil des Polsters zu etwa 100 g, feucht, in 3 Bechergläser mit je 200 ml unterschiedlicher Salzlösungen und einem Becherglas mit 200ml destilliertem Wasser verteilt (wie in Abb. 21 dargestellt). In jedem Ansatz wird nach 10, 20 und 40 Minuten der pH-Wert bestimmt. Die Blindprobe mit destilliertem Wasser zeigt keine Veränderung des pH-Wertes, die Probe mit der 0,01 N Calciumschloridlösung zeigt die stärkste Ansäuerung, da die Ansäuerung in gewissen Grenzen der Menge der angebotenen Kationen proportional ist und dass durch zweiwertige Calciumionen mehr H+-Ionen freigesetzt werden können als durch einwertige Kaliumionen.

Abb. 23 Versuch zur Ionenaustauschfähigkeit von Torfmoosen (aus Probst 1987)

Torfmooskultur – eine Alternative zum Torfabbau?

Zur Jahrtausendwende wurden jährlich 25 Millionen m³ Torf im Gartenbau genutzt; die auf einer Fläche von 800 km² gewonnen wurden. Wäre die gezielte Kultur und Ernte von Torfmoosen eine umweltfreundliche Alternative? Wenn man annimmt, dass damit 2500 kg Torfmoos -Trockenmasse pro Hektar und Jahr gewonnen werden könnten, würde hierzu eine Fläche von 15.000 km² benötigt, die so nicht zur Verfügung steht. Könnte die Paludikultur trotzdem ein sinnvoller und klimaschonender Zweig der Landwirtschaft werden?

Moosbeeren und Sonnentau – Nischenbildung am Extremstandort Hochmoor

Für Gefäßpflanzen sind Hochmoore ein sehr extremer Standort. Nur wenigen Arten ist es gelungen, eine ökologische Nische aufzubauen, die zu diesen Biotop passt. Der insektenfressende Rundblätterige Sonnentau und die Gewöhnliche Moosbeere, ein immergrüner, niederliegend fadenförmige wachsender Zwergstrauch, sind Beispiele für unterschiedliche Nischenbildung am selben Standort.

Schmetterlinge im Hochmoor: Hochmoor-Perlmutterfalter, Hochmoor-Gelbling und Hochmoor-Bläuling

Die drei Schmetterlingsarten sind eng an Hochmoore gebunden. Wie andere Arten gelten sie als Eiszeitrelikte, die nach der Erwärmung in den Hochmooren eine letzte Zuflucht gefunden haben. Die Raupe des Hochmoor-Perlmutterfalters ernährt sich nur von den Blättern der Moosbeere, während die beiden anderen Arten auch Heidelbeeren, Preiselbeeren und Rauschbeeren als Futterpflanzen annehmen. Die Falter sind auf nektarreiche Blüten der umgebenden Vegetation angewiesen. Die Ursachen für die Gefährdung dieser Arten werden analysiert.

https://niedersachsen.nabu.de/tiere-und-pflanzen/insekten/schmetterlinge/hochmoorperlmutterfalter/index.html

Moore als Archive der Natur- und Kulturgeschichte

Moore besitzen besondere konservierende Eigenschaften, die vor allem dem Sauerstoffmangel und dem niedrigen pH-Wert zu verdanken sind. So können in Mooren eingelagerte Werkzeuge, Waffen oder Schmuck ebenso Jahrtausende überdauer, wie Siedlungsstrukturen und Reste von Pflanzen und Tieren (und Menschen!). Dies gilt auch für Mikrostrukturen wie Pollen und Sporen, mit deren Hilfe man die nacheiszeitliche Vegetationsgeschichte rekonstruieren konnte (Pollenanalyse).

https://www.researchgate.net/profile/Andreas-Bauerochse/publication/282755633_Moore_als_Archive_der_Natur-_und_Kulturgeschichte_-_das_Arbeitsgebiet_der_Moorarchaologie/links/574426d108ae9ace841b496e/Moore-als-Archive-der-Natur-und-Kulturgeschichte-das-Arbeitsgebiet-der-Moorarchaeologie.pdf?origin=publication_detail

Kompetenzen

Tab. 6 Kompetenzen, die mit dem Unterrichtsthema Moore angestrebt werden können

Quellen

Amberger-Ochsenbauer, S., Meinken, E. (2020): Torf und alternative Substratsausgangsstoffe. Herausgeber: Bundesanstalt für Landwirtschaft und Ernährung. https://www.ble-medienservice.de/0129/torf-und-alternative-substratausgangsstoffe

Bundesamt für Umwelt, Wald und Landschaft – Schweiz – (2002): Moore und Moorschutz in der Schweiz. Bern http://www.wsl.ch/info/mitarbeitende/scheideg/20141103_Bericht_Studierende.pdf

Bundesinformationszentrum Landwirtschaft (2020): Torf: unersetzlich oder verzichtbar? https://www.landwirtschaft.de/diskussion-und-dialog/umwelt/torf-unersetzlich-oder-verzichtbar

Bundestag (2016): Kein Verbot von torfhaltigen Substraten. https://www.bundestag.de/webarchiv/presse/hib/201601/401876-401876

Dargie, G.C. et al. (2017): Age, extent and carbon storageof the central Congo Basin peatland complex. Nature 542, 7639, pp 1476-1487

Dierßen, K./Dierßen, B. (2008): Moore. Ökosysteme Mitteleuropas in geobotanischer Sicht. Stuttgart:Ulmer

Eigner, J. (2003): Möglichkeiten und Grenzen der Renaturierung von Hochmooren. Laufener Seminarbeiträge, 1/03, S. 23 -36, Laufen/Salzach: Bayer: Akad. f. Naturschutz u. Landschaftspflege

Ellenberg, H./Leuschner, L. (6. A., 2010): Vegetation Mitteleuropas mit den Alpen. Stuttgart: Ulmer (UTB)

Frey, W./Lösch, R. (3.A., 2010): Geobotanik. Pflanze und Vegetation in Raum und Zeit. Heidelberg: Spektrum

Garcin, Y., Schefuß, E., Dargie, G.C. et al. (2022): Hydroclimatic vulnerability of peat carbon in the central Congo Basin. Nature. https://doi.org/10.1038/s41586-022-05389-3

Gewin, V. (2020): Bringing back the bogs. Nature 578, pp. 204-208

Göttlich, K. (Hrsg.,1990) Moor- und Torfkunde. Stuttgart: Schweizerbart’sche Verlagsbuchhandlung.

Hakobyan, A., Liesack, W. (2020): Unexpectedmetabolitic versality among type II methanotrophs in the alphaproteobacteria. Biol.Chem.401(12). pp1469-1477

Hölzel, N. T. et al. (2019): Leitfaden zur Torfmoosvermehrung für Renaturierungszwecke. Deutsche Bundesstiftung Umwelt, Osnabrück.

Jäger, C. (2020): Klimaschutz braucht Moorschutz. München: Oekom

Joosten,mH:;tanneberger, F., Moen, A. (eds., 2017): Mires and peatlands of Europe.Status, distribution and conservation.Stutttgart: Schweizerbart

Kremer, B. P./Oftring,B. (2013): Im Moor und auf der Heide. Bern CH: Haupt

Kosta ,J.E. et al. (2016): The Sphagnum microbiom: new insights from an ancient plant lineage. New Phytologist 211(1), pp 57-64. doi: 10.1111/nph.13993.

LLUR (2015): Moore in Schleswig-Holstein Geschichte – Bedeutung – Schutz. Landesamt für Landwirtschaft, Umwelt und ländliche Räume des Landes Schleswig-Holstein (LLUR). 162 S

Ministerium für ländlichen Raum und Verbraucherschutz Baden-Württemberg (2017): Moorschutzprogramm Baden-Württemberg, 2. A. https://mlr.baden-wuerttemberg.de/fileadmin/redaktion/m-um/intern/Dateien/Dokumente/2_Presse_und_Service/Publikationen/Umwelt/Naturschutz/Moorschutzprogramm_BW.pdf

Mooratlas (2023), Eimermacher/stockmarpluswalter (M), CC.BY 4.0.

Overbeck, F. (1975): Botanisch-ökologische Moorkunde. Neumünster: Wachholtz

Page, S.E., Rieley, J.O.,Wüst, R. (2006): Lowland tropical peatland of Southeast Asia. In: Martini,I.P., MatinezCortizas, A., Chesworth. E. editors: Peatland: Evolution and records of environmental and climate changes. Chapter 7, pp 145-170

POLYGON, Universiät Greifswald 2011-2014 https://botanik.uni-greifswald.de/moorkunde-und-palaeooekologie/forschung/projekte/polygon/

Probst, W. (1978): Zur Vegetation des Jardelunder Moores. Die Heimat 85 (Heft 10/11), S. 2 72-296

Probst, W. (1987): Biologie der Moos- und Farnpflanzen, 2. A.. Heidelberg/Wiesbaden: Quelle und Meyer

Proff, I., Furtak, S. (2022): Nasse Lawirtschaft. In: Spektrum Kompakt Feuchtgebiete, S.41-54, Heidelberg: Spekrum

Ricker, K.-M. (2021): Moore für das Klima. Die Bedeutung der Moore für den Klima- und Naturschutz kennenlernen. Biologie 5 – 10, S. 20-23, Hannover: Friedrich

Sachunterricht Grundschule Nr.68/2015: Lebensraum Moor – Heft und Materialpaket. Seelze: Friedrich-Verlag

Springer, P. (2013): Torfflächen nachhaltig nutzen – Zukunft: Peatfarming. GartenbauProfi, 8/13. S-48-50.

Springer, P. (2017): Sphagnum als Torfersatz. GartenbauProfi, 8/13. S-48-49

Steiner, G.M. (2005): Moortypen. Stapfia 0085, S. 5-26

Succow, M. (2001): Moorkunde, 2. A., Stuttgart: Schweizerbart’sche Verlagsbuchhandlung

Succow, M., Jeschke, L. (2022): Deutschlands Moore: Ihr Schicksal in unserer Kulturlandschaft. Rangsdorf: Natur& Text

Succow, M./Joosten, H. (2001): Landschaftsökologische Moorkunde. Stuttgart: Schweizerbart’sche Verlagsbuchhandlung

Trepel, M. (2007/8): Zur Bedeutung von Mooren in der Klimadebatte. Jahresbericht des Landesamtes für Natur und Umwelt des Landes Schleswig-Holstein.

Vile, M. A. et al. (2014): N2-fixation by mmethanotrophs sustains carbon and nirtrogen accumulation in pristine peatlands. Biogeochemistry Vol121, pp 317-328, DOI:10.1007/s10533-014-0019-6

Wichtmann, W., Schröder, C. & Joosten, H. (Hrsg.) 2016: Paludikultur – Bewirtschaftung nasser Moore. Stuttgart: Schweizerbart

Umweltbundesamt – Österreich – (2004): Moore in Österreich. Wien. https://www.google.com/search?client=firefox-b-d&q=Umweltbundesamt+%E2%80%93+%C3%96sterreich+%E2%80%93+%282004%29%3A+Moore+in+%C3%96sterreich.+Wien

WWF (2010): Klimaschutz-Schnäppchen: Moorschutz bringt viel für wenig Geld  http://www.wwf.at/de/moore/

Yu, Z. et al. (2010): Global peatland dynamics since the Last Glacial Maximum. Geophysical Research Letters, Volume 37, Issue 13 https://agupubs.onlinelibrary.wiley.com/doi/full/10.1029/2010GL043584

http://www.aktion-moorschutz.de/wp-content/uploads/Vortrag_Succow_MooreImNaturhaushalt.pdf

http://www.imcg.net/media/2016/imcg_bulletin_1611.pdf#page=29

https://www.moorwissen.de/moore-in-deutschland.html

Bioplanetenschutz

LINK-NAME LINK-NAME

Dieser Beitrag beruht auf Recherchen, die ich im Zusammenhang mit dem Unterricht Biologie Heft „Naturschutz auf neuen Wegen“ (UB 465) durchgeführt habe. Das Heft ist im Sommer 2021 erschienen.

Seit Beginn der Industrialisierung haben sich die Verhältnisse auf unserem Bioplaneten Erde (Kattmann 1991,2004) durch exponentielles Wachstum von Wirtschaft und Bevölkerung drastisch verändert, besonders deutlich in den letzten Jahrzehnten. Dank der elektronischen Datenverarbeitung und immer genaueren Registrierungsmöglichkeiten durch Satelliten lassen sich diese Veränderungen recht genau beschreiben. Schon lange vorher gesagt aber erst in den letzten Jahren in den Mittelpunkt des kollektiven Bewusstseins gerückt ist die durch menschliche Aktivitäten verursachte Klimaerwärmung, um die Dimension dieser drastischen Entwicklung besonders zu betonen, wird neuerdings von „Klimaerhitzung“ gesprochen. Obwohl diese negativen Veränderungen besorgniserregend rasch voranschreiten, besteht nach wie vor Hoffnung auf eine Stabilisierung. Es gibt viele Ideen und auch schon realisierte Beispiele, wie man die Zukunft des Bioplaneten nachhaltiger gestalten könnte.

Bioplanetenschutz heißt Schutz der Funktionsabläufe

Nach konservativen Verständnis geht es im Naturschutz um den Erhalt oder gegebenenfalls auch die Wiederherstellung eines jetzigen oder früheren Zustandes, der den Menschen und seine Aktivitäten weitgehend ausklammert. In einem erweiterten Verständnis bedeutet der Schutz der Natur Schutz des Bioplaneten, d. h. insbesondere Schutz und Erhalt der Funktionsabläufe. In diesem Sinne können auch weitgehende Eingriffe und Manipulationen durch den Menschen (Geoengineering, synthetische Biologie), ökonomisch Maßnahmen wie Steuererhebungen oder juristische Maßnahmen wie Verbote von Verbrennungsmotoren oder Kohlekraftwerken als Naturschutzmaßnahmen verstanden werden.

Für die Rechtfertigung solcher Eingriffe sind einmal auf breiter wissenschaftlicher Basis erstellte Analysen und Prognosen erforderlich. Zum anderen müssen diese Erkenntnisse Grundlage von Bildung und Ausbildung werden. Neben neuen technischen Lösungen muss  Naturschutz deshalb verstärkt um die menschliche Akteure einschließen. Sozio-ökonomische Aspekte müssen mit gedacht und interdisziplinär behandelt werden. Dazu gehören besondere Anreize für umweltfreundliches oder naturschutzkonformes Verhalten, deren Vorteile unmittelbar wirksam werden. Nur dann wird es möglich sein, den demokratischen Konsens herzustellen, der für eine politische Durchsetzung sinnvoller Maßnahmen notwendig ist.

Landschaftsgestaltung, Renaturierung, Regeneration

Landschaftsgestalterische Maßnahmen können zur Renaturierung oder sogar Regenerierung von Ökosystemen führen oder neue artenreiche Ökosysteme entstehen lassen.

  • Die Wiedervernässung von Mooren kann deren Fähigkeit wieder herstellen, Kohlenstoff in unvollständig abgebautem Pflanzenmaterial zu speichern. Außerdem wirken die Torfkörper der Moore regulierend auf den Wasserhaushalt.
  • Die Restauration und Neugewinnung ausgedehnter Schilfgürtel um Gewässer, kann die Qualität belasteter Gewässer verbessern, insbesondere den Nitrat- und Phosphatgehalt mindern, aber auch viele andere Schadstoffe binden.
  • Die naturnahe Gestaltung von stillgelegten Kiesgruben, Steinbrüchen  und Tagebauflächen  (z. B. Braunkohle)  kann ökologisch wertvolle Biotope und Landschaften entstehen lassen und damit die Biodiversität fördern.
  • Entrohrung, Renaturierung und Remäandrierung von Bachläufen kann die Wasserqualität verbessern, Überschwemmungsgefahren mindern und im Sinne eines natürlichen Wasserkreislauf wirken. Außerdem entstehen dadurch vielseitige Lebensräume, welche die Biodiversität fördern.
  • Die Anlage von marinen Hartsubstratböden, z. B. um Offshore-Windparks kann die Biodiversität fördern, insbesondere durch die Schaffung neuer Siedlungsflächen für Aufwuchsorganismen und Brutgebiete  für Fische.
  • Durch geeignete Maßnahmen können bisher eher als Plantagen genutzte Waldgebiete in naturnahe Wälder umgebaut werden.
  • In potenziellen Waldgebieten kann der Anteil der Bewaldung durch Aufforstungsmaßnahmen erhöht werden.
  • Extensiv genutzte Weideflächen („Wilde Weiden“) lassen vielseitig strukturierte Landschaften mit hoher Biodiversität entstehen.
  • Vor allem in Trockengebieten können überweidete Landschaften durch Regulierung des Weidegangs aufgewertet werden.
Durch Überweidung desertifizierte Landschaft in Nordafghanistan bei Kunduz,25.7.1974 (Foto W.Probst)

Für diese Renaturierungs- und Regenerationsmaßnahmen werden viele Arbeitskräfte benötigt. Durch entsprechende Förderprogramme können Landwirtschaft und Forstwirtschaft in Renaturierungsprogramme eingebunden werden.

Eine weitere Möglichkeit bestünde darin, für solche Aufgaben verstärkt das Militär einzusetzen und dafür entsprechende Kenntnisse und Fertigkeiten in die militärische Ausbildung einzubauen (J. Ellington in Randers 2012).

Besonders spektakuläre Großprojekte sind Chinas „Grüne Mauer“ und die 2005 diesem Vorbild folgende von der Afrikanischen Union initiierte grüne Mauer durch die Sahelzone . Sie sollen Wüstenbildung aufhalten und teilweise rückgängig machen. 

Die chinesische „Grüne Mauer“ verdankt ihren Namen der chinesischen „Großen Mauer“: Während die Große Mauer Schutz gegen die Völker aus dem Norden bieten sollte, soll die Grüne Mauer vor Wüstenstürmen schützen. Das Projekt wurde schon 1978 begonnen und soll bis 2050 fortgesetzt werden. Bis dahin sollen 350.000 km² – dies entspricht etwa der Fläche der Bundesrepublik – mit Bäumen bepflanzt sein. Dabei besteht allerdings die Gefahr, dass durch die Bewässerung der neu angelegten Schutzwälder alte, flussbegleitende Wälder geschädigt werden (Missall u.a. 2018).

Afrikas „Grüne Mauer“ (GGWSSI; Great Green Wall of the Sahara and the Sahel Initiative) ist als 7775 km langer, mindestens 15 km breiter Baumstreifen geplant, der die Trockenregion am südlichen Rand der Sahara von Dakar bis Dschibuti durchziehen soll. Die Idee geht auf den 1987 ermordeten Präsidenten von Burkina Faso Thomas Sankara und auf die kenianische Professorin und Nobelpreisträgerin Wangari Maathai und ihr „green belt movement“ zurück. Unter der Präsidentschaft des damaligen Präsidenten von Nigeria Olusegun Obasanjo übernahm die Afrikanische Union das Projekt. Bisher wird es von 22 afrikanischen Staaten unterstützt. Mittlerweile sprechen viele Verantwortlichen nicht mehr von einer Mauer sondern eher von einem Mosaik, da verstärkt in Dorfgemeinschaften verwurzelte Projekte unterstützt werden sollen. Außerdem soll auch der Erhalt und  Schutz bereits existierender Baumbestände stärker gefördert werden.  Auf dem „One Planet Summit“ im Januar 2021 in Paris hat die internationale Gemeinschaft 11,8 Mrd. Euro für das Projekt zugesagt.

Über diese und zahlreiche weitere Aufforstungsprojekte berichtet Daniel Schilk in seinem 2019 erschienenen Buch „Die Wiederbegrünung der Welt“.

Ökosystemerhalt durch assistierte Evolution

Die Idee, gefährdete Arten dadurch zu erhalten, dass man sie in Gefangenschaft oder im Labor züchtet und dann in natürlichen Ökosystemen freilässt, ist schon mehr als 100 Jahre alt.1895 hat der Geschäftsmann und Ornithologe Edward McIlhenny auf diese Weise in Louisiana die vom Aussterben bedrohten Schmuckreiher erhalten. Zwischen 1885 und 1807 konnte Richard Henry den neuseeländischen Kakapo (flugunfähiger Papagei) und den Kiwi durch Translokation von Tieren auf die vor der Westküste Neuseelands liegenden Insel Resolution Island vor dem Aussterben retten (Seddon 2017). Mittlerweile gibt es viele mehr oder weniger erfolgreiche Beispiele solcher Versuche, durch Translokation oder Zucht und Aussetzen gefährdete Arten zu erhalten, in Mitteleuropa zum Beispiel Luchse, Biber und Waldtrappe. Dabei geht es nicht nur um den Erhalt der betreffenden Arten sondern auch um die Funktion der Ökosysteme. Durch die Wiederetablierung von Schlüsselarten hofft man, Ökosysteme zu regenerieren oder auch neue wertvolle Ökosysteme zu schaffen.

Doch auch über weitergehende Schritte wird nachgedacht. Dabei könnte die synthetischen Biologie eine wichtige Rolle spielen, indem ausgestorbene Arten wie das Wollhaar-Mammut oder der Auerochse gentechnisch rekonstruiert werden (De-Extinction, Redford 2017). Als Quelle könnte genetisches Material aus alten Sammlungen oder aus Fossilien und verwandte noch lebende Arten genutzt werden.

Die Überlegungen gehen noch einen Schritt weiter: Es können nicht nur natürliche Arten künstlich vermehrt oder wiederhergestellt, sondern auch „verbessert“, also durch Zucht oder Gentechnik gezielt verändert werden. Bei Riffkorallen soll zum Beispiel versucht werden die endosymbiontisch Zooxanthellen gentechnisch so zu verändern, dass sie auch bei höheren Meerestemperaturen funktionsfähig bleiben und dadurch Korallenbleiche vermieden werden können. Allgemein soll es durch das Einbringen solcher „verbesserter“ Lebewesen, die veränderte Umweltbedingungen besser aushalten,gelingen Ökosysteme als Ganzes zu erhalten.

Bisher wird Assistierte Evolution vor allem an Korallenriffen erprobt.

Erhalt, Regeneration und Neuschaffung von Ökosystemen mit Hilfe Assistierter Evolution (Grafik W.Probst)

Verhinderung der Klimaerwärmung durch Geoengineering

Durch technische Eingriffe in das Klimasystem (Geoengineering) soll die Klimaerwärmung vermindert werden. Dabei sind vor allem zwei Möglichkeiten denkbar:

  • Der Atmosphäre werden direkt Treibhausgase, insbesondere Kohlenstoffdioxid, entzogen (Carbon Dioxid Removal CDR, Carbon Capture and Storage, CCS).
  • Die auf die Erde eintreffende Sonnenstrahlung wird verringert (Solar Radiation Management SRM).
Methoden des Geoengeneering (W. Probst verändert nach Angaben in Gynsky u.a. 2011)

Die Bindung von Kohlenstoffdioxid kann entweder terrestrisch oder marin erfolgen. Klassische Vorschläge beruhen auf Methoden, durch die der Aufbau von Biomasse – zum Beispiel durch großflächige Aufforstung – gefördert wird oder Kohlenstoff haltiges Material in den Boden eingearbeitet wird (Beispiel Terra Preta). Auch Möglichkeiten, CO2 direkt aus der Luft zu filtern und unterirdisch dauerhaft zu speichern – zum Beispiel durch Einpressen in tiefliegende geologische Formationen (Carbon Capture and Storage, CCS). Die meisten derzeit laufenden Pilotprojekte testen die Integration dieser Art der CO2 Abscheidung direkt in der Kombination mit Kohlekraftwerken, weil dort in den Abgasen der CO2 Gehalt hoch ist. Die Möglichkeit der direkten Filterung aus der Luft, in der CO2 derzeit höchstens zu 0,5 Volumenpromille enthalten ist, wäre bisher zwar möglich aber sehr kostenaufwendig.

Um CO2 verstärkt in den Ozeanen zu binden, wird die Ozeandüngung diskutiert. Dabei bedient man sich der sogenannten biologischen Pumpe. Kohlenstoffdioxid wird von Mikroalgen assimilert und ein Teil davon wird als dauerhaftes Kohlenstoff-haltiges Sediment am Meeresboden abgelagert. Durch Düngung könnte die Phytoplanktonproduktion angeregt werden. Da man von den Makronährmineralien Nitrat und Phosphat sehr große Mengen benötigen würde, hat man bei bisherigen Versuchen mit dem Mikronährmineral Eisen gearbeitet Entsprechende verhältnismäßig kleinräumige, zeitlich begrenzte Versuche, die zu Beginn des Jahrhundert durchgeführt wurden, hatten allerdings wenig überzeugende Ergebnisse. Zwar konnte man zunächst Algenblüten bewirken, aber das Absinken des Phytoplanktons trat nur in sehr geringem Maße ein. Ein großer Teil wurde vom Zooplankton aufgenommen und dadurch veränderten sich die Nahrungsnetze. Auch die Blüte von toxischen Kieselalgen konnte beobachtet werden. Zudem ist die kontinuierliche Düngung sehr energieaufwendig und die Bilanz des tatsächlich gebundenen CO2 ist dadurch viel geringer als zunächst theoretisch berechnet wurde.

Eine weitere Möglichkeit, die Phytoplanktonproduktion zu erhöhen, läge in der Manipulation der marinen Schichtung. Wenn man verstärkt nährmineralreiches Tiefenwasser in obere Wasserschichten verlagern könnte – wie dies unter derzeit natürlichen Bedingungen zum Beispiel an der Westküste des amerikanischen Kontinents geschieht – könnte man die Phytoplanktonproduktion anregen. Entsprechende aus langen Rohren bestehende Pumpen, die vom Wellenschlag angetrieben werden, wurden zwar erfolgreich konstruiert. Um einen messbaren Effekt bei der marinen CO2– Speicherung zu erreichen, wären allerdings eine sehr große Zahl solcher Pumpen notwendig und die Folgewirkungen sind schwer abzuschätzen.

Außer durch die biologische Pumpe wird auch durch eine physikalische Pumpe CO2 von der Oberfläche in die Tiefen der Weltmeere befördert. Kalte Wassermassen mit hohem Salzgehalt im Nordatlantik und in dem antarktischen Zirkularstrom sinken ab und setzen globale Meeresströmungen in Gang, bei denen es an anderer Stelle zum aufsteigen von Tiefenwasser kommt. Da CO2 in kaltem Wasser eine höhere Löslichkeit hat als in wärmeren Wasser, wird durch diesen Prozess langfristig CO2 aus der Atmosphäre in die tieferen Wasserschichten transportiert. Aber alle Methoden, die bisher versucht wurden, um diesen Absinkeprozess zu verstärken, waren nicht erfolgreich, insbesondere, weil das Absinken des Wassers an anderen Stellen den Auftrieb verstärken und damit kohlenstoffdioxidreiches Wasser an die Oberfläche befördern würde. Ob die Bilanz dann tatsächlich zu einer verstärkten marinen CO2– bzw. C-Speicherung führen würde, ist fraglich.

Die zweite Möglichkeit ist die Verringerung der auf der Erde auftretenden Sonnenstrahlung, also die Beeinflussung des Strahlungshaushaltes (Solar Radiation Management SRM). Sie beruht einmal auf Methoden, welche die Reflexion der Strahlung verstärken, also die Erhöhung des Albedos der Erdoberfläche. Diskutiert wird zum Beispiel das Weißeln von Dachflächen oder die Installation von großen Reflektorflächen in Wüsten oder auf Meeren. Zur zum anderen könnte das Einbringen von Aerosolen in die Stratosphäre oder von großflächigen Spiegeln in den Weltraum das Durchdringen der Sonnenstrahlen bis zur Erdoberfläche verringern. Alle diese Methoden sind höchst umstritten, da man nur schwer Aussagen über die dabei auftretenden Nebeneffekte und Folgen machen kann. Außerdem ist der finanzielle Aufwand sehr hoch.

Insgesamt birgt Geoengineering große Risiken. Wenn sich aber zeigt, dass die vom Weltklimarat 2018 festgelegten Klimaziele  anders nicht erreicht werden können, wird man die Risiken einiger solcher Methoden wahrscheinlich in Kauf nehmen (Ginsky u.a. 2011).

Kreislaufwirtschaft zur Abfallvermeidung

Vermeidung von Abfall und Umweltverschmutzung  muss nicht (nur) auf Sparsamkeit und Verzicht aufgebaut sein, mindestens genauso wichtig ist eine konsequente Kreislaufwirtschaft: Alle Produkte müssen so konzipiert und  hergestellt werden, dass sie „rematerialisierbar“ sind, ob Möbel, Kleider, Autos, Baumaschinen Häuser oder Lebensmittelverpackungen. Nach Ansicht des Chemiker und Designers Michael Braungart und des Architekten William McDonough ist dieses „cradle to cradle-Prinzip“ (C2C, „Von der Wiege zur Wiege“)  sogar alleine entscheidend. (McDounough, Braungart 2009). Sie berufen sich dabei auf die Natur als Vorbild. Die üppigsten und artenreichsten Ökosysteme, die tropischen Regenwälder, sind nicht nur die produktivsten, sie setzen auch die größten Stoffmengen um. Daraus folgert Braungart, dass es nicht darum gehen kann, zu „sparen“ also, weniger umzusetzen, sondern darum, nicht zu „verbrauchen“ sondern zu „gebrauchen“. „Verschwendet! Aber richtig: Macht keinen Müll!“ fordert er. Sonnenenergie steht im Prinzip soviel zur Verfügung, dass es kein Problem ist, verschwenderisch damit umzugehen. Soziale Ungerechtigkeit und das Nord-Süd-Ungleichgewicht können nicht durch Sparsamkeit gelöst werden. Ihre Lösung ist aber Voraussetzung für geordnete, friedliche Verhältnisse auf unserem Planeten.

Dieses Konzept steht in gewissem Widerspruch zu der Forderung einer verminderten Ressourcennutzung wie sie vom Wuppertal Institut für Klima,Umwelt, Energie, zunächst als „Faktor 4“ (v. Weizsäcker, Lovins, Lovins 1995) später als „Faktor 10“ (Schmidt-Bleek 1997) propagiert wurde. Sicher kann es bei einer zukunftsfähigen, nachhaltigen Wirtschaft nur um ein „Sowohl-als-auch“ gehen, denn Kreislaufprozesse ganz ohne Abfall und Umweltschäden – das zeigt auch das Vorbild Natur – gibt es nicht. Fossile Brennstoffe sind ein Beispiel für solche natürlichen Abfälle und globale Katastrophen. Gutes Beispiel für die menschliche Wirtschaft  ist die große Verschwendung von Nahrungsmitteln und die damit verbundene Zerstörung von gut funktionierenden Kreislauf-Ökosystemen und inhumaner Nutztierhaltung.

Wie zukünftiges Wirtschaften verbessert werden könnte zeigt ein in Dänemark entwickelter Industriepark, in dem eine „Symbiose“ zwischen verschiedenen Industrieunternehmen nicht nur eine starke Abfallverminderung sondern auch eine bessere Energienutzung ermöglichen (Kalundborg Symbiosis 2020).

Das größte Problem beim Plastikabfall sind die Verpackungen. Eine konsequente Einführung von kompostiertem Verpackungsmaterial könnte hier große Verbesserungen bringen. Weltweit hat die sehr erfolgreiche Einführung von Kaffeepads aus Kunststoff oder Aluminium zu einem enormen Anstieg von Verpackungsmüll und Ressourcenverbrauch geführt, jährlich mittlerweile über 40 Milliarden Kapseln. Aber immer mehr Firmen versuchen, kompostierbare Verpackugen zu produzieren. Ein Beispiel ist die Firma Nexe Innovations, die derzeit mit ihren kompostierbaren Kaffeepads recht erfolgreich ist, die in allen gängigen Kaffeemascinen verwendet werden können.

Neobiota-Management

Im Laufe der Erdgeschichte zerbrachen Kontinente oder schoben sich zusammen, Inseln und Inselarchipele entstanden neu oder gingen unter, aus Grabenbrüchen wurden Ozeane, Meeresbuchten wurden abgetrennt, Binnenmeere öffneten sich zum Ozean. Diese geologischen Ereignisse wurden begleitet  von Ausbreitung, Rückgang, Einwanderung und Auswanderung von Lebewesen. Die Invasion neuer Arten und die Ausbreitung von Krankheitserregern und die dadurch bedingten Veränderungen von Ökosystemen sind ein natürlicher Vorgang in der Geschichte des Lebens. Doch im Gegensatz zu den geologischen Veränderungen haben die anthropogen verursachten globalen Veränderungen der letzten Jahrhunderte und vor allem der letzten Jahrzehnte zu einer enormen Beschleunigung dieser Invasionen beigetragen.

Schon im Zeitalter der europäischen Eroberungen und Kolonisationen und der Einwanderung von Europäern nach Amerika und Australien  wurden Tier- und Pflanzenarten von Menschen gezielt von Kontinent zu Kontinent verbreitet.

In den letzten Jahrzehnten haben der globale Warenaustausch und der Reiseverkehr, aber auch die gezielte Einfuhr gebietsfremder Arten, zu einer starken Zunahme von Neobiota (Neubürgern) geführt. Diese Einwanderer sind ein ernst zu nehmendes Naturschutzproblem geworden. Durch die Verdrängung einheimischer Arten können sie Ökosysteme verändern und schließlich das Aussterben von Arten bewirken („invasive Arten“). In der EU-Liste invasiver gebietsfremder Tier- und Pflanzenarten („Unionsliste“) werden derzeit 66 Tier- und Pflanzenarten als möglicherweise invasiv aufgelistet. Bereits in Deutschland etabliert sind zum Beispiel der Riesen-Bärenklau (Heracleum mantegazzianum), das Indische Springkraut (Impatiens glandulifera), der Kamberkrebs (Orconectes limosus) und die Amurgrundel (Percottus glenii) (NABU 2019). Neben einer Konkurrenz mit einheimischen Arten geht es dabei auch um Schädlinge wie Kartoffelkäfer, Asiatischem Marienkäfer, Varoamilbe oder Buchsbaumzünsler, gegen die ansässige Arten kaum Abwehrkräfte entwickelt haben.

Wegsaum mit Drüsigem Springkraut (Impatiens glandulifera) im Rotwildpark Stuttgart, September 1991. Die Art stammt aus dem Himalaja und wurde 1839 nach England eingeführt. Von dort gelangte sie auf den Kontinent. Heute gilt sie als invasiver Neophyt und wird teilweise bekämpft. Verschiedene Untersuchungen zeigen jedoch, dass die Pflanze die natürliche Waldverjüngung kaum negativ beeinflusst (Foto W. Probst).

Besonders gefährdet durch invasive Arten waren und sind Inseln mit speziellen Ökosystemen und vielen endemischen Arten. Die absichtliche Aussetzung von Ziegen und Schweinen und die unabsichtliche Einfuhr von Ratten durch die frühen Seefahrer des 16.-19. Jahrhunderts hatten schon verheerende Auswirkungen auf pazifischen Inseln, aber auch die Besiedlung von Amerika, Australien und Neuseeland durch Europäer hat einen gewaltigen Invasionsschub verursacht, der das Ende zahlreicher einheimischer Arten bewirkte. Gut dokumentiert ist der Artenrückgang auf der Pazifikinsel Guam, der durch die eingeschleppte Braune Nachtbaumnatter (Bioga irregularis) verursacht wurde (Probst 2010).

Aber sind alle Neobiota problematisch? Einer der führenden Neobiota-Forscher, Ingo Kowarik, gibt darauf folgende Antwort:

  • Ja, wenn Veränderungen von Natur als Problem gesehen werden.
  • Ja wenn „Fremdes“ als negativ gesehen wird.
  • Nein, wenn unterschiedliche Auswirkungen berücksichtigt werden.

(Ingo Kowarik bei einem Vortrag zum Landesbiologentag an der Universität Hohenheim am 7.11.2020).

Durch auf wissenschaftlichen Grundlagen erarbeitete Management-Pläne versucht man, schädliche Auswirkungen von Neobiota auf die Biodiversität zu begrenzen. Ein Beispiel: Durch den organsierten Austausch von Ballastwasser in der marinen Schifffahrt seit 2017 soll die Einschleppung gebietsfremder Arten verhindert werden.

Pandemien und Naturschutz

Mit dem globalisierten Austausch von Menschen und Waren haben sich auch Krankheitserreger ausgebreitet. Dies führte nicht selten in den neuen Ausbreitungsgebieten zu verheerenden Epidemien. Besonders betroffen waren  indigene Bevölkerungsgruppen Amerikas, zum Beispiel die mittlerweile (fast?) ausgestorbenen Ureinwohner Feuerlands, die Yagan oder Yamana (Kaiser 2013).

Auch in umgekehrter Richtung wurden schon lange Keime übertragen, zum Beispiel der Cholera-Erreger Vibrio cholerae aus Indien. Auch die Übertragung von Krankheitserregern von Tieren auf Menschen geht bis in das Neolithikum zurück, als durch die Einführung der Nutztierhaltung der Kontakt zwischen Tieren und Menschen enger wurde. Masern und Tuberkulose stammen von Kühen, Keuchhusten von Schweinen und Grippe von Enten (Shah 2020).

Die rasant voranschreitende Globalisierung der letzten Jahrzehnte hat die rasche Ausbreitung von Krankheitserregern, insbesondere von Bakterien und Viren, weiter gefördert. Dabei spielen nicht nur die größere Mobilität der Bevölkerung und der Reiseverkehr über große Entfernungen eine wichtige Rolle, sondern auch die immer stärkere Einschränkung von Wildtierpopulationen durch Verlust natürlicher Lebensräume, zum Beispiel tropischer Regenwälder. In den kleineren Populationen können sich Erreger schneller ausbreiten. Außerdem fördert der immer intensivere Kontakt der ständig wachsenden menschlichen Bevölkerung mit Tieren früher sehr abgelegener Regionen den Übergang von Krankheitskeimen von Wildtieren zu Menschen (Beispiel AIDS, Ebola, Vogelgrippe H1N5, SARS-Corona, Covid 19; vgl. Ruppert 2021, Keesing 2010, Jones 2008).

Man kann nur hoffen, dass die derzeitigen Erfahrungen mit der Covid 19 Pandemie zu einem Umdenken und einer vorsichtigeren Vorgehensweise führen.

Die immer intensivere Einflussnahme des Menschen auf alle Lebensräume und die räumliche Einschränkung naturnaher Biotope sollte gestoppt und womöglich rückgängig gemacht werden. Dabei geht es insbesondere darum, die Vielfalt der Arten in ausreichender Populationsgröße zu erhalten. Dadurch kann erreicht werden, dass sich Viren, auch neue mutierte Viren, nicht flächendeckend ausbreiten, sondern eher in einer Nische bleiben und nach einiger Zeit wieder Aussterben (infektionsbiologischer Verdünnungseffekt). Auch Generalisten wie Ratten oder Sperlinge, die für die Übertragung auf menschliche Populationen besonders gefährlich sind, sind in intakten Ökosystemen weniger verbreitet .

Inklusiver Naturschutz

Naturschutz sollte nicht nur in abgegrenzten Gebieten oder Biotopen stattfinden sondern überall. Die Einrichtung von Naturschutzgebieten hat zwar insofern eine gewisse Berechtigung, als es leichter ist, ökologisch wertvolle Lebensgemeinschaften, Schlüsselarten und Habitate auf diese Weise zu schützen. Außerdem sind naturnahe, von Menschen wenig beeinflusste Gebiete eine wichtige Voraussetzung für die ökologischen Funktionen des Bioplaneten. Es besteht aber die Gefahr, dass außerhalb von Schutzgebieten auf Natur und natürliche Funktionsabläufe keine oder zu wenig Rücksicht genommen wird. Angesichts der immer intensiveren Nutzung der Erde durch den Menschen wird es außerdem immer schwieriger, ausreichende Flächen für ungenutzte Gebiete bereitzuhalten. Flächendeckender „inklusiver“ Schutz der Natur auch in Städten und Gewerbegebieten, in Agrarlandschaften und entlang von Verkehrswegen wird deshalb immer wichtiger. Es gibt mittlerweile viele Ansätze, wie Natur auch außerhalb von Schutzgebieten nicht „ausgeschaltet, sondern eingeschaltet“ werden kann (Le Roy 1973), und Biodiversität und natürliche Funktionsabläufe erhalten bleiben.

Städte und Siedlungen

Zwischen 1985 und 2015 hat die die Ausdehnung von Städten und Siedlungen jährlich um 9687 km² zugenommen, mit steigender Tendenz (Liu et al. 2020). Damit ist der Flächenverbrauch der Städte schneller gewachsen als die Bevölkerung. Für eine nachhaltige Entwicklung müssen Städte deshalb „ökologisch“ werden. Eine Stadt mit großen Grünanlagen wie Parks und Gärten bietet zwar eine hohe Lebensqualität und eine bessere Ökobilanz. Dies geht aber insofern auf Kosten der Umgebung, als sie mehr Fläche für denselben umbauten Raum benötigt. Eine Erfolg versprechende Möglichkeit für dicht bebaute Großstädte ist die Integration von Bauwerken und Grünanlagen.

Neben Minderung des Klimawandels durch eine Verbesserung der CO2-Bilanz können dadurch auch die Auswirkungen einer Klimaerwärmung verringert werden (Grewe 2020). Schließlich wirken mit Sachverstand begrünte Städte auch dem Verlust der Biodiversität entgegen.

Die dynamische Vergrößerung städtischer Flächen von1985-2015. Datengrundlage sind Landsataufnahmen mit einer Auflösung von 30m. b) Steigungsrate des Stadtflächen-Wachstums auf den verschiedenen Kontinenten (Quelle Liu et al. 2020).
Vernetzte Dachgärten (Zeichnung W.Probst)

Dächer

Schon lange zählt es zu Attributen ökologischer Bauweise, Dächer zu begrünen. Die Etablierung und Ausgestaltung solcher Dachgärten und Wiesen ist aber noch sehr stark ausbaufähig, wie man auf Luftbildern von Städten leicht erkennen kann. Begrünte Dächer können durch Brücken vernetzt werden. Durch treppenartige Anordnung von Gebäudeteilen können Verbindungen zur bodenständigen Grundflächen hergestellt werden.

Fassaden

Auch begrünte Fassaden gibt es schon lange, aber eher an alten Bauernhäuser auf dem Land als an mehrgeschossigen Stadthäusern, Bankhochhäusern und Industrieanlagen. Eine Möglichkeit: Flächenhafte Begrünungsmodule, die mit einfachen Mitteln an Fassaden angebracht werden können und die durch Anschluss an eine Bewässerungsanlage wartungsarm sind. Die Elemente können aus einem Gerüst bestehen, an dem mehrere auswechselbare Pflanzgefäße aufgehängt werden. Fensterfassaden könnten  durch berankte Schnurgerüste – Hopfenfeldern vergleichbar – begrünt und beschattet werden.

Ein interessanter Vorschlag sind vorbegrünte Pflanzennetze. Solche „Urban Pergolas“ sollen als Verschattungssystem der Aufheizung von Fassaden entgegenwirken und die Städte in einen „diversen Großstadtdschungel“ verwandeln. Die Pflanzennetze können an einem oder zwischen mehreren Gebäuden angebracht werden und dadurch Grünflächen schaffen, ohne andere Nutzungen den Platz wegzunehmen (Urban Pergola 2021).

Balkone

Eine weitere Möglichkeit der vertikalen Begrünung, die in wenigen Beispielen schon verwirklicht ist, wäre die Ausgestaltung von Pflanzbalkonen mit Sträuchern und Bäumen (Boeri 2015).

Städte mit grünem Pelz

Ergänzend zu den genannten Maßnahmen können Verkehrswege, insbesondere Straßen und Schienenverkehr, wie U-Bahnen unter die Oberfläche verlegt werden, wodurch Platz für bodenständige Grünanlagen aber auch Rad- und Fußwege gewonnen würde. Regenwasser können den Zisternen gespeichert und in Trockenperioden zur Bewässerung genutzt werden wodurch die Kanalisation entlastet würde.

So könnten schließlich Städte entstehen, die ganz in einem grünen Pelz eingehüllt sind und die sich fast übergangslos in die umgebende Landschaft einfügen (vgl. Jean Nouvel 2014, Boeri 2015).

Begrünte Wohnblocks (Modellbau W.Probst)

Landwirtschaft

In der Landwirtschaft sollten großflächige Monokulturen durch ökologisch wertvollere Netze (Feldhecken, Blumenstreifen, Bachläufe) und Inseln (Feldgehölze, Feuchtgebiete) unterbrochen werden. Mischkulturen aus Gehölzen, mehrjährigen und einjährigen Nutzpflanzen (Agroforestry) könnten vor allem in wärmeren Klimaregionen eine ökologische Alternative zu Monokulturen darstellen. Die sehr aufwändige arbeitsintensive Bewirtschaftung würde durch einen Einsatz intelligenter Maschinen zu vertretbaren Produktionskosten möglich.

Nachhaltige Landwirtschaft: Vertical Farming spart Flächen und erleichter Stoffkreisläufe; Vernetzung durch Feldhecken und Wildpflanzenstreifen erhöht die Biodiversität in Agrarflächen und wird durch intelligente Maschinen möglich; Agroforestry, Anbau von Kulturpflanzen in mehreren Vegetationsschichten, fördert die Biodiversität und eignet sich vor allem für wärmere Klimazonen (z.B. in Kombination mit Kaffee- und Kakaoanbau) (Zeichung W.Probst)

Landwirtschaft 4.0

Lange Zeit wurden Landmaschinen – den Dinosaurier vergleichbar – immer größer und größer. Vergleicht man einen Traktor aus den 19hundertfünfziger Jahren mit einer heutigen Maschine wird dieser Hang zum Gigantismus deutlich. Er hängt natürlich direkt zusammen mit der Vergrößerung der landwirtschaftlichen Betriebee und vor allem der bewirtschafteten Flächen. Die Dinosaurier sind nicht zuletzt auch wegen ihrer Größe ausgestorben. Die immer größeren Landmaschinen stellen für die Landwirte eine große finanzielle Belastung dar und sicher sind sie ein Grund dafür, dass immer mehr landwirtschaftliche Betriebe aufgeben müssen. Auch die Verdichtung der Böden durch die Riesentraktoren ist ein großer Nachteil. Die Entwicklung kleiner intelligenter Landmaschinen könnte eine neue, ökologisch verträglichere und damit nachhaltigere Form der Landbewirtschaftung einleiten. Diese Maschinen könnten – ähnlich wie ein Schweizer Armeemesser – viele Funktionen in sich vereinen: ein Roboter, der jede Pflanze individuell behandelt, nicht nur mit Herbiziden, Insektiziden und Fungiziden, sondern auch mit angepassten Düngemitteln, und der auch für eine gezielte Bewässerung sorgt. Dies alles könnte in einem Arbeitsgang und in individuell angepassten Mengen geschehen. Die Folgen einer solchen Behandlung von Einzelpflanzen statt von ganzen Feldern bedeutet nicht nur eine deutliche Reduktion benötigter Chemikalien und anderer Ressourcen. Diese Maschinen könnten von Drohnen oder von Satelliten gesteuert die jeweiligen Zielorte erreichen. Eine Weiterentwicklung der Erntemaschinen könnte Mischkulturen und Agroforestry wirtschaftlicher machen.

Vertical Farming

Eine zukunftsweisende und flächensparende Form zur Produktion von Nahrungsmitteln und anderen nachwachsenden Rohstoffen wird mit dem Begriff „Vertical Farming“  bezeichnet. Der New Yorker Professor für Umweltgesundheit und Mikrobiologie Dickson Despommier entwickelte mit seinen Studenten ab 1999 entsprechende Ideen  zunächst für die Nahrungsmittelversorgung der 50000 Einwohner Manhattans. Ausgangspunkt waren Überlegungen zum möglichen Gemüseanbau auf Dachflächen. In der Weiterentwicklung  wurden Hochhäuser geplant, die insgesamt der Pflanzenkultur dienen sollen. Diese Einbindung von Farmen in das Innere von Gebäude wird mit dem Begriff „Sponge City- Architecture“ oder „Agritecture“ bezeichnet. In mehreren oder allen Stockwerken eines solchen  Hochhauses sollen Pflanzen auf optimale Weise automatisch gesteuert und reguliert kultiviert werden. Gleichzeitig sind diese Kulturen in Kreislaufsysteme, insbesondere der  Wasserwiederverwendung und Abwasseraufbereitung, eingebunden (Despommier 2011). Auch eine Kopplung mit Aquakulturen und anderen Formen der Nutztierhaltung ist möglich.

Der Vorteil solcher Plantscraper ist nicht nur der gegenüber normalem Farmland  10-20mal geringere Flächenverbrauch. Erhebliche Ressourcen könnten dadurch ein gespart werden, dass es einen geschlossenen Wasserkreislauf gibt und kontrollierte Umgebungsbedingungen den Einsatz von Pestiziden und Düngemitteln reduzieren. Die Kulturen sind unabhängig von Außenbedingungen wie Dürre, Frost, Starkniederschläge, Hagel und Sturm und sie können ganzjährig betrieben werden. Künstliches Licht kann Pflanzenwachstum rund um die Uhr auch in dunklen Jahreszeiten ermöglichen. Die schnellere und einfachere Versorgung der städtischen Bevölkerung mit frischen Nahrungsmitteln erfordert weniger Transportkosten, verbessert die Luft und mindert über Wasserspeicher die Überflutungsgefahr. Die Energieversorgung kann über Solarzellen, Windenergieanlagen und die Produktion von Biogas aus organischen Abfällen in einem Kreislaufsystem gesichert werden.

Der extrem dicht bevölkerte Stadtstaat Singapur plant seine Nahrungsmittelversorgung durch schwimmende Hochhäuser zu verbessern.

Geplante schwimmend Plantscraper für Singapur (Quelle
https://www.designboom.com/architecture/forward-thinking-architecture-japa-floating-responsive-agriculture-07-18-2014/ )

Voraussetzungen für den erfolgreichen Betrieb solcher Hochhausfarmen ist eine ausgefeilte Technik, die von intelligenten Computersystemen gesteuert wird. Das schwedische Architekturbüro Plantagon plant ein Forschungszentrum für urbane Landwirtschaft in Linköping zu entwickeln. Ausgangspunkt soll ein im Bau befindlicher Plantscraper sein, an dem technische Systeme erprobt und verbessert werden können.

Modell-Plantscraper in Linköping,Schweden, im Bau (Quelle: http://www.plantagon.com/about/business-concept/the-linkoping-model/ )

Verkehrswege

Durch Brücken und Tunnel kann der Zerschneidungseffekt von Verkehrswegen gemindert werden (Zeichnung W.Probst)

Je dichter die Besiedelung, desto dichter sind nicht nur Städte, Siedlungen  und Industrieanlagen, desto dichter ist auch das Netz von Verkehrswegen, insbesondere Straßen und Autobahnen (in Deutschland  derzeit nach Erhebung des Umweltbundesamt knapp 20000 km², das entspricht rund 5,5% der  Landesfläche). Das wirkt sich r nicht nur über den Flächenverbrauch und die Versiegelung sondern vor allem über den Zerschneidungseffekt nachteilig auf die Funktion von Ökosystemen aus. Mehr noch als Pflanzenarten sind Tierpopulationen durch die dadurch bedingte Verinselung betroffen. Auch die direkte Tötung von Tieren durch den Verkehr spielt eine Rolle. Indirekt wirkt sich dies über die Bestäuber und die Verbreitung von Früchten und Samen auf die Vegetation aus.

Eine Verbesserung kann einmal durch geeignetes Straßenbegleitgrün erreicht werden (Kühne/Freier 2012). Vor allem aber kann die trennende Wirkung von Verkehrsflächen durch Brücken, sowohl Brücken über schützenswerte Landschaftsteile als auch verbindende Grünbrücken, und Tunnel erreicht werden. Schutzgräben oder Zäune können in Kombination mit kleinen Tunneln insbesondere  Amphibien bei ihren Laichwanderungen schützen (Krötenzaun, Krötentunnel).   Nicht mehr benötigte Verkehrswege sollten renaturiert (entsiegelt) werden.

Schließlich sind die hohe Verkehrsdichte und die damit verbundenen Emissionen der Verkehrsmittel ein großes Problem. Sie wird einmal durch den Individualverkehr, zum anderen durch den Güterverkehr verursacht. Beide haben in den letzten Jahrzehnten ständig zugenommen. Eine größere Verlagerung dieses Verkehrs auf die Bahn wird schon lange als Ziel formuliert, ließ sich aber bisher politisch nicht durchsetzen. Auch eine Förderung dezentraler Produktion könnte der ständigen Zunahme des Güterverkehrs entgegenwirken.     

Quellen

BMU (2020): Plastikmüll – ein Problem, das uns alle angeht. https://www.bmu-kids.de/wissen/boden-und-wasser/wasser/meeresumweltschutz/plastikmuell-im-meer/

Crutzen, P. J. (2002): Geology of mankind. Nature 415, p.23

Daily, G. C. (2001): Ecological forecast. Nature 411, p.245

Dasgupta,  P. (2020): Interim Report – The Dasgupta Review: Independent Review on the Economics of Biodiversity. Crown copyright. https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/882222/The_Economics_of_Biodiversity_The_Dasgupta_Review_Interim_Report.pdf

Despommier, D. (2011): The vertical  farm: Feeding the world in the 21th century. Picador (Nachdruck der Ausgabe von 2010)

De Souza Machado, A. A., Lau, C. W. u. a. (2019): Microplastics Can Change Soil Properties and Affect Plant Performance. In: Environmental Science & Technology. 53, S. 6044, doi:10.1021/acs.est.9b01339.

Dierkes, P., Homes, V. (2017): Artenschutz. UB 427 (41.Jg.), S. 2-11, Seelze: Friedrich

Gynsky, H. u. a. (2011): Geo-Engeneering – wirksamer Klimaschutz oder Größenwahn? Dessau-Roßlau: Umweltbundesamt https://www.umweltbundesamt.de/s/default/files/medien/publikation/long/4125.pdf

Hallmann, C. A. u.a. (2017): More than 75 percent decline over 27 years in total flying insect biomass in protected areas.PLOS one https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0185809

Heinrich-Böll-Stiftung und BUND (2020): Der Plastikatlas 2019, 4. Aufl.

Hendersen, D. : American Wilderness Philosophy. In: Internet Encyclopedia of Philosophy (IEP)  http://www.iep.utm.edu/am-wild/ 

Hupke, K.-D. (2015):: Naturschutz. Ein kritischer Ansatz. Heidelberg: Springer Spektrum

IPCC (2013): Working Group I Contribution to the IPCC Fifth Assessment Report, Climate Change 2013: The Physical Science Basis, Summary for Policymakers

https://iopscience.iop.org/article/10.1088/1748-9326/9/1/014010

Jones, K.E. u.a. (2008): Global Trends in Emerging Infectious Diseases. Nature 451, S. 990-993

Kaiser, A. (2013): „Indianer“ im Sachunterricht. Baltmannsweiler: Schneider

Kalundborg Symbiosis http://www.symbiosis.dk/en/

Kattmann, U. (1991). Bioplanet Erde: Neue Ansichten über das Leben. Unterricht Biologie15(162), 51-53.

Kattmann, U. (2004). Bioplanet Erde: Erdgeschichte ist Lebensgeschichte. Unterricht Biologie28(299), 4-14.

Keesing, F. u.a. (2010): Impacts of Biodiversity on the Emergence and Transmission of Infectious Diseases. Nature 468, S. 647-652

Kühne, S./Freier, B. (2012): Saumbiotope und ihre Bedeutung für Artenvielfalt und biologischen Pflanzenschutz. Workshop „Biological Diversity in Agricultural
Landscapes“ – February 09-10, 2012, Berlin-Dahlem

Le Roy, L. G. (1973): Natur ausschalten – Natur einschalten. Stuttgart: Klett Cotta

Little, A. (2019): The fate of food. What we’ll eat in a bigger, hotter, smarter World. London: Oneworld Publications

Liu, Xiaoping et al. (2020): High spatiotemporal resolution mapping of global urban change from 1985 to 2015: Nature Sustainability 3, pp.564-570.

Mantyka-Pringle, C. S., Martin, T. G., Rhodes, J. R. (2012): Interactions between climate and habitat loss effects on biodiversity: a systematic review and meta-analysis. Global Change Biology 18, pp. 1239-1252

Matthews, H.D., et al. (2014): National contributions to observed global Warming, Environmental Research Letters 9, doi:10.1088/1748-9326/9/1/014010

McDounough, W./Braungart, N. (2009): Cradle-to-cradle. New York: Vintage

Meyer-Abich KM (1990): Aufstand für die Natur. Von der Umwelt zur Mitwelt. Hanser, München

Missall, S. u. a. (2018): Trading Natural Riparian Forests for Urban Shelterbelt Plantations—A Sustainability Assessment of the Kökyar Protection Forest in NW China. Water- MDPI file:///C:/Users/WIPRO_~1/AppData/Local/Temp/Trading_Natural_Riparian_Forests_for_Urban_Shelter.pdf

Müller, F. u. a. (2020): Leitsätze der Kreislaufwirtschaft. Dessau-Roßlau:Umweltbundesamt. https://www.umweltbundesamt.de/s/default/files/medien/1410/publikationen/2020_04_27_leitlinie_kreislaufwirtschaft_bf.pdf

Die EU-Liste invasiver gebietsfremder Tier- und Pflanzenarten. https://www.nabu.de/tiere-und-pflanzen/artenschutz/invasive-arten/unionsliste.html

PACE -The Platform for Accelerating the Circular Economy (2019): A New Circular Vision for Electronics. World Economic Forum http://www3.weforum.org/docs/WEF_A_New_Circular_Vision_for_Electronics.pdf

Perino, A. et al. (2019): Rewilding complex ecosystems. Science 364 https://science.sciencemag.org/content/sci/364/6438/eaav5570.full.pdf

Pimm, S. L. u.a. (2014): The biodiversity of species and their rates of extinction, distribution, and protection. Science 344 (Issue 6187)

Probst, W. (2009): Stoffkreisläufe. UB 349, S.2-11. Seelze: Friedrich

Probst, W. (2010): Die Schlange im Paradies – Invasionen auf Inseln. UB 354, Seelze: Friedrich

Probst, W., Hrsg. (2017): Saumbiotope – Grenzen und Übergänge. UB 425. Seelze: Friedrich

Probst, W. (2020): Der grüne Pelz. https://www.wilfried-probst.de//der-gruene-pelz/

Probst, W. (2020): Schwarze Erde – Möglichkeiten der Kohlenstoffspeicherung im Boden beurteilen. UB 457, S. 26-31.Hannover: Friedrich

Probst, W. (2021): Naturschutz auf neuen Wegen. Unterricht Biologie 465 (Jg.45). Hannover: Friedrich

Prominski, M., Maaß, M., Funke, L. (2014): Urbane Natur gestalten. Basel: Birkhäuser

Randers, J. (2012).: 2052 – eine globale Prognose für die nächsten 40 Jahre. München: Oekom , Ausblick 7-4

Redford, K. H. (2017):  The role of Synthetic Biology in conserving the new nature https://reefresilience.org/de/assisted-evolution-a-novel-tool-to-overcome-the-conservation-crisis-2/

Ruppert, W. (2021): Zoonosen. Unterricht Biologie Kompakt 466 (Jg.45). Hannover: Friedrich

Schilk,, D. (2019): Die Wiederbegrünung der Welt. Klein Jasedow: Drachen-Verlag

Schmidt-Bleek, F. (1997) : Wieviel Umwelt braucht der Mensch? Faktor 10 – das Maß für ökologisches Wirtschaften. München: dtv

Seddon, P. (2017): A history of assisted colonization https://www.youtube.com/watch?v=pOgpyeGPzF8&feature=youtu.be

Shah, S. (2020): Woher kommt das Corona-Virus? Le Monde diplomatique vom 12.03.2020

Smil, V. (2019): Growth – From microorganismes to megacities. Cambridge MA.: MIT-Press

Trommer, G. (1994): Didaktisch differenzierte Leitbilder – ein Drei-Umwelten-Modell zum pägagogischen Umgang mit Natur und Landschaft. Workshop Ökologische Leitbilder, Cottbus 9.6.1994. TUC Aktuelle Reihe 6/94:57-62

Ümüt Halik, TU Berlin: Planung und Management städtischer Freiflächen in Ürümqi. (Memento vom 19. Februar 2005 im Internet Archive) In: TU International, 46/47, Dezember 1999, (PDF-Datei, 4 S.).

Watson, J. E. M., Allen, J. A. u. a.: (2018): Protect the last of the wild. Nature 563, pp. 27-30

WEF (2019): A new circular vision for electronics. Time for a global reboot. http://www3.weforum.org/docs/WEF_A_New_Circular_Vision_for_Electronics.pdf

Weizsäcker, E. U. von (1995): Faktor Vier – Doppelter Wohlstand – halbierter Naturverbrauch. Stuttgart: Droemer-Knaur, https://de.wikipedia.org/wiki/Klimarahmenkonvention_der_Vereinten_Nationen

https://neobiota.bfn.de/grundlagen/neobiota-und-invasive-arten.html

http://eh-da-flaechen.de/

https://www.thejakartapost.com/life/2019/12/31/grown-from-necessity-vertical-farming-takes-off-in-ageing-japan.html

https://www.thejakartapost.com/life/2018/05/10/growing-up—why-the-uaes-first-vertical-farm-could-be-a-regional-gamechanger.html

https://wiki.bildungsserver.de/klimawandel/index.php/Treibhausgasemissionen

https://www.vbio.de/themenspektrum/biodiversitaet/insektenschwund/

https://www.heise.de/hintergrund/Afrikas-Gruenstreifen-3664743.html?seite=2

https://reefresilience.org/de/assisted-evolution-a-novel-tool-to-overcome-the-conservation-crisis-2/

https://www.agritecture.com/blog/2017/11/29/move-over-skyscrapers-this-plantscraper-can-feed-5000-a-year

https://reefresilience.org/de/assisted-evolution-a-novel-tool-to-overcome-the-conservation-crisis-2/

https://www.zdf.de/nachrichten/politik/one-planet-summit-afrika-gruene-mauer-wueste-macron-100.html

Exkursionsangebot für die PH Weingarten, SS 2019

LINK-NAME LINK-NAME

Auch im Sommersemester 2019 biete ich unter der Veranstaltung „Regionale Lebensräume“ wieder vier ganztägige Exkursionen an. Zwei der Exkursionsziele decken sich  mit Angeboten der letzten Jahre:

Neu ist eine Exkursion in das Naturschutzgebiet Altweiherwiese bei Oberteuringen (18.5.2019) und in den Altdorfer Wald mit dem NSG Füremoos bei Vogt (8.6.2019).

Am 24.4.2019 findet von 18:00 Uhr bis 19:15 Uhr eine einführende Informationsveranstaltung in der PH Weingarten, Fach Biologie, NZ 1.51, statt, bei der Erläuterungen zu den Exkursionszielen gegeben und mögliche Aufgaben besprochen werden.

Übersicht

Regionale Lebensräume, Exkursionstermine, Sommersemester 2019

24.4.2019 18.00-19.15h PH-Weingarten Vorbesprechung
28.4.2019  10.00-17.00h Wanderparkplatz bei Appenweiler, Adelsreuter und Weißenauer Wald Wald, Frühblüher
18.5.2019 10.00-17.00h Oberteuringen, Parkmölichkeit bei Unterführung unter L 329, NSG Altweiherwiese durch Pflegemaßnahmen erhaltene ehemalige Streuwiese, Gräser, Waldrand
8.6.2019 10.00-17.00h Wanderparkplatz bei Vogt, Altdorfer Wald Wald, Hochmoor
7.7.2019 10.00-17.00h Naturschutzzentrum Wilhelmsdorf, Pfrunger-Burgweiler Ried verschiedene Moortypen, Insekten
Exkursionsziele 2019

Adelsreuter und Weißenauer Wald (So,28.04.2019) *

*durch Anklicken kommt man zu Unterlagen für die Exkursion im Sommersemester 2018

Treffpunkt: 10:00h, Wanderparkplatz bei Appenweiler

Thematische Schwerpunkte: Lebensform Baum, ökologische Ansprüche von Waldbäumen und Waldkräutern, Lebenraum Waldgraben

Exkursionsverlauf

Um 10:00 Uhr versammelten wir uns bei leichtem Regen an dem kleinen Wanderparkplatz kurz hinter Appenweiler an dem Sträßchen Richtung Brochenzell. Nach einer Vorstellungsrunde gingen wir auf dem Weg ein kleines Stück am Waldrand entlang und in den Wald hinein. Während des „Bäume Ertastens und Wiedererkennens“ blieb es ziemlich feucht. Wie erwartet wurden die ertasten Bäume – Wald-Kiefern, Linden und Rot-Fichten – relativ leicht wiedergefunden (Anleitung Max Fischer; Markus Preuss). Anschließend – der Nieselregen wurde heftiger – führten wir eine Untersuchung zur Artenzusammensetzung mithilfe der „Wäscheleinen- Transektmethode“ durch.

Wäscheleinen-Tranektmethode

Die Auswertung ergab in dem von uns untersuchten Waldstück eine deutliche Dominanz der Rot-Fichte, gefolgt von der Rot-Buche. Buchen fanden sich vor allem auch im Unterwuchs. Diese Naturverjüngung ist vermutlich von forstlicher Seite beabsichtigt, um auf längere Sicht den Fichtenanteil des Waldes zu verringern (Albijona Sabani).

Nass und kalt

Wetterradar online hatte in Aussicht gestellt, dass der Regen nach 11:00 Uhr nachlassen würde. Leider regnete es 11:30 Uhr eher heftiger als vorher und deshalb entschlossen wir uns, etwas Material einzusammeln, um den zweiten Teil der Exkursion in der pädagogischen Hochschule Weingarten fortzusetzen. Dort wurden von den Studierenden mit dem eingesammelten Material Stationen eingerichtet, die dann reihum bearbeitet wurden.

  1.  Wachstum und Alter von Bäumen (mit zwei mitgebrachten Baumscheiben; Anleitung Vanessa Golic, Susanna Wild)
  2. Kräuter fühlen, riechen, schmecken (Anleitung Carla Brändle, Rebecca Baumer)
  3. Bäume und Sträucher  nach Blättern/Zweigen bestimmen
  4. Ökologische Ansprüche von Wegrandpflanzen und Waldbodenpflanzen vergleichen
  5. Laubstreu untersuchen: Tiere, Zersetzungsstadien der Blätter
  6. Blätterbilder
Kräutermaus aus Stumpfblättrigr Ampfer, Brombeere, Hahnenfuß- und Wiesen-Schaumkraut-Blüte

Zum Schluss wurden folgende Kräuter zur Zubereitung einer Kräutersuppe genutzt:

Große Brennnessel, Giersch, Gundermann, Kriechender Günsel, Wiesen-Kerbel, Knoblauchs-Rauke.

Die Kräuter wurden fein geschnitten und in eine gebundene Suppe eingerührt, die mithilfe von Mehl,, Rapsöl, Wasser und Kräuterbrühwürfeln zubereitet wurde. Bei der Nutzung von Wildkräutern für die Zubereitung von Mahlzeiten empfiehlt sich das Abkochen (Suppe, Gemüse, Tee) aus hygienischen Gründen.

Während die Suppe zubereitet wurde, erhielten wir von Madeleine Mayer Informationen über die Gefahren von Zecken und die Möglichkeiten, sie zu verringern. Hannah Dyx informierte uns über den Lebenszyklus des Fuchsbandwurms und die sich daraus ergebenden Gefahren beim Aufenthalt in der freien Natur.

Artenliste der eingesammelten Pflanzen:

  • Brombeere (Rubus sectio Rubus)
  • Busch-Windröschen (Anemone nemorosa)
  • Gänseblümchen (Bellis perennis)
  • Geißfuß, Giersch (Aegopodium podagraria)
  • Gemeiner Löwenzahn (Taraxacum officinale)
  • Goldschopf-Hahnenfuß (Ranunculus auricomus)
  • Gundermann (Glechoma hederaceae)
  • Knäuelgras (Dactylis glomerata)
  • Knoblauchsrauke (Alliaria petiolata)
  • Kriechender Günsel (Ajuga reptans)
  • Scharfer Hahnenfuß (Ranunculus acris)
  • Schattenblume (Maianthemum bifolium)
  • Schlank-Segge (Carex acuta)
  • Schönes Frauenhaarmoos, Schönes Haarmützenmoos(Polytrichum formosum)
  • Vielblütige Weißwurz (Polygonatum multiflorum)
  • Wald-Erdbeere (Fragaria vesca)
  • Wald-Sauerklee (Oxalis acetosella)
  • Wald-Schachtelhalm (Equisetum sylvaticum)
  • Wald-Veilchen (Viola reichenbachiana)
  • Weiße Taubnessel (Lamium album)
  • Wiesen-Kerbel (Anthriscus sylvestris)
  • Wiesen-Schaumkraut (Cardamine pratensis)
  • Zaun-Wicke (Vicia sepium)

NSG Altweiherwiese, 18.05.2019

Treffpunkt: 10:00h, Oberteuringen, Parkmölichkeit bei Unterführung unter L 329 an kleiner Straße Richtung Bibruck; NSG Altweiherwiese

Thematische Schwerpunkte: Verschiedene Wiesentypen insbesondere Streuwiesen, Gräser,Waldrand, Streuobstwiesen, Naturschutz-Pflegemaßnahmen, Landschaftsgeschichte

Das 78 ha große Naturschutzgebiet Altweiherwiesen wurde 1981 vom Regierungspräsidium Tübingen ausgewiesen. Es liegt nordöstlich von Oberteuringen auf einer Meereshöhe von rund 450 m.

Zur Landschaftsgeschichte

Die Niederung ist der Rest einer ehemaligen Schmelzwasserrinne der späten Würmeiszeit (Konstanzer Stadium), die ursprünglich vom Schussenbecken bis ins Salemer Becken reichte und die heute vom Taldorfer Bach durchflossen wird. Ihre Fortsetzung fand sie zuerst im Deggenhauser Tal, das zunächst von der Rotach, hinter Roggenbeuren von der Deggenhauser Aach durchflossen wird. Später bahnten sich die Schmelzwässer den Weg südlich vom Gehrenberg bis zum heutigen Überlinger See.


Verlauf der Schmelzwasserrinne am Ende der Würmkaltzeit vom Schussenbecken durch die Taldorfer Senke (NSG Altweiherwiese) – und weiter südlich entlang der B33 Richtung Markdorf (violett getönt) – Kartengrundlage: Landkreis Ravensburg, Rad- und Wanderkarte 1:50 00

Bodensee (schwarz). Schwarze Linie: Schussen; weiße punktierte Linie: Innere Würmendmoräne (IWEM); weiß gestrichelt: Ausstrich von Endmoräne und lokalen kliffähnlichen Abschürfungsmerkmalen des „Konstanzer Stadiums“ (KS); dünne weiße Linien: Moränenrelikte innerhalb der Endmoräne des Konstanzer Stadiums. Beschriftung von Nord nach Süd und West nach Ost: RAV: Ravensburg, SAL: Salem, ÜBE: Überlingen, GEH: Gehrenberg, MAR: Markdorf, KON: Konstanz, FRI: Friedrichshafen, TET: Tettnang.
1-3 verschiedene Drumlins.
Die Schmelzwasserrinne, die das Schussensbecken mit dem Salemer Becken verbindet. ist gut zu erkennen.

Quelle:
Elena Beckenbach, Thomas Müller, Hartmut Seyfried, Theo Simon (2014):
Potential of a high-resolution dtm with large spatial coverage for visualization, identification and interpretation of young (Würmian) glacial geomorphology a case study from Oberschwaben (southern Germany)
Quaternary Science Journal Volume 63 / number 2 / 2014 / 107–129 / DOi 10.3285/eg.63.2.01

Im Bereich des NSG trennen tonige Sedmente den Untergrund zu den eiszeitlichen Schottern hin ab. Durch den Wasserstau kam es am Ende der Würmeiszeit zur Moorbildung. Die heutige L 329 verläuft auf einem im Mittelalter durch Mönche des Klosters St. Gallen errichteten Damm, der die Moorfläche zu einem großen Fischweiher werden ließ. Im 18 JH wurde das Wasser wieder abgelassen, um die Sumpfbereiche als Streuwiesen nutzen zu können. Bis Mitte des vorigen Jahrhunderts wurden das Mähgut von den umliegenden Bauernhöfer als Einstreu verwendet. Heute werden die Schilfflächen regelmäßig vom Naturschutz gemäht, um die Streuwiesen-typische Vegetation zu erhalten.

Flora, Fauna, Lebensräume

Wichtigster schützenswerter Lebensraum sind magere Flachlandmähwesen und Gewässersäume mit Erlen und Weiden. Dort gedeihen große Bestände des Breitblättrigen Wollgrases (Eriophorum latifolium), außerdem Pracht-Nelke (Dianthus superbus), Böhmischer Beinwell (Symphytum officinale ssp.bohemicum), Sibirische Schwertlilie (Iris sibirica), Berg-Klee (Trifolium montanum), Breitblättriges und Fleischfarbenes Knabenkraut (Dactylorhiza majalis und D. incarnata) und Mücken-Händelwurz (Gymnadenia conopsea).

Würden die Wiesen nicht regelmäßig gemäht, würden sich daraus schnell reine Schilfbestände entwickeln.

An Greifvögeln kann man regelmäßig Bussarde, Turmfalken und Rote und Schwarze Milane beobachten. den für das Gebiet angegebenen Baumfalken konnte ich allerdings noch nie sehen.Weitere Besonderheiten sind Kleinspecht, Nachtigall, Schwanzmeisen und Neuntöter. Im Taldorfer Bach leben Elritzen, verschiedene Weißfische und auch Hechte. Oft kann man in Bachnähe auch Ringelnattern entdecken.

Naturschutzmanagement

Im Jahr 2017 wurde aufgrund einer Kartierung für die Rotach einschließlich des Naturschutzgebietes Altweiherwiese (FFH-Gebiet 8222 – 342) ein Managementplan erstellt. Die für das Naturschutzgebiet vorgesehenen Pflegemaßnahmen sind in einer Karte dargestellt. Dabei bedeuten die mich violetter Farbe gekennzeichneten Flächen, dass auf diesen eine einschürige Mahd vorgesehen ist.


Regierungspräsidium Tübingen (Hrsg.): Managementplan für das FFH-Gebiet 8222-342 „Rotachtal Bodensee“
. bearbeitet von INULA, Freiburg. 1. Dezember 2017 (174 S., baden-wuerttemberg.de [PDF]).

Ein gewisses Problem für das Naturschutzgebiet stellt der Kraftfahrzeugverkehr auf dem Sträßchen dar, das über Bibruck, Reute, Sederlitz bis nach Dürnast führt und dort in die B 33 mündet. Die Straße wird leider nicht nur von Anwohnern sondern auch als Shortcut von der K 329 zur B 33 und umgekehrt genutzt. Neben verkehrsberuhigten Maßnahmen („nur für Anlieger“) wäre auch an einen Bohlenweg parallel zum Sträßchen zu denken, der von Fußgängern (und Radfahrern?) genutzt werden könnte.

Wammeratswatt

Am Rande des Naturschutzgebietes liegt ein Weiler mit dem eigentümlichen Namen Wammeratswatt. Ein altes zwischen Vegetation verstecktes Schild weist darauf hin, dass dieser Ort bereits im zwölften Jahrhundert, 1164, als Wanbrehteswathe urkundlich erwähnt wurde. Die Endung “-wathe” geht wohl auf einen altgermanischen Begriff zurück, der so viel wie “Weide” oder “Wiese” bedeutet. “Wanbrecht” ist ein alemannischer Name. Man könnte die Ortsbezeichnung also mit „Weide oder Wiese des Wahnbrecht“ übersetzen.

Foto Uwe Baur, 23.6.2012

Exkursionsverlauf

Exkursionsweg am 18.5.2019; Ausschnitt aus TK 8222,Markdorf, 1:25000

Bei trockenem Wetter und angenehmen Temperaturen treffen wir uns um 10:00 Uhr in Oberteuringen an der Unterführung unter der Landstraße 329 am Eingang zu dem Naturschutzgebietes Altweiherwiese.

Nach einer Einführung in die Landschaftsgeschichte und die Besonderheiten des Naturschutzgebietes beschäftigen wir uns mit dem Stockwerkaufbau einer Wiese.

Auf dem Weg Richtung Wammeratswatt werden zunächst möglichst viele unterschiedliche Gräser gesammelt, sortiert und bestimmt. Anschließend versuchen wir, die verschiedenen Grasarten allein aufgrund haotischer Merkmale, also mit verbundenen Augen, zu erkennen. In dem langsam fließenden Taldorfer Bach wachsen dichte Bestände des Wassersterns, von denen dank des Einsatzes von Markus Preuss alle TeilnehmerInnen auch einen Zweig in den Händen halten können.

Aufgrund der vorangegangenen relativ kühlen Witterung ist die Vegetationsentwicklung auf der Streuwiese noch ziemlich weit zurück – keine Sibirischen Schwertlilien, Pracht-Nelken oder fruchtenden Wollgräser sind zu sehen. Von den charakteristischen Arten können wir nur gerade aufblühende Exemplare des Breitblättrigen und des Fleischfarbenen Knabenkrautes entdecken, außerdem Berg-Klee, Sumpf-Kratzdistel, Gewöhnlichen Hornklee und Gilbweiderich (noch nicht blühend).

Auf dem weiteren Weg zum Weiler Wammeratswatt fallen die als Straßenbegleitbäume gepflanzten Robinien auf, die gerade erst ihre Fiederblätter entfalten. Ebenso wie die alten Obstbäume der Streuobstwiese sind sie reichlich mit Misteln bewachsen. Die Bäume der Streuobstwiese – vorwiegend Äpfel auch einige Birnen – sind mehr als 100 Jahre alt. Sie werden immer noch zur Gewinnung von Fallobst für die Apfelsaftproduktion genutzt, das Heu der Wiese wird an Reiterhöfe verkauft. In der Wiese fällt uns der Kleine Wiesenknopf mit seinen weit aus den Blüten heraushängenden Staubfäden besonders auf.

Kleiner Wiesenknopf – Sanguisorba minor

Nach einer Mittagspause bei der Brücke über den Taldorfer Bach leiten Yesim Örgerim und Beatrice Hell zu „Blüten, lockende Signale“ an. Blütenteile – die Bestäuber anlocken sollen – und Blätter werden zu Make-up oder schmückenden Kurzzeit-Tattoos umgewidmet.

Der Weg führt uns dann weiter dem Waldrand entlang. Unter Anleitung von Lisa-Marie Buemann und Sara Dittmann sammeln wir Tierspuren: Spuren an Blättern, Spuren an Zapfen und Früchten und Spuren an Holz. Besonders auffällig sind die Minen des Buchen-Springrüsslers an Rot-Buchen-Bättern.

Hier hat ein Specht einen Fichtenzapfen bearbeitet

Unser Exkursionsweg führt dann weiter zum Weiler Blankenried. Dort kreuzen wir die L 329 und besteigen den Drumlin Horach (501,6 m ü.N.N.), auf dem sich ein Wasserreservoir der Wasserversorgung Bodensee befindet. Von dort hat man eine sehr schöne Aussicht auf den Bodensee und die Alpenkette – heute allerdings im Dunst verborgen. Sabrina Brendle führt die Gruppe in einer blinden Raupe aus dem Wald heraus zum Aussichtsplatz, wo die Augenbinde dann abgenommen werden.

Altdorfer Wald mit NSG Füremoos

Gelb umrandeter Ausschnitt unten:

Treffpunkt: 10:00h, Wanderparkplatz am Waldrand bei Vogt

Thematische Schwerpunkte: Wald und Waldgeschichte, Waldbodenvegetation, Moose, Moore: Bildung, Lebensbedingungen, Torfmoose

Geografische Lage

Der Altdorfer Wald liegt auf einem Höhenzug zwischen Vogt im Süden und auch Aulendorf im Norden am nordöstlichen Rand des Schussenbeckens. Mit 82 km2 ist er das größte zusammenhängende Waldgebiet Oberschwabens. Der Name geht auf die welfische Grafschaft Altdorf bzw. auf die ehemalige Ortsbezeichnung „Altdorf“ für die Stadt Weingarten zurück. Bis 1865 wurde lediglich das Kloster als „Weingarten“ bezeichnet, während die umgebende Ortschaft Altdorf genannt wurde.

Naturraum

Der Altdorfer Wald besteht hauptsächlich aus Fichtenforsten, eingesprengt sind aber auch Buchen und andere Laubbäume. Er enthält die Naturschutzgebiete Saßweiher, Girasmoos, Tuffsteinbruch Weißenbronnen, Lochmoos und Füremoossowie ein Fauna-Flora-Habitat Gebiet „Altdorfer Wald“ mit 13,5 km2. Der Höhenzug übersteigt an einigen Stellen700 m, höchste Erhebung ist der Galgenberg mit 776,6 m ü.N.N.

Bedeutendstes Fließgewässer ist die Wolfegger Ach, die wie einige weitere kleinere Zuflüsse in die Schützen mündet und einige weitere kleinere Bäche der Schussen zufließt. In dem Waldgebiet liegen auch einige Seen, wie der Bunkhofer Weiher, der Neuweiher und der Langmoosweiher und aus einigen feuchten Senken haben sich Moore entwickelt. Eines davon, das Naturschutzgebiet Füremoos, werden uns genauer anschauen. (Weitere Unterlagen zum Thema Moore und Feuchtgebiete in den Unterlagen zur Exkursion ins Wurzacher Ried 2018):

Die Kalktuffbildungen bei Weißenbronnen weisen auf kalkreiches Jungmoränenmaterial im Untergrund hin.

Pfrunger-Burgweiler Ried (7.7.2019)

TreffpunktWilhelmsdorf

Treffpunkt: 10:00h, Naturschutzzentrum Wilhelmsdorf

Thematische Schwerpunkte: Konzeption des Naturschutzzentrums Wilhelmsdorf, Landschaftsgeschichte, Insekten

Das digitale Geländemodell zeigt, wie sich das Pfrunger Becken zwischen der äußeren un inneren Endmoräne der Würm-Kaltzeit ausgebildet hat.

Zum Exkursionsverlauf

Nach der Begrüßung durch Frau Ackermann, Diplom-Biologin und Naturpädagogin am Naturschutzzentrums Wilhelmsdorf, beschlossen wir aufgrund der Wetterlage, die für den Nachmittag geplante Exkursion zum Fünfeckweiher und zum Bannwaldturm schon am Vormittag durchzuführen.

Startpunkt war – wie in den vergangenen Jahren -der Parkplatz bei Uzhausen. An einer Übersichtskarte erklärte uns Frau Ackermann die verschiedenen Schutzzonen des Pfrunger-Burgweiler Rieds und die jeweiligen Schutzziele und  -maßnahmen. Das Pfrunger-Burgweiler Ried ist nach dem Federseegebiet das zweitgrößte zusammenhängende Moorgebiet Südwestdeutschlands, die größte zusammenhängende Hochmoorfläche allerdings ist im Wurzacher Ried zu finden.

Zunächst ging unser Weg durch Weideland, auf dem wir eine Herde Scottish Highlander beobachten konnten, die hier zusammen mit eigen anderen Robustrinderrassen zur Biotoppflege eingesetzt werden. Sie sind das ganze Jahr über auf der Weide, werden allerdings im Winter mit Heu zugefüttert, das im Sommer auf den Weideflächen gewonnen wird. Fleisch und Wurst waren von den Robustrinder sind im Naturschutzzentrum Wilhelmsdorf erhältlich, außerdem werden sie in einigen Gaststätten rund um das Pfrunger-Burgweiler Ried angeboten.

Entlang eines ehemaligen Entwässerungskanals, der in regelmäßigen Abständen durch Querwände aufgestaut ist, konnten wir auf Weidezäunen mehrfach Schwarzkehlchen und einen Neuntöter beobachten. Im Feuchtbereich um den Graben blühte reichlich Mädesüß. Auf den Dolden des Wiesen-Bärenklaus waren viele Nektar sammelnde Insekten, insbesondere Schwebfliegen und kleine Bockkäfer, zu beobachten. Am Wegrand nahmen wir eine Geruchsprobe vom Feld-Thymian, der gerade in voller Blüte stand.

Auf den Weideflächen brüten regelmäßig Kiebitze, für die in diesem Jahr extra flache Gewässer, „Blänken“, angelegt wurden, die vor allem für die jungen Kiebitze wichtig sind, weil sie dort leicht an geeignete Nahrung (Insektenlarven, Würmer) kommen können.

Wir folgten dann dem Weg durch den Bannwald bis zum Fünfeckweiher. In Baden-Württemberg bezeichnet der Begriff „Bannwald“ Totalschutzgebiete, die vollständig einer natürlichen Entwicklung überlassen werden. Wege durch den Bannwald sind zulässig, und dürfen – zum Beispiel durch Fällen umsturzgefährdeter Bäume – gesichert werden. Auf dem Weg fällt auf, dass durch Wiedervernässung die Fichtenbestände links des Weges großflächig abgestorben sind. Den Fünfeckweiher erreichten wir auf einem Bohlenweg. Wie in den Vorjahren konnten wir eine ganze Reihe von Insekten beobachten, insbesondere die dunkle Sommergeneration des Landkärtchens, eines Schmetterlings, der oft auch in Schulbüchern als Beispiel für die Ausbildung unterschiedlich aussehender Generationen angeführt wird.

Von der Aussichtsplattform des Bannwaldturmes hatten wir einen guten Überblick über das gesamte Gebiet des Pfrunger-Burgweiler Rieds und die umgebenden Höhenzüge. Man kann von dort aus sehr gut die verschiedenen durch industriellen Torfstich entstandenen Seen beobachten. Eine kleine Schar Graugänse flog am Turm vorbei.

Am sonnigen Wegrand wurde auf zwei Stammformen von Kulturpflanzen hingewiesen, die hier besonders schön entwickelt waren: Wilde Möhre  (Daucus carota) und Wegwarte oder Zichorie (Cichorium intybus), aus der sowohl der Chicoréesalat als auch die Wurzelzichorie (Zichorienkaffee) gezüchtet wurde. Bei unserem Vesperplatz konnten wir ein schönes Exemplar des Kompass-Lattichs oder Stachel-Lattichs (Lactuca serriola) anschauen. Sein Name rührt daher, dass sich seine Blätter an sonnigen Standorten senkrecht stellen und in Nord-Süd-Richtung orientieren. Damit sind die Blattspreitenen weniger dem intensiven Sonnenlicht ausgesetzt. Der Kompass-Lattich ist die Stammform des Gartensalates (Lactuca sativa).

Da um uns herum erhebliche Gewitteraktivitäten zu beobachten waren und die Zeit auch schon recht fortgeschritten war, beschlossen wir, auf einen größeren Rundweg (vergleiche Exkursionen der Vorjahre) zu verzichten und direkt zum Parkplatz bei Holzhausen zurückzukehren. Auf den Weiden in der in der Nähe des Parkplatzes konnten wir eine große Zahl Weißstörche (gezählt wurden 36) beobachten.

Da es bei unserer Ankunft am Naturschutzzentrum Wilhelmsdorf immer noch relativ gutes Wetter war, beschlossen wir, nun gleich mit dem Fang von Wiesentieren und Wassertieren zu beginnen. Ausgerüstet mit Keschern und Wasserschalen bzw. Schmetterlingsnetzen und Becherlupen machten sich zwei Gruppen zunächst auf die Jagd, dann würden die Tiere im Großraum mithilfe von Bestimmungsschlüsseln und Binokularen untersucht und bestimmt. Einige Fänger konnten über den Monitor demonstriert werden.

Einige unserer Fänge:

Wiese

Larve einer Kurzfühler-Heuschrecke (vielleicht Corthippus parallelus)

Schwebfliege

Mücke mit gelbem Hinterleib

Baumwanze

Weichwanze

Schaumzikade

Brauner Waldvogel

verschiedene Kleinschmetterling (Zünsler?).

Steinhummel

Teich

Wassermilbe

Kleinlibellenlarve

Stabwanze

Rückenschwimmer

Schwimmwanze

Büschelmückenlarve

Käferlarve

Kaulquappe eines Wasserfrosches (Kleiner Teichfrosch?)

Beim abschließenden Museumsbesuch gibt uns Frau Ackermann anhand eines großen Luftbilds der Region einen Überblick über die Entstehung des Pfrunger-Burgweiler Rieds. Auf der Fahrt in dem „Moorkäpsele“ werden diese Fachinhalte anschaulich wiederholt (vergleiche Exkursionsbericht von 2017).

Mögliche Aktivitäten von Studierenden

Anleitungen

Baum  ertasten und wiedererkennen

Wachstum und Alter von Bäumen

Bäume zählen

Bäume berechnen

Baumkronenspaziergang

Kräuter fühlen, riechen, schmecken

Gräserberührungen

Pflanzenoberflächen: Rau und glatt und andere Gegensätze

Blüten, lockende Signale

Vertauschte Gegenstände

Wer war der Übeltäter?

Umwelt im Umschlag

Torfmoose und Moorbildung

Über alle Exkursionen:

Artenliste Pflanzen

Artenliste Tiere

Gut erkennbare Pflanzenfamilien besonders beachten:

Korbblütler-Asterngewächse, Doldenblütler-Selleriegewächse, Lippenblütler-Taubnesselgewächse, Rosengewächse, Hahnenfußgewächse, Schmetterlingsblütler-Bohnengewächse, Kreuzblütler-Kohlgewächse, Nelkengewächse, Süßgräser-Rispengrasgewächse, Sauergräser–Zypergrasgewächse, Binsengewächse

Referate

Zecken

Nach der Blutmahlzeit suchen Zeckenweibchen eine geschützte Stelle und legen mehrere 1000 Eier ab, aus denen zunächst sechsbeinige Larven schlüpfen (im Bild vermutlich Ixodes rhizinus, der Holzbock; Foto: Kämmerer 2019)
Nach der Blutmahlzeit suchen Zeckenweibchen eine geschützte Stelle und legen mehrere 1000 Eier ab, aus denen zunächst sechsbeinige Larven schlüpfen, danach sterben sie (im Bild vermutlich Ixodes ricinus, der Holzbock; Foto: Kämmer 2019).

Fuchsbandwurm

Literaturhinweise

Einen sehr guten Einstieg in die Landschaftsgeschichte Oberschwabens und ganz Südwestdeutschlands kann man sich mit folgendem neu erschienenen Werk verschaffen:

Seyfried, H., Simon, T., Beckenbach, E. & Müller, T. (2019):
Der Südwesten im digitalen Geländemodell – wie LiDAR-Daten unsere Sicht auf die Welt verändern.
Sonderbände der Gesellschaft für Naturkunde in Württemberg, 4; 434 S., 301 Abb. – Schmidt-Verlag. 34,90 €

Weitere Literaturhinweise in den Exkursionsunterlagen für 2018

Exkursionsangebot für die PH Weingarten, SS 2018

LINK-NAME
Im Sommersemester 2018 biete ich unter der Veranstaltung „Exkursion Regionale Lebensräume“ vier Exkursionen an. Drei der Exkursionsziele decken sich  mit Angeboten des letzten Sommersemesters:

Eine weitere Exkursion führt uns am 3.6.2018 in das Wurzacher Ried.

Am 27.4.2018 findet von 13:00 Uhr bis 14:15 Uhr eine einführende Informationsveranstaltungim Raum NZ 1.51der PH Weingarten statt, bei der Erläuterungen zu den Exkursionszielen gegeben und mögliche Aufgaben besprochen werden.

Zusätzlich müssen die Studierenden der Veranstaltung mit einer sechsten Klasse aus dem Stuttgarter Raum, die im Juni in RV ihren Schullandheimaufenthalt verbringt, zwei Exkursionstage gestalten.

Übersicht über die Exkursionsorte

Adelsreuter und Weißenauer Wald (Sa,12.05.2018) *

*durch Anklicken kommt man zu Unterlagen der vorjährigen Exkursion

Treffpunkt: 10:00h, Wanderparkplatz bei Appenweiler

Thematische Schwerpunkte: Lebensform Baum, ökologische Ansprüche von Waldbäumen, Waldkräuter, Lebensraum Wassergraben

Mögliche Aktivitäten, die von Studierenden angeleitet werden

Bäume ertasten und wiedererkennen

Rindenoberflächen fühlen sich sehr unterschiedlich an

Ein Baumstamm mit seiner Borkenoberfläche wird blind ertastet. Anschließend versucht man diesen Baum offenen Auges wiederzufinden. Die unterschiedlichen Rindenstrukturen sind nicht nur arttypisch, sie unterscheiden sich auch von Baumindividuum zu Baumindividuum.

Jahresringe verraten das Baumalter

Wachstum und Alter der Bäume

Jahresringe von Bäumen geben Auskunft über ihr Alter, über gute und schlechte Jahre und über die Art ihres Wachstums. Bei jungen Bäumen kann man das Alter auch über die Art der Verzweigungen schätzen, da die Bildung von Seitenzweigen im Jahresrhythmus erfolgt. Die Abfolge von Jahresringen gibt – wenn man einen ausreichend langen Zeitraum von Jahren betrachtet – eine einmalige Sequenz. An der Universität Innsbruck hat man eine solche ununterbrochene Sequenz von Jahresringen für einen Zeitraum von über 10.000 Jahren festlegen können. Auf diese Weise lassen sich alte Hölzer sowohl aus Bauwerken als zum Beispiel auch aus Gletschernauf das Jahr genau datieren (Dendrochronologie).

Baumberechnung

In der Biomasse ist Kohlenstoff gespeichert, der aus dem Kohlenstoffdioxid der Luft stammt. Aus dem Volumen eines Baumstamms lassen sich Rückschlüsse auf den Wald als Kohlenstoffspeicher ziehen.

Baumarten zählen

Linientransekt zum Bäume zählen

In einem Waldstück wird die Häufigkeit verschiedener Baumarten durch Linientransekte ermittelt und grafisch dargestellt. Anschließend werden Überlegungen zu den ökologischen Ansprüchen der Baumarten und ihre forstliche Nutzung angestellt.

Mein Kraut in der Suppe – essbare Wildpflanzen

Wer Kräuter sammelt, um sie anschließend zu essen, setzt die uralte Tradition der Sammler und Jäger fort. Dieses Sammeln von Wildkräutern für den Suppenkopf kann dabei helfen, Pflanzenarten kennen und schätzen zu lernen.

Essbare Wildpflanzen

Krautvegetation im Wald – Zeigerwerte und ökologische Gruppen

Aus der Artenzusammensetzung der Krautschicht eines Waldes lassen sich wichtige ökologische Rückschlüsse ziehen. Dabei helfen „Ökologische Zeigerwerte“ und „Ökologische Gruppen der Waldbodenpflanzen“.

Häufigkeit der Waldbodenpflanzen

Leben im Wassergraben

Stechmücken

Beobachtung mit Löffel und Lupe

Typisch für die Jungmoräne am Rande des Schussenbeckens sind Mergelschichten, die zu staunassen Bereichen und Quellhorizonten führen. Die wegbegleitenden Gräben sind deshalb oft bis in den Sommer mit Wasser gefüllt und Lebensraum für verschiedene typische Tümpelbewohner wie Grasfröschen, Molchen und Wasserinsekten.

Bestimmungsschlüssel Waldbäume nach Blattmekmalen

Exkursionsweg

1 Bäume ertasten, 2 Wachstum und Alter von Bäumen, 3 Baumberechnung (Volumen, Masse, Kohlenstoffgehalt), 4 Essbare Wildkräuter, 5 Krautschicht und Zeigerwerte der Pflanzen, 6 Bestimmung von Bäumen und Sträuchern nach Blattmerkmalen

Wurzacher Ried (So, 3.06.2018)

Treffpunkt: 9:00h, Wohnmobilparkplatz Bad Wurzach

Thematische Schwerpunkte: Hochmoor und Niedermoor, Moorregeneration,  Landschaftsgeschichte, Reptilien und Amphibien im Moor

Entstehung des Wurzacher Rieds

Das Wurzacher Ried nördlich der Gemeinde Bad Wurzach ist mit etwa 18 km2 eines der größten Naturschutzgebiete Süddeutschlands. Mit etwa 6 km2 enthält es die größte noch intakte Hochmoorfläche Mitteleuropas.

Das Becken des Wurzacher Rieds wurde schon in der vorletzten bzw, vorvorletzen Kaltzeit angelegt. Während des Riss-Glazials wurde ein tiefes Gletscherzungenbecken gebildet. In der letzten Vereisung, dem Würm-Glazial, kam der Rheingletscher noch vor diesem Becken zum Stehen. Durch seine Endmöräne wurde ein Endmöränen-Stausee gebildet, dessen allmähliche Verlandung das Wurzacher Ried entstehen ließ. In einer Animation des Naturschutzzentrums Wurzacher Ried wird die komplexe Entstehungsgeschichte relativ gut vermittelt.

Entwicklung zum Wurzacher Ried seit der letzten Vereisung vor ca. 12 000 Jahren (nach Karl Bertsch, 1947)

Feuchtgebiete

Moore

Moore entstehenauf Wasser durchdrängten Böden, in denen die anfallenden Pflanzenreste wegen Sauerstoffmangels nur sehr langsam abgebaut werden. Da die Produktion organischer Substanz schneller erfolgt als ihre Reminalisierung, kommt es zur Ansammlung mehr oder weniger mächtiger, mineralstoffarmer Humussubstanz („Torf„).  Geologisch werden Moore definiert als Böden mit einer mindestens 30 cm dicken Torfschicht, deren Gehalt an brennbarer organischer Substanz 30 % übersteigt.

Vegetationskundlich werden Moore aufgrund ihrer ökologischen Bedingungen und der davon abhängigen Vegetation definiert und unterteilt:

Flachmoore entstehen an den tiefsten Stellen des Reliefs, wo Quellwasser auftritt, oder aus den Verlandungstadien stehender Gewässer. Sie sind vom Grundwasserstand abhängig und daher auf kein bestimmtes Klima angewiesen. Je nach Qualität des Wassers und des Mineraluntergrunds können sie mehr oder weniger nährsalz- und basenreich sein. Unter ariden Bedingungen entstehen Salzsümpfe.

Hochmoore sind vom Grundwasser unabhängig und allein auf den atmosphärischen Niederschlag angewiesen („ombrogen“). Sie sind charakteristisch für feuchtes, gemäßigte Klima mit hohen Niederschlägen (in Mitteleuropa über 600 mm pro Jahr) und geringer Verdunstung. Sie entstehen wenn sich auf nassem Untergrund Torfmoose  (Gattung Sphagnum) ansiedeln. Diese können aufgrund ihres anatomischen Baus das bis zu 20fache ihres Eigengewichtes an Wasser speichern. Außerdem gestattet ihnen ein besonderer Ionen-Austausch-Mechanismus, selbst aus extrem mineralstoffarmem Wasser die wenigen Kationen im Austausch gegen H+,-Ionen herauszufangen. Dadurch wird das Wasser angesäuert (bis zu < pH 4). Die meisten Konkurrenten werden damit ausgeschaltet. Die Torfmoospolster wachsen immer höher, wobei die unteren Teile absterben und allmählich zu Torf werden. In den abgestorbenen Moosen hält sich das Regenwasser wie in einem Schwamm. So können wassergesättigte Torfschilde entstehen, die sich uhrglasförmig mehrere Meter über das Relief erheben, daher der Name Hochmoor. Aus den Rändern sickert saures, nährstoffarmes Wasser und sammelt sich im sogenannten Randsumpf (Lagg).

Flachmoore können sich zu Hochmooren entwickeln. Das Zwischenstadium wird Zwischenmoor oder Übergangsmoor genannt

Typische Gehölze der Hochmoore sind Zwergsträucher aus der Familie der Heidekrautgewächse. In natürlichen Hochmooren sind sie auf die höchsten Stellen sowie trockenere Randbereiche konzentriert, in teilweise trockengelegten Mooren können sie zur Vorherrschaft gelangen. Dank der Symbiose mit Mykorrhizapilzen und anderen Anpassungen können sie auch noch auf ärmsten Torfböden gedeihen, wobei sie nur langsam wachsen.unter unseren Klimabedingungen beträgt das Torfwachstum etwa 1 cm in 100 Jahren.

Schematische Darstellung eines Hochmoors (W.Probst)

Feuchtgebiete auf Mineralboden

Feuchtgebiete, die nicht auf torfigem Untergrund stocken, sind zum Beispiel die Auen entlang von Flussläufen, oft auch die Uferbereiche von stehenden Gewässern. Da in solchen Gebieten der Wasserstand stark schwankt, kommt es immer wieder zu Perioden mit guter Sauerstoffversorgung, in denen die organischen Abfallstoffe vollständig abgebaut werden können. Entlang von Flussläufen kommt es zur Ausbildung von Auwäldern, häufiger überschwemmt sind die Weichholzauen mit Weiden, Pappeln und Erlen, etwas höher liegen die Hartholzauen mit Eschen, Ulmen und Eichen. An flachen Seeufern können ausgedehnte Schilfbestände auftreten.

Die in Oberschwaben häufige Bezeichnung „Ried“ sagt nichts über den Untergrund aus. Das Eriskircher Ried zum Beispiel stockt auf Mineralboden, im Wurzacher Ried besteht der Untergrund weitgehend aus Torf.

Überblick über die Bezeichnungen von Feuchtgebieten (W.Probst)

Kreuzottern

Kreuzotter (Vipera berus)

Die Kreuzotter ist eine an kaltgemäßigtes Klima angepasste Viper, die einzige, die auch nördlich des Polarkreises angetroffen werden kann. In Deutschland kommt sie vor allem in den Heidegebieten der norddeutschen Tiefebene und in den Mittelgebirgen vor, in Oberschwaben sind Moore und feuchte Niederungen bevorzugte Siedlungsräume. Wegen der Bedrohung ihrer Lebensräume gilt die Art in Mitteleuropa als gefährdet und steht in Deutschland unter Naturschutz. Im Wurzacher Ried lebt eine stabile Population von Kreuzottern und wir hoffen, unter fachkundiger Führung durch den Amphibien- und Reptilienkenner Dominik Hauser Kreuzottern beobachten zu können.

Mögliche Aktivitäten, die von Studierenden angeleitet werden

Wasserspeichervermögen von Torfmoosen

Torfmoose sind so konstruiert, dass sie Wasser wie ein Schwamm speichern können. Das Wasserspeichervermögen lässt sich auch im Gelände leicht messen.

Torfmoose als Wasserspeicher

Messung des Wasserspeichervermögens von Torfmoosen

Messungen des pH-Wertes im Hochmoor und im Flachmoor

Der pH-Wert gibt die Wasserstoffionenkonzentration (von lat. potentia Hydrogenii) in einer wässrigen Lösung an, und zwar als negativen dekadischen Logarithmus der Konzentration in Mol pro Liter. Kleine Werte bedeuten also eine hohe Konzentration an Wasserstoff- (H+), genauer gesagt an Oxoniumionen (H3O+), und d. h. „starke Säure“. Auf Wasserorganismen hat der Säuregrad einen erheblichen Einfluss.

Umwelt im Umschlag

Eine gezielte Suche nach unterschiedlichen Naturobjekten schult die Beobachtungsfähigkeit und führt oft zu überraschenden Entdeckungen.

Gang durch die Baumkronen

Mithilfe eines Spiegels kann man sich die Baumkronen ins Blickfeld holen. Sie sind nicht nur die wichtigsten Orte der Stoffproduktion durch Photosynthese, sie sind auch entscheidend für den Stoffaustausch mit der Atmosphäre. Die Wasserverdunstung an den Blattoberflächen ist der Motor für den aufsteigenden Strom von Wasser und Mineralstoffen durch die Leitungsbahnen der Bäume.

„Grünt die Eiche vor der Esche, gibt’s im Sommer große Wäsche“ (Bauernregel)

Exkurisionsweg

Kreuzotter-Demonstration (Schwarze Form), 3.6.2018

1 Dank Dominik Hauser konnten wir je ein Exemplar einer schwarzen Form und einer gewürfelten Form der Kreuzotter beobachten. An verschiedenen Weidenarten des Waldrandes waren zahlreiche Schaumflocken der Weiden-Schaumzikade (Aphrophora salicina) zu beobachten.

2 An einem Moorgraben, dem wir mehrere 100 m entlang gingen, flogen zahlreiche Blauflügel-Prachtjungfern (Calopteryx virgo), im Wasser blühten Gelbe Teichrosen, häufigste Sumpfpflanze war die Aufrechte Berle, ein Doldenblütler mit langen Fiederblättern, an einigen Stellen standen Brunnenkresse und der sehr giftige Wasserschierling. Das Wasser im Moorgraben hatte einen pH-Wert von etwa 6,5.

3 An dieser Stelle ist am Ende eines Bohnenweges eine Plattform aufgebaut, von der man einen Blick auf die Hochmoorfläche des östlichen Wurzacher Rieds hat (Alberser Ried). Wir rekapitulieren die Entstehung eines Hochmoores und speziell die Geschichte des  Wurzacher Rieds. Dann versuchen wir mit Erfolg, einige typische Hochmoorpflanzen zu finden (Moosbeere, Rosmarinheide, Rundblättriger Sonnentau, Torfmoose). Durch einen Auspressversuch konnten wir nachweisen, dass aus 680 g frisch entnommenem Torfmoos 250 g Wasser gepresst werden konnten. Das ausgepresste Wasser hatte einen pH-Wert von etwa 5.

4 Mittagspause

Suche nach eingeschmuggelten und vertauschten Gegenständen.

5 Hier führten wir die Übung „Umwelt im Umschlag“ durch. Eigentlich war auch die „Wanderung durch die Baumwipfel“ geplant, aber das Gebiet schien uns wegen fehlender, gut ausgebildeten Baumkronen nicht so  geeignet. Wir hoffen, die Übung am 7. Juli im Pfrunger-Burgweiler Ried nachholen zu können.

Raupe der Zwetschgen-Gespinstmotte, 3.6.2018

An dem Standort wuchs ein mehrstämmiger, völlig kahl gefressener Baum, an dessen Zweigen man noch Reste von Gespinstmotten erkennen konnte. Ein dick eingesponnener  Klumpen mit Motten hatte sich an einer darunter stehenden kleinen Fichte etabliert. Nach einigem Rätselraten konnten wir das Gehölz als Traubenkirsche identifizieren. Wir stellten fest, dass noch viele weitere Traubenkirschen aller Größen von den Zwetschgen-Gespinstmotten (Yponomeuta padella) befallen waren, allerdings nicht so stark.

Rotach bei Oberteuringen * und Hepbach-Leimbacher Ried * mit Heckrindern (23.6.2018)

*durch Anklicken kommt man zu Unterlagen der vorjährigen Exkursionen

Rotach

Fischtreppe in der Rotach bei Oberteuringen

Treffpunkt: 10:00h, Oberteuringen, Franz-Roth-Platz

Thematische Schwerpunkte: Die Rotach als drittgrößter Zufluss des östlichen Bodensees, Ökologie von Fließgewässern, Messung einiger abiotische Faktoren, biotische Faktoren: Wassertiere und Uferpflanzen,  Gefährdung und Schutz von Bächen, Renaturierungsmaßnahmen:

Verlauf der Rotach

Gefälle der Rotach (von ANKAWÜ – Eigenes Werk, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=18232893). Der Pfeil markiert Oberteuringen. Die Länge der Rotach beträgt knapp 40 km.

Mögliche Stationen, die von Studierenden vorbereitet und betreut werden

Abiotische Faktoren (Stationen 1 + 2 von 2017)

Strömungsmessung

Biotische Faktoren, Zeigerorganismen

Bachbegleitende Pflanzen

Hepbach-Leimbacher Ried mit Heckrinder-Beweidung

Nach der Mittagspause fahren wir zum Wanderparkplatz bei Unterteuringen (Richtung Modellfliegerplatz)

Thematische Schwerpunkte: Landschaftsgeschichte, Landschaftpflege und Naturschutz mit Heckrindern, Gräser, Vegetationsaufnahmen in einer Wiese, Bedeutung von Saumbiotopen in der Agrarlandschaft.

Blick auf das Hepbach-Leimbacher Ried

Pfrunger-Burgweiler Ried * (7.7.2018)

*durch Anklicken kommt man zu Unterlagen der vorjährigen Exkursion

Treffpunkt: 10:00h, Naturschutzzentrum Wilhelmsdorf

Thematische Schwerpunkte: Konzeption des Naturschutzzentrums Wilhelmsdorf, Landschaftsgeschichte, Insekten.

Pfrunger-Burgweiler Ried, auf dem Weg zum Fünfeckweiher

Nach einer Führung durch das Naturschutzzentrum werden wir uns – vorausgesetzt das Wetter ist günstig – auf der Blumenwiese bei dem Naturschutzzentrum mit Insekten beschäftigen (Fang und Bestimmung der Gruppenzugehörigkeit).

Didaktisch begründete Grobeinteilung der geflügelten Insekten nach Kattmann (Fotos W.Probst)

Am Nachmittag wird uns Frau Ackermann, Mitarbeiterin des Naturschutzzentrums Wilhelmsdorf, auf einer Wanderung durch das Naturschutzgebiet Planungen,  Ziele und Konzepte des Naturschutzmanagements im Pfrunger-Burgweiler Ried erläutern.

Literaturempfehlungen

Bestimmungsbücher

Pflanzen:

Bergau, M./ Müller, H./Probst, W./Schäfer, B. (2001): Pflanzen-Bestimmungsbuch. Streifzüge durch Dorf und Stadt. Stuttgart: Klett  (21,00€)

Fitter, R./Fitter, A./Blamey: Pareys Blumenbuch. 2.Aufl. 1986 beim Parey-Verlag, Neuauflage 2007 bei Franckh-Kosmos (preislich sehr unterschiedliche Angebote im Internet)

Kammer, P. M. (2016): Pflanzen einfach bestimmen. Bern: Haupt  (29,90€)

Probst, W./Martensen, H.-O. (2004): Illustriert Flora von Deutschland. Bestimmungsschlüssel mit 2500 Zeichnungen. Stuttgart: Ulmer (Systematik nicht auf den neuesten Stand, 9,99€)

Tiere

Bergau, M./ Müller, H./Probst, W./Schäfer, B. (2004): Tiere-Bestimmungsbuch. Streifzüge durch Dorf und Stadt. Stuttgart: Klett  (21,00€)

Brauns, A. (3. A., 1976): Taschenbuch der Waldinsekten. Grundriß einer terrestrischen Bestandes- und Standort-Entomologie. Band I: Systematik und Ökologie.-Band II:Ökologische Freiland-Differentialdiagnose – Bildteil.  Stuttgart: G. Fischer. Einbändige 4. Aufl. 1991, Berlin-Heidelberg, Spektrum  (bei Amazon ab 6,89)

Chinery, M.: Pareys Buch der Insekten. Hamburg und Berlin: Parey letzte Aufl. 2004, bei Franckh-Kosmos 2012 (62,89€)

Haymann, P. (1985): Vögel. Bern: Hallwag (bei ZVAB gebraucht ab 4,53€)

Kelle, A./Sturm, H, (1984): Tiere leicht bestimmt: Bestimmungsbuch einheimischer Tiere, ihrer Spuren und Stimmen. Bonn: Dümmler (bei Amazon  ab 1,79€)

Schwab, H. (1995): Süßwassertiere. Stuttgart: Klett  (26,00€)

Tierspuren

Bang, P./Dahlström, P. (2000): Bestimmungsbuch Tierspuren. München: BLV (19,99€)

Bellmann, H. (2.A. 2017): Geheimnisvolle Pflanzengallen: Ein Bestimmungsbuch für Pflanzen- und Insektenfreunde. Wiebelsheim: Quelle und Meyer

Bezzel, E. (2014):Vogelfedern: Federn heimischer Arten nach Farben bestimmen. München: BLV (12,99€)

Brown, R./Ferguson, J./LawrenceM,/Lees, D. (2005):  Federn, Spuren und Zeichen der Vögel Europas: Ein Feldführer. Wiesbaden: Aula (vergriffen)

Kriebel, H.-J. (2.A. 2007): Wie lerne ich Spurenlesen?: Ein praktischer Ratgeber zur Wiederentdeckung einer alten Kunst. Books on Demand  (14,90€)

Olsen, L.-H. (2.A. 2016): Tier-Spuren: Fährten/Fraßspuren/Losung/Gewölle. München: BLV (19,99€)

Wissenschaftliche Bestimmungbücher mit dichotomen Schlüsseln

Gefäßpflanzen

Jäger, E. J. (Hrsg.) (2017): Rothmaler – Exkursionsflora von Deutschland. Gefäßpflanzen: Grundband, 21. A., Berlin/Heidelberg: Springer-Spektrum (39,99 €, ebook 29,99 €) – zu dem Werk gibt es einen Atlasband (37, 99 €, ebook 26,99 €) mit sehr guten Strichzeichnungen von ca. 3000 Pflanzenarten,auf denen die Differenzialmerkmale besonders hervorgehoben sind –

Oberdorfer, E. (2001): Pflanzensoziologische Exkursionsflora: Für Deutschland und angrenzende Gebiete, 8. A., Stuttgart: Ulmer (19,90 €)

Parolly, G./Rohwer, J.G. (Hrsg.) (2016): SCHMEIL-FITSCHEN Die Flora Deutschlands und angrenzender Länder, 96. A., Wiebelsheim: Quelle und Meyer (39,95 €)

Moose

Frahm, J.-P./Frey, W. (2004): Moosflora, 4. A., Stuttgart: Ulmer (UTB 1250)

Tiere

Schaefer, M. (2016): Brohmer – Fauna von Deutschland: Ein Bestimmungsbuch unserer heimischen Tierwelt, 24. A., Wiebelsheim: Quelle und Meyer (39,95 €)

Klausnitzer, B. (2018): Stresemann – Exkursionsfauna von Deutschland. Band 1: Wirbellose (ohne Insekten), 9.A., Berlin/Heidelberg: Springer-Spektrum (49,99 €)

Klausnitzer, B./Stresemann, E. (2011): Stresemann – Exkursionsfauna von Deutschland, Band 2: Wirbellose: Insekten, 11.A., Berlin/Heidelberg: Springer-Spektrum (74,99 €)

Senglaub, K. (2013): Exkursionsfauna von Deutschland, Band 3: Wirbeltiere, 12. A., Berlin/Heidelberg: Springer-Spektrum (49,99 €)

Literatur zum Thema Baum und Wald

Bartsch, Norbert/ Röhrig, Ernst (2016): Waldökologie – Einführung für Mitteleuropa. Berlin/Heidelberg: Springer-Spektrum

Braune, W./Leman, A./Taubert, H. (9.A, 2007): Pflanzenanatomisches Praktikum I: Zur Einführung in die Anatomie der Vegetationsorgane der Samenpflanzen. Berlin/Heidelberg: Springer-Spektrum

Bundesamt für Naturschutz (BfN): www.bfn.de

Dylla, Klaus/Krätzner, Günter (1977): Das biologische Gleichgewicht in der Lebensgemeinschaft Wald. Biologische Arbeitsbücher 9, Quelle und Meyer, Heidelberg/Wiesbaden. Folgeauflagen: Das ökologische Gleichgewicht in der Lebensgemeinschaft Wald (4.A.1986); Lebensgemeinschaft Wald (1998)

Ellenberg, H./Leuschner, C. (6. erweiterte A, 2010): Vegetation Mitteleuropas mit den Alpen in ökologischer, dynamischer und historischer Sicht. Stuttgart: Ulmer

Hofmeister, H. (1990): Lebensraum Wald. Hamburg: Parey

Küster, Hansjörg (3. A. 2013): Geschichte des Waldes – Von der Urzeit bis zur Gegenwart. München: C.H. Beck

Lude, Arnim (Hrsg.) (2014): Wald im Wandel. Unterricht Biologie 395 (Jg.38)

Lude, Arnim (Hrsg.) (2014): Survival im Wald. Unterricht Biologie Kompakt 396 (Jg.38)

Mattheck, C. (1999): Stupsi erklärt den Baum. Forschungszentrum Karlsruhe

Oehmig, B. (Hrsg.) (2008): Wald. Unterricht Biologie 334 (Jg.32)

Schulbiologiezentrum Hannover-Arbeitshilfen

http://www.schulbiologiezentrum.info/arbeitshilfen.htm

Wildmann, Steffen et al. (2014): Wälder mit natürlicher Entwicklung in Deutschland

https://www.nw-fva.de/fileadmin/user_upload/Verwaltung/Publikationen/2014/Wildmann_et_al_Waelder_nat_Entwickl_D_AFZ-2014-02_28-30.pdf

Wohlleben, Peter (2013): Der Wald – ein Nachruf. Wie der Wald funktioniert, warum wir ihn brauchen und wie wir ihn retten können – ein Förster erklärt. München: Ludwig  (vom Autor gibt es zahlreiche weitere Bücher zum Thema Wald und Baum)

Literatur zum Thema Fließgewässer

Baur, Werner H. (1997): Gewässergüte bestimmen und beurteilen. Blackwell-Wissenschaftsverlag

Brehm, J./Meijering, M. P. D. (3. A.1996): Fließgewässerkunde – Einführung in die Ökologie der Quellen, Bäche und Flüsse. Biologische Arbeitsbücher. Wiesbaden: Quelle und Meyer

Engelhardt, Wolfgang (17. A.; 2015): Was lebt in Tümpel, Bach und Weiher? Stuttgart: Kosmos-Franckh

Fey, Michael, J. (1996): Biologie am Bach – Praktische Limnologie für Schule und Naturschutz. Biologische Arbeitsbücher. Wiesbaden: Quelle und Meyer

Graw, Martina (2001):Ökologische Bewertung von Fließgewässern. Schriftenreihe der Vereinigung Deutscher Gewässerschutz Bd.64.

http://www.vdg-online.de/96.html

Klee, Otto (2. A. 1993): Wasseruntersuchungen – Einfache Analysenmethoden und Beurteilungskriterien. Biologische Arbeitsbücher. Wiesbaden: Quelle und Meyer

Mischke, Ute/Behrendt, Horst (2007): Handbuch zum Bewertungsverfahren von Fließgewässern mittels Phytoplankton zur Umsetzung der EU-WRRL in Deutschland. Stuttgart: Schweizerbart’sche Verlagsbuchhandlung

Sandrock, F. (Hrsg.,1981): Fließgewässer. – Unterricht Biologie, H. 59

Schwab, H. (1995): Süßwassertiere – Ein ökologisches Bestimmungsbuch . Stuttgart: Klett Schulbuchverlag

Schulbiologiezentrum Hannover: Gewässergütebestimmung nach Tieren (Formblatt)

http://www.schulbiologiezentrum.info/Gew%E4sseruntersuchung%20Tiere%20Formblatt%20EINFACH%20mit%20Arten.pdf

Wellinghorst, R. (2002): Wirbellose Tiere des Süßwassers. Seelze: Friedrich Verlag

http://www.biologie-schule.de/oekosystem-fliessgewaesser.php

http://www.fachdokumente.lubw.baden-wuerttemberg.de/servlet/is/10119/s_28_boegew_arbeit.pdf?command=downloadContent&filename=s_28_boegew_arbeit.pdf&FIS=161

http://www.rolf-wellinghorst.de/fileadmin/rolf-wellinghorst.de/gewaesseroekologie/Gew%C3%A4sser%C3%B6kologie-BLK-Materialien1Teil.pdf

Literatur zum Thema Moor, Feuchtgebiete

Dierßen, K./Dierßen, B. (2008): Moore. Ökosysteme Mitteleuropas in geobotanischer Sicht. Stuttgart: Eugen Ulmer

Ellenberg, H./Leuschner, L. (6. A., 2010): Vegetation Mitteleuropas mit den Alpen. Stuttgart: Ulmer (UTB)

Frey, W./Lösch, R. (3.A., 2010): Geobotanik. Pflanze und Vegetation in Raum und Zeit. Heidelberg: Spektrum

Göttlich, K. (Hrsg.,1990) Moor- und Torfkunde. Stuttgart: Schweizerbart’sche Verlagsbuchhandlung

Gremer, D. (1994): Renaturierungsprojekt Wurzacher Ried 1989-1993

http://moor.naturpark-erzgebirge-vogtland.de/Renaturierungsprojekt_Wurzacher_Ried_1989-1993__Gremer.pdf

Kremer, B. P./Oftring,B. (2013): Im Moor und auf der Heide. Bern CH: Haupt

Sachunterricht Grundschule Nr.68/2015: Lebensraum Moor – Heft und Materialpaket. Seelze: Friedrich-Verlag

Succow, M./Joosten, H. (2001): Landschaftsökologische Moorkunde. Stuttgart: Schweizerbart’sche Verlagsbuchhandlung

Umweltbundesamt – Österreich – (2004): Moore in Österreich. Wien

Bundesamt für Umwelt, Wald und Landschaft – Schweiz – (2002): Moore und Moorschutz in der Schweiz. Bern http://www.wsl.ch/info/mitarbeitende/scheideg/20141103_Bericht_Studierende.pdf

LUBW (2017): Moorschutzprogramm Baden-Württemberg

http://www.fachdokumente.lubw.baden-wuerttemberg.de/servlet/is/121955/moorschutzprogramm.pdf?command=downloadContent&filename=moorschutzprogramm.pdf&FIS=200

WWF (2010): Klimaschutz-Schnäppchen: Moorschutz bringt viel für wenig Geld  http://www.wwf.at/de/moore/

http://www.aktion-moorschutz.de/wp-content/uploads/Vortrag_Succow_MooreImNaturhaushalt.pdf

https://de.wikipedia.org/wiki/Liste_der_Naturschutzgebiete_im_Bodenseekreis

Literatur zum Thema Wiesen und Weiden

Alfred Toepfer Akademie für Naturschutz (Hrsg.): Naturbegegnung auf Wiese, Weide, Rasen. Schneverdingen 1996

Balzer, K., Holtei, C. (2013): Die Wiese: Ein Zoom-Bilderbuch. Weinheim: Beltz und Gelberg

Bayerische Akademie der Wissenschaften (Hrsg.) (2005): Gräser und Grasland: Biologie – Nutzung – Entwicklung. Rundgespräch am 10. Oktober 2005. München: Friedrich Pfeil

Bertsch, K.: Die Wiese als Lebensgemeinschaft. Otto Maier, Ravensburg 1951

Bunzel-Drüke, M.  u. a. (2009) : „Wilde Weiden“ –  Praxisleitfaden für Ganzjahresbeweidung in Naturschutz und Landschaftsentwicklung. Arbeitsgemeinschaft Biologischer Umweltschutz e. V., 2. A., Bad Sassendorf-Lohne

Bunzel-Drüke et  al. (2009): „Wilde Weiden“ – Praxisleitfaden für Ganzjahres-beweidung in Naturschutz und Landschaftsentwicklung.  http://www.abu-naturschutz.de/images/wildeweiden/WildeWeiden.pdf

Dierschke, H., Briemle, G. (2002): Kulturgrasland. Stuttgart: Ulmer

Horstmann, D. (2002): Ökologische Untersuchungen im Grünland. Ein fächerübergreifendes Unterrichtsprojekt. PdN Biologie 49 (5): 1-22

Hutter, C. P./Briemle, G./Fink, C. (2002): Wiesen, Weiden und anderes Grünland. Biotope erkennen, bestimmen, schützen. 2. A., Hirzel, Stuttgart

Jaitner, C. (2012): Wiesenblumen: Sehen und verstehen. Innsbruck: Kompass-Naturführer

Jedicke, E. (1986): Blumenwiese oder Rasen? Stuttgart: Franckh- Kosmos

Jaun, A., Joss, S. (2011): Auf der Wiese. Natur erleben – beobachten – verstehen. Bern: Haupt

Kremer, B. P. (2016): Die Wiese. Darmstadt: Thiess

Kremer, B. P. (1991): Wiesenblumen kennen lernen, erleben, schützen. München: Gräfe und Unzer

Poschold, P.(2015): Geschichte der Kulturlandschaft. Entstehungsursachen und Steuerungsfaktoren der Entwicklung der Kulturlandschaft, Lebensraum- und Artenvielfalt in Mitteleuropa. Stuttgart: Ulmer

Probst, W. (Hrsg., 2012): Wiesen & Weiden. UB 375 (36. Jg.), Friedrich, Seelze

Scherf, G. (2005): Wiesenblumen – Der etwas andere Naturführer. BLV, München

Schmidt, H. (1981): Die Wiese als Ökosystem. Aulis, Köln

Zucchi, H.(Hrsg. 1984): Wiese – Weide. UB 93 (8. Jg.), Friedrich, Seelze

Literatur zum Thema Landschaftsgeschichte/Oberschwaben

Eberle, J./Eitel, B./Blümel, W. D./Wittmann, P. (2007): Deutschlands Süden vom Erdmittelalter zur Gegenwart. Berlin/Heidelberg: Spektrum (39,99€)

Geyer, M./Nitsch, E. (2011): Geologie von Baden-Württemberg. Stuttgart: Schweizerbart (68€)

Hantke, R. (1991): Landschaftsgeschichte der Schweiz. Thun: ecomed (gebraucht ab 15€)

Ott, S. (Hrsg.,2.A. 1972): Oberschwaben – Gesicht einer Landschaft. Ravensburg: Otto Maier (booklooker 10,80€)

Keller, O. (2014): Erwägungen zur Korrelation mittelpleistozäner Relikte des Rheingletschers mit der Nordschweizer Stratigraphie. – E&G Quaternary Science Journal, 63 (1): 19–43. DOI: 10.3285/eg.63.1.02

Seyfried, H., Simon, T., Beckenbach, E., Müller, T. (2019): Der Südwesten im digitalen Geländemodell.Sonderbänd der Ges.f.Naturkunde in Württ., Bd. 4. Neustadt a.d. Aisch: Verlagsdruckerei Schmidt

Zier, L. (2.A. 1998): Das Pfrunger Ried – Entstehung und Ökologie eines oberschwäbischen Feuchtgebietes. Stuttgart: Schwäbischer Heimatbund

http://www.oberschwaben-portal.de/inhalte-ausgabe/items/oberschwaben-vielfalt-der-landschaftsformen-und-geologie-im-uebe.html

http://oberschwabenschau.info/geographie/landschaften/

Exkursionsangebot für die PH Weingarten, SS 2017

LINK-NAME
Exkursionsangebot im Sommersemester 2017 im Rahmen der Veranstaltung

Biologie an außerschulischen Lernorten – Exkursionsdidaktik – regionale Lebensräume & Lernorte

Arbeitsprogramm SS 2017:

27.04. – 13.00 – 14.00Vorbesprechung der VeranstaltungH. Weitzel
28.04.

 

14.15 – 15.45

Vorbereitung der Exkursion „Adelsreuter & Weißenauer Wald“ / Wald und Forst als ExkursionszieleW. Probst
29.04.

 

10.00-17.00

Exkursion Adelsreuter & Weißenauer WaldW. Probst
Freitag, 05.05. – 13.00 – 14.00Einführung zur Didaktik an außerschulischen Lernorten 1H. Weitzel
Mittwoch, 10.5. – 13.00 – 14.00Einführung zur Didaktik an außerschulischen Lernorten

 

2

H. Weitzel
Fr 12.05.

 

14.00-17.30

Exkursion Rotach in Oberteuringen 1/2W. Probst
Fr. 19.05.

 

14.00 – 17.30

Exkursion Honigbienen / PH SchulgartenR. Mohr
So 21.05.

 

10.00-17.00

Exkursion Dornacher Ried,Häckler WeiherW. Probst
Mittwoch, 31.5. – 13.00 – 14.00Einführung zur Didaktik an außerschulischen Lernorten

 

3

H. Weitzel
Donnerstag, 01.06. – 14.15 – 15.45Moore, Riede, Brüche, Sümpfe als ExkurionszieleW. Probst
Fr 02.06.

 

14.00-17.30

Exkursion Eriskircher Ried 1/2W. Probst
geändert!

 

Freitag, 16.06. – 14.15 – 15.45

Besprechung & Bearbeitung der ExkursionsaufgabenW. Probst
Freie TerminwahlVeranstaltung zur freien Wahl aus Angebot Nabu Weingarten oder lokalem Nabu (Nachweis durch Unterschrift und Dokumentation)NABU/BUND
So 18.6.

 

10.00-17.00

Exkursion Hepbach-Leimbacher Ried, Heckrinder,Raderacher DrumlinlandschaftW. Probst
Freie TerminwahlVeranstaltung zur freien Wahl aus Angebot Nabu Weingarten oder lokalem Nabu (Nachweis durch Unterschrift und Dokumentation)NABU/BUND
Freie TerminwahlVeranstaltung zur freien Wahl aus Angebot Nabu Weingarten oder lokalem Nabu (Nachweis durch Unterschrift und Dokumentation)NABU/BUND
Sa 01.07.

 

10.00-17.00

Exkursion Pfrunger-Burgweiler RiedW. Probst
Fr 14.07.

 

14.00-17.30

Exkursion NSG Altweiherwiesen,Wammeratswatt oder Hangwald über Flappachweiher 1/2W. Probst

kurzfristige Terminänderungen sind möglich!

Übersicht über die Exkursionsorte

Übersicht über die Exkursionsorte
Übersicht über die Exkursionsorte

 

Adelsreuter und Weißenauer Wald (29.04.2017)

(weitere Unterlagen und Infos vgl. das Exkursionsangebot von 2016 )

TreffpunktAppenweiler_bearbeitet-1

Treffpunkt: Wanderparkplatz bei Appenweiler (entspricht 2016)

Thematische Schwerpunkte: Lebensform Baum, ökologische Ansprüche von Waldbäumen, verschiedene Waldgesellschaften, Lebensformen und Überwinterung von Pflanzen, Lebensraum Wassergraben

Bäume

Das Lebewesen Baum

Wenn man eine Pflanze als „Baum“ bezeichnet, meint man damit eine bestimmte Lebensform. Sie hat nichts zu tun mit der verwandtschaftlichen bzw. systematischen Zugehörigkeit der Pflanzenart, wenngleich es bestimmte Familien gibt, bei denen besonders viele Arten der Lebensform „Baum“ angehören. In unserer heimischen Flora sind dies zum Beispiel alle Vertreter der Familie Buchengewächse (Fagaceae).

Aufbau einer verholzten Zellwand
Aufbau einer verholzten Zellwand (Formelbild nach http://www.chem.cmu.edu/groups/washburn/res-lignin.html )

Bäume sind Gehölze, das heißt, ein wesentlicher Teil ihrer Gewebe besteht aus Zellen mit verholzten Zellwänden, also Wänden, in die zwischen Cellulose  und Hemicellulosen Lignin eingelagert ist. Dies bedeutet einen enormen Stabitlitätszuwachs. Diese Stabilität erlaubt den Bäumen sehr hoch  zu wachsen – manche über 100 m –, und sehr alt zu werden – über 1000 Jahre, selten bis 5000 Jahre.

Baumwachstum-2
Schematische Darstellung des Baumwachstums: Durch Aktivität von Gipfelregion und Kambium wird jedes Jahr ein Zuwachskegel gebildet.

Beim Wachstum der Bäume unterscheidet man Spitzenwachstum und Dickenwachstum der Sprossachsen. Wenn das Bildungsgewebe an der Sprossspitze  das einzige Bildungsgewebe ist, ist es auch für die endgültige Dicke der Sprossachse verantwortlich. Beispiele für solches auschließlich primäres Dickenwachstum sind Grashalme und Palmenstämme. Beim sekundären Dickenwachstum gibt es neben dem Bildungsgewebe an der Sprossspitze ein sekundäres Bildungsgewebe, das einen Zylinder in der Sprossachse bildet und nach außen und innen Zellen abgibt. Alle Stämme, Äste, Zweige und Wurzeln können dadurch immer dicker werden.

Bei lang anhaltenden Dickenwachstum kommen die außerhalb des Meristemzylinders liegenden Gewebe mit dem Wachstum nicht nach und reißen auf. Bäume haben verschiedene Wege eingeschlagen, um ihre Stämme und Äste durch  Schutzschichten nach außen zu sichern. Primär werden junge Zweige durch eine Epidermis, eine Schicht dicht aneinanderliegender Zellen, abgeschlossen. Sekundär bildet sich in  darunter liegenden Rindenschichten eine Schicht aus verkorkten Zellen (Periderm).

Der doppelte Irrtum von Plauens "Vater und Sohn"
Der doppelte Irrtum von Plauens „Vater und Sohn“

Wenn diese Schicht ständig  aus einem eigenen Bildungsgewebe, dem Phellogen, weiterwächst, bildet sich eine glatte Rinde, wie sie für Buchen typisch ist. In den meisten Fällen wird jedoch die äußere Peridermschicht bei weiterem Dickenwachstum wieder geprengt und es bilden sich in tieferen Rindenschichten immer wieder neue Korkkambien und neue Periderme. Die abgestorbenen äußeren Schichten werden Borke genannt. Je nach Anlage der Phellogene unterscheidet man Schuppenborke (häufigster Fall), Netzborke oder Ringelborke.

Borkenbildung
Borkenbildung

Bäume berechnen

Einfache Ermittlung der Höhe: Am einfachsten lässt sich die Baumhöhe mit einem Stock in Armlänge ermitteln . Ebenso einfach ist das Umklappverfahren: der Baumwipfel wird über den lang gestreckten Arm mit einem Stock angepeilt. Die Länge des Stocks ist im Prinzip beliebig. Dann dreht man den Stock in die Horizontale und lässt einen Helfer vom Fuß des Baumes senkrecht zur eigenen Blickrichtung so weit gehen, bis er mit dem Ende des Stocks in Linie ist. Die Entfernung Beobachter-Baum ist dann die Baumhöhe. Mittlerweile gibt es auch Baumhöhenmesser als Apps.

Volumenberechnung eines Baumstammes
Volumenberechnung eines Baumstammes

Das Volumen eines Baumstammes hängt von seinem Umfang und seiner Höhe ab. Ein Zylinder hat das Volumen Grundfläche mal Höhe, ein Kegel das Volumen 1/3 Grundfläche mal Höhe. Für Bäume in einem Hochwald unserer Breiten kann man nährungsweise die Volumenformel V = ABh · h annehmen.  ABh ist dabei die Querschnittsfläche in Brusthöhe (1,3 m).

Die Querschnittsfläche A eines Baumes steht in direkter Beziehung zu seinem Durchmesser d und dieser zu seinem Umfang u:

u =  π·d; d =u/π ;                                  A = πr2 =  πd2 /4  =  u2/4π

Daraus ergibt sich für das Volumen

V = u2 h/8π

Da 8π etwa 25 ist, gilt für einen Baum von 25 m Höhe die einfache Bezeihung

V = u2 (für u in m und V in m3)

Für jeden Meter, den ein Baum höher oder niedriger als 25 m ist, muss man 3% des Volumens zufügen oder abziehen. Förster arbeiten stattdessen  mit der sog. „Försterformel“:

V =  d2/1000 ( für d in cm und V in m3)

Vom Volumen zur Masse und zum gebundenen CO2

Die Holzmasse ergibt sich aus Volumen und Dichte.

BaumartFichteKieferBucheEicheEsche
Dichte in g/cm3 bzw. t/m30,470,520,690,670,69

Die Hälfte der Holzmasse entspricht etwa der Masse des enthaltenen Kohlenstoffs. 1 t C entspricht  3,67 t CO2

Götterbaume

Zu Bäumen gehören die ältesten und die größten Lebewesen und es ist deshalb nicht verwunderlich, dass ihnen etwas Numinöses anhaftet. Götter haben ihre Bäume: Stein-Eiche: Zeus, Ölbaum: Athene, Lorbeer Apoll, Myrte: Aphrodite; Stiel-Eiche: Thor, Hänge-Birke: Freya, Hollunder: Frau Holle = Frigg (germanische Muttergöttin),Ygdrasil = Weltenesche der Germanen. Auch bei den Kelten schrieb man Bäumen Übernatürliches zu. Aus solchen keltischen Wurzeln wurde in neuerer Zeit ein Baumhoroskop entwickelt, das auch als „Keltischer Baumkreis“ bekannt ist. Grundlage ist dr sog. Keltische Baumkalender, der jedem Datum eine Baumart zuordnet. Ähnlich wie bei den astrologischen Tierkreiszeichen wird  versucht, jedem Baum bestimmte Menscheneigenschaften zuzuordnen (Apfelbaum = die Liebe, Hasel = das Außergewöhnliche usw.). Der deutsche Name „Götterbaum“ wurde übrigens dem ursprünglich ostasiatischen Baum Ailanthus altissima gegeben, der 1740 nach Europa eingeführt wurde und sich heute – vor allem in Städten – als Neophyt stark ausgebreitet hat. Der Name soll daher kommen, dass er seine Äste weit in den Himmel reckt – aber welcher Baum tut das nicht?

Kletterbäume

Auch für Kinder und Jugendliche haben Bäume einen besonderen Reiz, vor allem, weil man auf Bäume klettern und Baumhäuser bauen kann (konnte??), weil man auf gefällten Baumstämmen balancieren und wippen kann und weil man aus Baumrinde Boote schnitzen kann. Man kann also davon ausgehen, dass man mit dem Thema Baum bei SchülerInnen – mindestens im Vergleich zu anderen botanischen Themen – ganz gut ankommen kann. Einige Möglichkeiten: Bäume ertasten, Bäume vermessen und berechnen, Borken- bzw. Rindenabdrucke herstellen, Stoffkreislauf nachreisen, Alter bestimmen, Totholz und tote Bäume untersuchen.

Wälder

Was sind Wälder

Die Vegetation prägt das Aussehen einer Landschaft, ihre Physiognomie. Grob kann man unterscheiden zwischen Wäldern, Gebüschen, Zwergstrauchbeständen, Grasländern und anderen krautigen Vegetationsformen (Steppen, Prärien).

Flora und Vegetation

Einer der ersten, der versucht hat, die Vegetation der Erde nach ihren Lebensformen, also ihrem Aussehen, in Vegetationstypen einzuteilen, war Alexander von Humboldt (1801-1803: Ideen zu einer Geographie der Pflanzen)

Zusammenhang zwischen Vegetationstyp und Lebensformen
Zusammenhang zwischen Vegetationstyp und Lebensformen

Als „Wälder“ bezeichnet man Pflanzengesellschaften, die durch mehr oder weniger dicht stehende Holzgewächse – Bäume – ausgezeichnet sind. Für die weitere Untergliederung spielt eine Rolle, ob es sich um laubwerfende oder immergrüne Wälder handelt und wie dicht die Bäume stehen  (Begriff des Offenwaldes, Savannen als Übergänge zu Grasländern). Die Nutzung der Wälder durch den Menschen hat in vielen Gebieten der Erde zu einer sehr starken Veränderung der ursprünglichen Waldvegetation (der Urwälder) geführt. Oft sind im Laufe der jahrtausendelangen Nutzung Wälder sogar vollständig verschwunden (Libanon, Vorderer Orient). Auch in Mitteleuropa hat die unregulierte Waldnutzung im Mittelalter zu einer sehr starken Degradation der Wälder geführt. Als Reaktion begann man im  Im 18. Jahrhundert mit der gezielten, auf dauerhaften Ertrag angelegten Forstwirtschaft. In diesem Zusammenhang wurde von Hans Carl von Carlowitz, Oberberghauptman des Erzgebirges, 1713 zum ersten Mal der Begriff der Nachhaltigkeit verwendet. Er besagt, dass man dem Wald nicht mehr Holzmasse entnehmen soll  als gleichzeitig nachwächst. Heute wird dieser Begriff auf den ganzen Bioplaneten Erde angewendet.

Mitteleuropas Wälder

Laubwerfende Wälder der nördlichen gemäßgten Klimazone mit typischen Klimadiagrammen
Laubwerfende Wälder der nördlichen gemäßgten Klimazone mit typischen Klimadiagrammen (aus Strasburger, E.(Ersthrsg.): Lehrbuch der Botanik, 37.A. 2014, S. 868)

Wälder gibt es auf der Erde schon seit mehr als 350 Mill.J. Hier soll aber nur auf die jüngste Erdegschichte eingegangen werden, in der die mitteleuropäischen Wälder entstanden sind.

Sie liegen in dem Laubwaldgürtel der gemäßigten Zone, der sich von Nordamerika über Europa bis nach Ostasien erstreckt. Das Besondere der zentraleuropäischen Wälder ist, dass sie erdgeschichtlich sehr jung sind. In den Kälteperioden des Pleistozäns war Mitteleuropa eine waldfreie, von Tundra oder Gletschern bedeckte Landschaft. Erst nach dem Rückzug der Gletscher vor etwa 12.000 Jahren konnte sich Mitteleuropa langsam wieder bewalden. Der Vergleich mit den entsprechenden Waldgesellschaften Nordamerikas und Ostasiens zeigt, dass dort etwa zehnmal soviele Gehölzarten vorkommen wie in Mitteleuropa. Man kann also davon ausgehen, dass der Wiederbewaldungsprozess hier noch längst nicht abgeschlossen wäre. Allerdings wurde die natürliche Sukzession durch das Auftreten des Menschen zunächst stark beeinflusst und schließlich durch die Forstwirtschaft ganz beendet. Die heutige Zusammensetzung unserer Waldgesellschaften hat zwar durchaus etwas zu tun mit den natürlichen Gegebenheiten und den Umweltfaktoren, sie wird aber entscheidend bestimmt von forstlichen Maßnahmen wie Umtriebszeiten, Aufforstungsmaßnahmen usw.

Auch in der erdgeschichtlich gesehen jungen Epoche seit der letzten Kaltzeit hat sich allerdings das Klima in Mitteleuropa mehrfach verändert und dies hat sich auch auf die Zusammensetzung der Vegetation ausgewirkt. Über diese Vegetationsgeschichte seit der letzten Kaltzeit ist man durch Pollen-Untersuchungen (Pollendiagramme) sehr gut unterrichtet.

Pollendiagramm vom Ende der letzten Kaltzeit bis zur Gegenwart (nach Frey/Lösch, Geobotanik,3.A. 2010, S.159)
Pollendiagramm vom Ende der letzten Kaltzeit bis zur Gegenwart (nach Frey/Lösch, Geobotanik,3.A. 2010, S.159)

Während zuerst (bis ca. -9000 J) Birken und Kiefern dominierten, gab es zwischen -9000 und -8000 J einen starken Anstieg der Hasel, Gleichzeitig begannen sich Eichen und Ulmen, an speziellen Standorten auch Linden und Eschen immer mehr auszubreiten und die Haselbestände gingen etwas zurück. Buchen haben sich vermutlich erst durch den Einfluss des Menschen aber auch aufgrund eines feuchteren und kühleren Klimas im Subatlantikum seit 3000 J immer mehr ausgebreitet. In den schattigen Buchenwäldern hatten Haselsträucher nur noch an Waldrändern eine Chance. Die heutige weite Verbreitung der Fichte ist auf Aufforstungsmaßnahmen ab Ende des 18. JH zurückzuführen.

Verschiedene Waldgesellschaften

Auf Grund von Jahrzehnte langen empirischen Erhebungen zu den Standortansprüchen von Pflanzenarten wurden  von Heinz Ellenberg in den 1970 er Jahren für nahezu alle in Mitteleuropa heimischen Pflanzenarten Zeigerwerte für verschiedene Umweltfaktoren zusammengestellt und seither immer wieder neuen Erkenntnissen angepasst. Das ökologische Verhalten gegenüber einem bestimmten Standortfaktor wird in der Regel durch eine Ziffer von 1 bis 9 ausgedrückt. Diese Zeigerwerte spiegeln das Vorkommen einer Art unter Freilandbedingungen wider, d. h. bei ausgeprägter zwischenartlicher Konkurrenz. Die Zeigerwerte machen also keine Aussage über das Verhalten in Reinkultur.http://www.utb-shop.de/downloads/dl/file/id/27/zusatzkapitel_zeigerwerte_der_pflanzen_mitteleuropas.pdf

Die Zeigerwerte der Baumarten bestimmen die Zusammensetzung der Bäume in den verschiedenen Waldgesellschaften. Aufgrund ihres Wasserbedarfes und der bevorzugten Bodenreaktion kann man für mitteleuropäische Waldtypen ein sogenanntes Ökogramm aufstellen (vgl. Exkursionsangebot 2016). Auch die krautigen Pflanzen des Waldbodens lassen sich basierend auf den Zeigerwerten  „Bodenfeuchte“ und „Bodenreaktion“ zu ökologischen Gruppen zusammenfassen. Pflanzen einer solchen Gruppe sind häufig nebeneinander anzutreffen. Sie können zur Charakterisierung von Standorten verwendet werden, insbesondere für Bodenfeuchte, pH-Wert und Nährmineralverfügbarkeit. Die Busch-Windröschen-Gruppe z. B. ist typisch für wenig saure mäßig trockene bis mäßig feuchte Böden.

Ökologische Gruppen von mitteleuropäischen Waldbodenpflanzen

Ökologische Gruppen krautiger Pflanzen aus mitteleuropäischen Wäldern (nach H. Ellenberg)

Die „ökologischen Gruppen“ basieren auf den von Ellenberg in den 1970 er Jahren zum ersten Mal zusammengestellten Zeigerwerten, die in der letzten Auflage der „Vegetation Mitteleuropas“ nach neuestem Stand zusammengestellt sind. Sie sind im Internet frei zugänglich: http://www.utb-shop.de/downloads/dl/file/id/27/zusatzkapitel_zeigerwerte_der_pflanzen_mitteleuropas.pdf

Die römischen Ziffern von I-VI stehen für zunehmende Feuchtigkeit, die Buchstaben von a – e für einen zunehmenden pH-Wert („Bodenreaktion“) .

Eine etwas andere Zusammenstellung für die forstliche Standortkartierung findet sich unter folgenden URLs

http://www.forst-rast.de/Artengruppen.html

http://www.forst-rast.de/Zeigerpflanzen.html#_

I a-b Becherflechten-Gruppe

Becherflechten – Cladonia-Arten, Moos Dicranum scoparium, Moos Polytrichum juniperinum, Sand-Segge – Carex arenaria, Doldiges Habichtskraut – Hieracium umbellatum

I c Berg-Seggen-Gruppe

Bärenschote – Astragalus glyciphyllos, Pfirsichblättrige Glockenblume – Campanula persicifolia, Finger-Segge – Carex digitata, Berg-Segge – Carex montana, Maiglöckchen – Convallaria majalis, Nickendes Perlgras – Melica nutans, Salomonsiegel – Polygonatum odoratum, Nickendes Leimkraut – Silene nutans

I d-e Erd-Seggen-Gruppe

Moos Homalothecium lutescens, Graslilien-Arten – Anthericum spp., Erd-Segge – Carex humilis, Blut-Storchschnabel – Geranium sanguineum, Hirsch-Haarstrang – Peucedanum cervaria, Schwalbenwurz – Vicetoxicum hirundinaria, Diptam – Dictamus albus, Blauroter Steinsame – Aegonychon purpurocaeruleum

II a Heidelbeer-Gruppe

Moos Dicranum scoparium, Moos Leucobryum glaucum, Moos Hypnum cupressiforme, Besenheide – Calluna vulgaris, Heidelbeere – Vaccinium myrtillus, Preiselbeere – Vaccinium vitis-idaea, Wiesen-Wachtelweizen – Melampyrum pratense, Borstgras – Nardus stricta

 II b Schlängel-Schmielen-Gruppe

Moos Dicranella heteromalla, Moos Polytrichum formosum, Schlängel-Schmiele – Deschampsia flexuosa, Ruchgras – Anthoxanthum odoratum, Pillen-segge – Carex pilulifera, Besenginster – Cytisus scoparius, Harzer Labkraut – Galium harcynicum, Siebenstern – Trientalis europaea, Gebräuchlicher Ehrenpreis – Veronica officinalis, Weiches Honiggras – Holcus mollis, Schaf-Schwingel – Festuca ovina agg., Gewöhnliche Haimbinse – Luzula luzuloides, Gewöhnliche Goldrute – Solidago virgaurea

II c Busch-Windröschen-Gruppe

Moos Atrichum undulatum. Moos Eurhynchium striatum, Moos Isothecium viviparum, Busch-Windröschen – Anemone nemorosa, Wald-Knaulgras – Dactylis polygramma, Berg-Weidenröschen – Epilobium montanum, Mandelblättrige Wolfsmilch – Euphorbia amygdaloides, Wald-Schwingel – Festuca altissima, Waldmeister – Galium odoratum, Behaarte Hainbinse – Luzula pilosa, Wald-Flattergras –Milium effusum, Dreiadrige Nabelmiere – Moehringia trinervia, Efeu – Hedera helix, Hain-Rispengras – Poa nemoralis, Große Sternmiere – Stellaria holostea, Hasenlattich- Prenanthes purpurea, Zaun-Wicke – Vicia sepium, Wald-Veilchen – Viola reichenbachiana

II d Goldnessel-Gruppe

Moos Eurhynchium swartzii, Goldnessel – Lamiastrum galeobdolon, Haselwurz – Asarum, europaeum, Wald-Zwenke – Brachypodium sylvaticum, Wald-Trespe – Bromus ramosus, Wald-Segge – Carex sylvatica, Grünliche Stendelwurz – Epipactis helleborine, Gewöhnliche Nelkenwurz – Geum urbanum, Leberblümchen – Hepatica nobilis, Frühlings-Platterbse – Lathyrus vernus, Wald-Bingelkraut – Mercurialis perennis, Einbeere – Paris quadrifolia, Vielblütige Weißwurz – Polygonatum multiflorum, Lungenkraut – Pulmonaria officinalis, Sanikel – Sanicula europaea, Hohe Schlüsselblume – Primula elatior

II e Waldvögelein-Gruppe

Moos Ctenidium molluscum, Moos Encalypta streptocarpa, Rotes Waldvögelein – Cephalanthera rubra, Weißes Waldvögelein – Cephalanthera damasonium, Frauenschuh – Cypripedium calceolus, Nieswurz – Helleborus foetidus, Echte Schlüsselblume – Primula veris

III a Rippenfarn-Gruppe

Moos Bazzania trilobata, Rippenfarn – Blechnum spicant, Tannenbärlapp – Huperzia selago, Schlangen-Bärlapp – Lycopodium annotinum

III b Adlerfarn-Gruppe

Moos Hylocomium splendens, Moos Plagiothecium undulatum, Adlerfarn – Pteridium aquilinum, Dorniger Wurmfarn – Dryopteris carthusiana, Stechender Hohlzhn – Galeopsis tetrahit, Wald-Hainbinse  – Luzula sylvatica, Mauerlattich – Mycelis muralis

III c Kriechender Günsel-Gruppe

Moos Brachythecium rutabulum, Moos Cirriphyllum piliferum, Kriechender Günsel – Ajuga reptans, Frauenfarn – Athyrium filix-femina, Hunds-Quecke – Elymus caninus, Rasen-Schmiele – Deschampsia cespitosa, Riesen-Schwingel – Festuca gigantea, Stinkender Storchschnabel – Geranium robertianum, Gundermann – Glechoma hederacea, Wald-Sauerklee – Oxalis acetosella, Knotige Braunwurz – Scrophularia nodosa, Hain-Gilbweiderich – Lysimachia nemorum

III d Scharbockskraut-Gruppe

Moos Mnium undulatum, Scharbockskraut – Ficaria verna, Moschuskraut – Adoxa moschatellina, Gefleckter Aronstab – Arum maculatum, Gewöhnliches Hexenkraut – Circaea lutetiana, Wald-Ziest – Stachys sylvatica, Goldschopf-Hahnenfuß – Ranunculus auricomus, Zweiblatt – Listera ovata

 III e Lerchensporn-Gruppe

Giersch, Geißfuß – Aegopodium podagraria, Bär-Lauch – Allium ursinum, Gelbes Windröschen – Anemone ranunculoides, Hohler Lerchensporn – Corydalis cava, Gold-Gelbstern – Gagea lutea, Kratzbeere – Rubus caesius

IV a-b Pfeifengras-Gruppe

Pfeifengras – Molinia caerulea, Aufrechtes Fingerkraut – Potentilla erecta, Glockenheide – Erica tetralix

IV c Winkel-Seggen-Gruppe

Winkel-Segge – Carex remota, Wald-Schachtelhalm – Equisetum sylvaticum, Berg-Ehrenpreis – Veronica montana, Hain-Sternmiere – Stellaria nemorum, Großes Springkraut, „Rühr-mich-nicht-an“- Impatiens noli-tangere

IV d Hänge-Seggen-Gruppe

Hänge-Segge, Nickende S. – Carex pendula, Behaarter Kälberkropf – Chaerophyllum hirsutum, Wechselblättriges Milzkraut – Chrysosplenium alternifolium, Riesen-Schachtelhalm – Equisetum telmateia, Alpen-Hexenkraut – Circaea alpina, Weiße Pestwurz – Petasites albus

V a-b Rauschbeeren-Gruppe

Moos Polytrichum commune. Moos Sphagnum acutifolium, Moos Sphagnum palustre, Rauschbeere – Vaccinium uliginosum, Sumpfporst – Rhododendron tomentosum

V c Mädesüß-Gruppe

Moos Climacium dendroides, Gewöhniches Mädesüß – Filipendula ulmaria, Wald-Engelwurz – Angelica sylvestris, Wiesen-Schaumkraut – Cardamine pratensis, Pfennigkraut – Lysimachia nummularia, Blutweiderich – Lythrum salicaria, Flatter-Binse – Juncus effusus, Gewöhnlich es Rispengras – Poa trivialis

V d-e Sumpf-Seggen-Gruppe

Sumpf-Segge – Carex acutiformis, Kohl-Kratzdistel – Cirsium oleraceum, Sumpf-Pippau – Crepis paludosa, Bach-Nelkenwurz – Geum rivale, Rohr-Glanzgras – Phalaris arundinacea, Wald-Simse – Scirpus sylvaticus, Echter Baldrian – Valeriana officinalis, Gewöhnlicher Beinwell – Symphytum officinale

VI a Scheidiges Wollgras-Gruppe

versch. Torfmoose, z. B. Sphagnum magellanicum, Scheidiges Wollgras – Eriophorum vaginatum, Rosmarinheide – Andromeda polyfolia, Moosbeere – Vaccinium oxycoccus, Rasen-Haarsimse – Trichophorum cespitosum

VI b Sumpf-Blutaugen-Gruppe

Sumpf-Blutauge – Potentilla palustre, Wiesen-Segge, Braun-Segge – Carex nigra, Schnabel-Segge – Carex rostrata, Schmalblättriges Wollgras – Eriophorum angustifolium, Wassernabel – Hydrocotyle vulgaris

VI c Sumpf-Lappenfarn-Gruppe

Sumpf-Lappenfarn – Thelypteris palusris, Sumpf-Reitgras – Clamagrostis canescens, Verlängerte Segge – Carex elongate, Glatte Segge – Carex laevigata, Königsfarn- Osmunda regalis

VI d-e Sumpf-Dotterblumen-Gruppe

Moos Calliergonella cuspidata, Sumpf-Dotterblume – Caltha palustris, Teich-Schachtelhalm – Equisetum fluviatile, Sumpf-Schwertlilie – Iris pseudacorus, Sumpf-Labkraut – Galium palustre, Wolfstrapp – Lycopus europaeus, Sumpf-Haarstrang – Peucedanum palustre, Helmkraut – Scutellaria galericulata, Bittersüßer Nachtschatten – Solanum dulcamara

Sonderstandorte:

luftfeucht und sauer: Eichenfarn-Gruppe

Eichenfarn – Gymnocarpium dryopteris, Wald-Geißbart – Aruncus sylvestris, Breitblättriger Dornfarn – Dryopteris dilatata, Buchenfarn – Thelypteris phegopteris, Bergfarn – Oreopteris limbosperma

luftfeucht und basenreich: Mondviolen-Gruppe

Mondviole, Ausdauerndes Silberblatt – Lunaria rediviva, Christophskraut – Actaea spicata, Ruprechtsfarn – Gymnocarpium robertianum, Hirschzungenfarn – Asplenium scolopendrium

 Wechseltrocken, tonig: Blaugrüne Seggen-Gruppe

Blaugrüne Segge – Carex flacca, Rohr-Pfeifengras – Molinia arundinacea, Berg-Reitgras – Calamagrostis varia

wechselfeucht: Zittergras-Seggen-Gruppe

Zittergras-Segge – Carex brizoides, Hasen-Segge – Carex leporina

nitratreich: Knoblauchrauken-Gruppe

Knoblauchsrauke – Alliaria officinalis, Wiesen-Kerbel – Anthriscus sylvestris, Taumel-Kälberkropf – Chaerophyllum temulum, Schöllkraut – Chelidonium majus, Efeublättriger Ehrenpreis –Veronica hederifolia

kalkreich: Blaugras-Gruppe

Kalk-Blaugras – Sesleria caerulea, Vogelfuß-Segge – Carex ornithopoda, Alpen-Distel – Carduus defloratus, Alpen-Leinblatt –Thesium alpinum

Gute Infos zum Thema finden sich unter http://www.ecology.uni-jena.de/ecologymedia/ag_pflanzenoekologie/VegOeko/Kap_1.pdf

Aufgaben

1. Bäume und Sträucher (Luftpflanzen) im Adelsreuter Wald

Listen Sie die von uns auf der Exkursion beobachteten Bäume und Sträucher auf und ermitteln Sie für jede Art die Zeigerwerte für Lichtgenuss, Feuchtigkeit, Nitratgehalt und Bodenreaktion. Nutzen Sie diese Zusammenstellung für eine ökologische Bewertung des Waldgebietes und stellen Sie eine Beziehung zu den bodenkundlichen bzw. geologischen Gegebenheiten her.

2. CO2-Speicher Wald

Sie haben den Gehalt des gespeicherten Kohlenstoffs bzw. Kohlenstoffdioxids im Holzkörper eines Baumes abgeschätzt. Stellen Sie Vorgehensweise und ihr Ergebnis dar. Setzen Sie den erhaltenen Wert in Beziehung zu dem CO2-Ausstoß der Exkursions-Autos (vereinfachte Annahme: 8 PKWs PH-Weingarten – Appenweiler und zurück, Verbrauch 7 L/100 km). http://de.myclimate.org/de/?gclid=CKCtopHly9MCFUJAGwodw1QL5Q

3. Essbare Bäume

Wir haben die jungen Triebe von Fichten und Tannen verkostet. Recherchieren Sie zur möglichen kulinarischen Verwertung dieser jungen Nadelholztriebe, erproben Sie ein Rezept und berichten Sie von ihren Erfahrungen.

4. Bodenpflanzen (Geophyten) sind eine relativ häufige Lebensform in mitteleuropäischen Laubwäldern.

a) Geben Sie einige Beispiele und erklären Sie die Angepasstheit dieser Pflanzen an ihren Standort.

b) Beschreiben Sie den Lebenszyklus der Herbstzeitlose und erklären Sie, warum diese Pflanze deshalb besonders gut an den Standort Wiese angepasst ist.

5. Atmung von Wassertieren.

Die Wege im Adelsreuter Wald-Weißenauer Wald sind oft von Gräben gesäumt, die zum Teil permanent Wasser führen. Dort entdeckten wir kleine Grasfrösche (vermutlich Jungtiere vom vergangenen Jahr), Köcherfliegenlarven und Larven von Großlibellen.

Vergleichen Sie die Atmung (Sauerstoffaufnahme) dieser drei Tiere.

Literatur zum Thema Baum und Wald

Bartsch, Norbert/ Röhrig, Ernst (2016): Waldökologie – Einführung für Mitteleuropa. Berlin/Heidelberg: Springer-Spektrum

Braune, W./Leman, A./Taubert, H. (9.A, 2007): Pflanzenanatomisches Praktikum I: Zur Einführung in die Anatomie der Vegetationsorgane der Samenpflanzen. Berlin/Heidelberg: Springer-Spektrum

Bundesamt für Naturschutz (BfN): www.bfn.de

Dylla, Klaus/Krätzner, Günter (1977): Das biologische Gleichgewicht in der Lebensgemeinschaft Wald. Biologische Arbeitsbücher 9, Quelle und Meyer, Heidelberg/Wiesbaden. Folgeauflagen: Das ökologische Gleichgewicht in der Lebensgemeinschaft Wald (4.A.1986): Lebensgemeinschaft Wald (1998)

Ellenberg, H./Leuschner, C. (6. erweiterte A, 2010): Vegetation Mitteleuropas mit den Alpen in ökologischer, dynamischer und historischer Sicht. Stuttgart: Ulmer

Hofmeister, H. (1990): Lebensraum Wald. Hamburg: Parey

Küster, Hansjörg (3. A. 2013): Geschichte des Waldes – Von der Urzeit bis zur Gegenwart. München: C.H. Beck

Lude, Arnim (Hrsg.) (2014): Wald im Wandel. Unterricht Biologie 395 (Jg.38)

Lude, Arnim (Hrsg.) (2014): Survival im Wald. Unterricht Biologie Kompakt 396 (Jg.38)

Mattheck, C. (1999): Stupsi erklärt den Baum. Forschungszentrum Karlsruhe

Oehmig, B. (Hrsg.) (2008): Wald. Unterricht Biologie 334 (Jg.32)

Schulbiologiezentrum Hannover-Arbeitshilfen http://www.schulbiologiezentrum.info/arbeitshilfen.htm

Wildmann, Steffen et al. (2014): Wälder mit natürlicher Entwicklung in Deutschland

Wohlleben, Peter (2013): Der Wald – ein Nachruf. Wie der Wald funktioniert, warum wir ihn brauchen und wie wir ihn retten können – ein Förster erklärt. München: Ludwig  (vom Autor gibt es zahlreiche weitere Bücher zum Thema Wald und Baum)

Rotach bei Oberteuringen (12.05.2017)

Oberteuringen1

Treffpunkt: Oberteuringen, Franz-Roth-Platz

Fahrt von Ravensburg über die B33 bis Oberteuringen-Neuhaus, dort links abzweigen in die Teuringer Straße, die in die Augustin Bea Straße übergeht, dann bis zum Franz Roth Platz rechts.

Thematische Schwerpunkte: Die Rotach als drittgrößter Zufluss des östlichen Bodensees, Ökologie von Fließgewässern, Messung einiger abiotische Faktoren, biotische Faktoren: Wassertiere und Uferpflanzen,  Gefährdung und Schutz von Bächen, Renaturierungsmaßnahmen

Oberteuringen2

Die Rotach

Die Rotach  entwässert das Pfrunger Ried nach Süden. Sie entsteht bei Wilhelmsdorf , durchfließt  den Harttobel bei Horgenzell und erreicht durch den Benistobel vor Urnau das Deggenhauser Tal. Sie durchfließt die Gemeinde Oberteuringen, bis sie schließlich nach Friedrichshafen kommt, wo sie einen Kilometer östlich des Stadtkerns als westliche Grenze des Eriskircher Rieds in den Bodensee mündet. Ihr Einzugsgebiet beträgt rund 130 km².

Quellhöhe  620 m, Mündungshöhe  395 m, Höhenunterschied 225 m, Länge 38,8 km, Mittlerer Abfluss bei der Mündung 1,83 m3/s

Lage der Jungmoräne und oberschwäbische Zuflüsse zum Bodensee
Lage der Jungmoräne und oberschwäbische Zuflüsse zum Bodensee (verändert nach Sorg, J.: Typische Vegetationsbilder der Oberschwäbischen Landschaft, In Ott., S.; Oberschwaben, Otto Maier, 1972)

An dem Lauf der knapp 40 km langen Rotach lagen einst 22 Mahl- und Sägemühlen. Für diese Mühlen wurde der Bach jeweils mit Wehren aufgestaut – für wandernde Fische, aber auch für andere Organismen ein Problem. Das Wehr bei Oberteuringen wurde im Juli 2002 durch eine schräge Rampe mit Steinblöcken  aufgefüllt. Der Baggerfahrer berichtete, dass die ersten Fische schon versuchten, hochzukommen, als er noch bei der Arbeit war. Ein weiteres Wehr in Unterteuringen wurde im August 2005 gesprengt. Das Wehr bei der Reinachmühle wurde erst 2014 renaturiert.

Rotach bei Oberteuringen
Rotach bei Oberteuringen

Gewässergütebestimmung

Die Wasserqualität eines Fließgewässers, die Gewässergüte, hängt vor allem von seinem Gehalt an abbaubaren organischen Substanzen und anorganischen Substanzen (Nährmineralien) ab. Beide Faktoren stehen in Beziehung miteinander: Eine hohe Nährsalzkonzentration fördert die Produktion und Anreicherung von organischen Stoffen im Wasser, dagegen setzt der Abbau organischer Substanzen Nährsalze, vor allem Nitrate und Phosphate, frei.

Stoffkreislauf im Fließgewässer
Stoffkreislauf im Fließgewässer

In diesem Schema nicht berücksichtigt ist, dass es sich bei einem Fließgewässer um ein Durchflusssystem handelt. Organismen, Abfallstoffe und Nährsalze werden mit dem Wasserstrom transportiert. Dies wird in der folgenden Darstellung berücksichtigt. Daraus ergibt sich für das Stoff- und Nahrungsangebot in einem Fließgewässer aber auch, dass es von derr Quelle zur Mündung hin zunimmt. Außerdem bedeutet stäkeres Gefälle auch überwiegende Erosion, geringres Gewfälle überwiegende Sedimentation.

Stoff- und Nahrungsangebot in einem Fließgewässer (aus Dick, G.(1990): Fließgewässer Ökologie und Güte - verstehen und bestimmen. Hrsg.: Verein für Ökologie und Umweltforschung, Wien)
Stoff- und Nahrungsangebot in einem Fließgewässer (aus Dick, G.(1990): Fließgewässer Ökologie und Güte – verstehen und bestimmen. Hrsg.: Verein für Ökologie und Umweltforschung, Wien)

Abiotische Faktoren

Allgemeine Kenngrößen: Färbung, Trübung, Geruch, Fließgeschwindigkeit, pH, Sauerstoffgehalt, Leitfähigkeit

Nährsalze : Phosphat, Nitrat, Nitrit, Ammonium

weitere Salze: Chlorid, Sulfat

Schwermetalle: Blei, Cadmium, Chrom, Kupfer, Nickel, Quecksilber, Zink

Summenkenngrößen: BSB (Biochemischer Sauerstoffbedarf), CSB (Chemischer Sauerstoffbedarf) TOC (Gesamtkohlenstoff)

Industriechemikalien (z.B. halogenierte Kohlenwasserstoffe)

Nanoplastikteile

Biotische Faktoren

Die abiotischen Faktoren in einem Fließgewässer variieren meistens sehr stark, deshalb liefert ihre Messung immer nur eine Momentaufnahme. Demgegenüber reagieren Organismen und Lebensgemeinschaften auf die Wasserqualität über einen längeren Zeitraum.

Ein seit langem standardisiertes Verfahren zur biologischen Gewässergüte Bewertung liefert das Saprobiensystem. Über ausgewählte Tierarten (und Mikroorganismen) und deren Häufigkeit wird auf die Belastung eines Gewässers mit organischen, biologisch leicht abbaubaren Stoffen geschlossen (Saprobie = Intensität der heterotrophen, Sauerstoff zehrenden Stoffumsetzungen). Für das Verfahren gibt es eine DIN Norm, in die  160 wirbellose Tiere (vor allem Insektenlarven, Kleinkrebse, Schnecken, Muscheln, Egel), einige Fischarten, sowie 90 Mikroorganismen (Bakterien, Pilze, Ciliaten) aufgenommen sind. In der Praxis werden die Mikroorganismen vor allem dann herangezogen wenn nicht genügend Makroorganismen zu finden sind. Geeignet für diese Bewertung snd nur relativ stenöke Arten, die an einen engen Bereich von Umweltfaktoren gebunden sind (Zeigerarten). Arten, die in Gewässern fast aller Güteklassen vorkommen – wie z.B. Stechmückenlarven – sind als Indikatoren ungeeignet.

Die Zuordnung der Wassertiere zum Saprobiensystem geht auf Kolkwitz und Marson 1902 zurück, wurde aber immer wieder erweitert und bearbeitet. Bestimmte Belastungen – insbesondere mit nicht  biologisch abbaubaren Schwermetallen und synthetiscvhen Schadstoffen – werden schlecht oder garnicht erfasst. Auch die großen regionalen Unterschiede der Fließgewässer sind ein Problem. Langsm fließende Bäche des Flachlandes enthalten natürlicher Weise mehr organische Abfallstoffe und haben einen geringeren Sauerstoffgehlat als Bergbäche. Deshalb können Flachlandbäche nach dem Saprobiensystem die Güteklasse I garnicht erreichen. Die EU-Wasserrahmenrichtlinie (EU-WRR) berücksichtigt dies durch Einbeziehung des Gewässertyps in die Bewertung.

Gewässergüteklassen (aus Graw, M. (2001): Ökologische Bewertung von Fließgewässern. VDG Bd.64
Gewässergüteklassen (aus Graw, M. (2001): Ökologische Bewertung von Fließgewässern. VDG Bd.64)

http://www.vdg-online.de/band64.html

Gewässergütekarte von Baden-Württemberg

http://www.fv-heilbronn.de/karten/guete_2000.jpg

Stationen an der Rotach

Untersuchungsgebiet an der Rotach, Ausschnitt aus TK 1:25000, Blatt8222 Markdorf
Untersuchungsgebiet an der Rotach, Ausschnitt aus TK 1:25000, Blatt 8222 Markdorf

Diese Exkursion haben wir als Parcours durch 4 Stationen organisiert, die alle in der Nähe eines Grill- und Spielplatzes bei Oberteuringen eingerichtet wurden. Tische und Bänke konnten dafür als Abstell- und Arbeitsplätze genutzt werden.

Gewönliche Schuppenwurz - Lathraea squamaria
Gewönliche Schuppenwurz – Lathraea squamaria (Foto Probst)

Auf dem Weg vom Parkplatz zu den Stationen konnten wir neben Bärlauch und Einbeere  die blassen Fruchtstande der Schuppenwurz (Lathraea squamariea, Fam. Sommerwurzgewächse)  entdecken. Die fast völlig chlorophyllfreie Pflanze hat ein verzweigtes, unterirdisches Rhizom mit stärkereichen Schuppenblättern und Wurzeln mit Saugorganen, mit denen sie vor allem Baumwurzeln anzapft und Wasser und Assimilate ansaugt. Die langlebigen Samen können nur erfolgreich auskeimen, wenn sie dichter als 1 cm bei einer möglichen Wirtswurzel liegen.

Auf Holzresten fanden wir zahlreiche Fruchtkörper des Glimmer-Tintlings (Coprinellus micaceus), eine Pilzart, die man bei milder Witterung das ganze Jahr über finden kann.

Station 1: Abiotische Wassereigenschaften

Sinnlich wahrnehmbar: Farbton, Farbstärke, Geruch, Trübung, Schaumbildung

Gemessen: pH-Wert, Nitrat, Nitrit, Ammonium, Phosphat, Gesamthärte. Der Sauerst0offgehalt konnte nicht gemessen werden, da die Sauerstoffelektrode defekt war.

Station 2: Zeigerorganismen, Saprobienwert, Gewässergüte

Es wurden vor allem verschiedene Einagsfliegenlarven gefunden. Besonders ein Exemplar der Gemeinen Kahnschnecke (Theodoxus fliuviatilis) mit dem Saprobinewert 1,7 (nach Schwab,1995) deutet auf gute Gewässerqualität.

Station 3: Fließgewschwindigkeit

Strömungsmesser

Die Fließgeschwindigkeit und die Strömungseigenschaften wurden mit einem Papierbootrennen und mit einem einfachen Strömungsmesser untersucht.

Station 4: Bachbegleitende Pflanzen

Pflanzen an der Rotach
Pflanzen an der Rotach

Jede Gruppe bestimmte 6 bachbegleitende Pflanzenarten, sortierte sie nach ihrem Standort relativ zum Bach und ermittelte Zeigerwerte und Lebensform.

Auswertung der Stationsarbeit

Die Auswertung der Stationsarbeit wird jeweils von denen, die sich auf die Station vorbereitet haben bzw. bei unserer Abschlussbesprechung gemeldet haben, vorgenommen. Die Ergebnisse werden allen Teilnehmern zur Verfügung gestellt.

Literatur zum Thema Fließgewässer

Baur, Werner H. (1997): Gewässergüte bestimmen und beurteilen. Blackwell-Wissenschaftsverlag

Brehm, J./Meijering, M. P. D. (3. A.1996): Fließgewässerkunde – Einführung in die Ökologie der Quellen, Bäche und Flüsse. Biologische Arbeitsbücher. Wiesbaden: Quelle und Meyer

Engelhardt, Wolfgang (17. A.; 2015): Was lebt in Tümpel, Bach und Weiher? Stuttgart: Kosmos-Franckh

Fey, Michael, J. (1996): Biologie am Bach – Praktische Limnologie für Schule und Naturschutz. Biologische Arbeitsbücher. Wiesbaden: Quelle und Meyer

Graw, Martina (2001):Ökologische Bewertung von Fließgewässern. Schriftenreihe der Vereinigung Deutscher Gewässerschutz Bd.64.http://www.vdg-online.de/96.html

Klee, Otto (2. A. 1993): Wasseruntersuchungen – Einfache Analysenmethoden und Beurteilungskriterien. Biologische Arbeitsbücher. Wiesbaden: Quelle und Meyer

Mischke, Ute/Behrendt, Horst (2007): Handbuch zum Bewertungsverfahren von Fließgewässern mittels Phytoplankton zur Umsetzung der EU-WRRL in Deutschland. Stuttgart: Schweizerbart’sche Verlagsbuchhandlung

Sandrock, F. (Hrsg.,1981): Fließgewässer. – Unterricht Biologie, H. 59

Schwab, H. (1995): Süßwassertiere – Ein ökologisches Bestimmungsbuch . Stuttgart: Klett Schulbuchverlag

Schulbiologiezentrum Hannover: Gewässergütebestimmung nach Tieren (Formblatt) http://www.schulbiologiezentrum.info/Gew%E4sseruntersuchung%20Tiere%20Formblatt%20EINFACH%20mit%20Arten.pdf

Wellinghorst, R. (2002): Wirbellose Tiere des Süßwassers. Seelze: Friedrich Verlag

http://www.biologie-schule.de/oekosystem-fliessgewaesser.php

http://www.fachdokumente.lubw.baden-wuerttemberg.de/servlet/is/10119/s_28_boegew_arbeit.pdf?command=downloadContent&filename=s_28_boegew_arbeit.pdf&FIS=161

http://www.rolf-wellinghorst.de/fileadmin/rolf-wellinghorst.de/gewaesseroekologie/Gew%C3%A4sser%C3%B6kologie-BLK-Materialien1Teil.pdf

Dornacher Ried und Häckler Weiher (21.5.2017)

(weitere Unterlagen und Infos vgl. das Exkursionsangebot von 2016)

Treffpunkt: Kirche Blitzenreute (entspricht 2016)

TreffpunktBlitzenreute

Thematische Schwerpunkte: Hochmoor und Niedermoor, Moorregeneration, Wiesen und Ackerränder, Landschaftsgeschichte

Zum Exkursionsverlauf

Exkursionsweg am 21.5.2017
Exkursionsweg am 21.5.2017

Unter dem Klang der Kirchenglocken starteten wir pünktlich 10:00 Uhr in Blitzenreute. Nach den letzten Häusern hat man vom Weg einen weiten Blick über das Schussental bis zum Altdorfer Wald und weiter zu den Allgäuer Alpen. Dieses breite Schussenbecken markiert ein Rückzugsstadium des Rheingletschers. Letztes Jahr sahen wir hier verschiedene Getreidefelder, vor allem mit Sommergerste und Weizen, dieses Jahr war alles ein großes Maisfeld mit gerade gekeimten Maispflänzchen, dank Herbizid-Behandlung völlig unkrautfrei. Später ging es durch große Rapskulturen, also eine deutliche Zunahme der „Energiepflanzen“.

Der süße Duft der Rapsblüten konnte nicht nur von uns wahrgenommen werden, er lockte auch viele Bienen, auch Wildbienen, und einige Schwebfliegen, Schmetterlinge und Käfer. Bei genauem Hinsehen waren fast in jedem Blütenstand Rapsglanzkäfer (Brassicogethes aeneus) zu finden. Die Käfer fressen nicht nur Pollen, sondern sie können auch die Fruchtknoten annagen und dadurch erheblichen wirtschaftlichen Schaden verursachen.

Auf dem Weg bis zum Moorsteg sammelten wir blühende Pflanzen vom Weg- und Ackerrand, die wir dann sortierten und bestimmten. Besonders auffällig waren einige Schmetterlingsblütler , die vermutlich aus Zwischenfruchtmischungen stammen:

Persischer Klee - Trifolium resupinatum
Persischer Klee – Trifolium resupinatum
Ungarische Wicke - Vicia pannonica
Ungarische Wicke – Vicia pannonica

Inkarnat-Klee (Trifolium incarnatum), Persischer Klee (Trifolium resupinatum) und Ungarische Wicke (Vicia pannonica).

Schon von weitem waren die vielen weißen Haarbüschel des Scheidigen Wollgrases im Moor zu sehen. Unter Daniela Drehers Führung wurde auf dem Holzsteg ein Erkundungsgang in den Hochmoorbereich des Dornacher Rieds unternommen.

Anschließend nutzten wir eine blütenreiche und noch nicht gemähte Wiese zu einer Vegetationsaufnahme. Der Wiesen-Salbei fing gerade an zu blühen und wir beobachteten den speziellen Bestäubungsmechanismus („Schlagbaum“).

Auf mit Holzschnipseln bestreutem Weg ging es durch den im Rahmen eines LIFE-Projekts wieder vernässten Teil des früher durch Torfstiche und Entwässerungsgräben stark ausgetrockneten, teilweise bewaldeten Teil des Dornacher Rieds zum Mittagspausenplatz an einer Holzplattform über einer Torfstich-Wasserfläche (pH 5, Gesamthärte unter der Nachweisgrenze unseres Geräts) .Trotz den ziemlich extremen Bedingungen konnten wir in dem Gewässer zwei Wasserwanzenarten entdecken, eine Schwimmwanze und eine Wasserzikade, außerdem einige Stechmückenlarven. Wir stellten mit Plastiktüte und Federwaage fest, dass man aus einem  feuchten Torfmoospaket mit den Händen fast 70 Gewichtsprozent Wasser auspressen kann.

Anschließend zeigten uns Jennifer Griener und Katharina Frick, wie man mit Hilfe eines Spiegels gefühlt  durch die Baumwipfel spazieren kann.

Die Orchideenwiese, ein Niedermoorbereich Richtung Vorsee, erfreute uns mit vielen blühenden Knabenkräutern ( vor vallem Dactylorhiza majalis), außerdem Weißen Nazissen (Narcissus poeticus), einer Trollblume (Trollius europaeus) und Rostrotem Kopfried (Schoenus ferrugineus).

Unter Aufsicht eines Höckerschwans erprobten wir, wie gut man mit dem Gesicht bei geschlossenen Augen Pflanzen(teile) ertasten und erkennen kann.

Unsere Suche nach Holz bewohnenden Insekten in dem reichlich vorhandenen Totholz war nicht sehr ergiebig, aber das lag vielleicht auch daran, dass langsam unser Zeitbudget zu Ende ging, denn wir hatten ja noch einige Kilometer Rückweg vor uns. Als auffällige Holz bewohnende Pilzen beobachten wir zahlreiche Zunderschwämme (Fomes fomentarius) an einer alten Buche mit besetzter Spechthöhle und einen Stubben mit Fenchelporlingen (Gloeophyllum odoratum) sowie zwei kleine Fruchtkörper des giftigen Doppelgängers vom Stockschwämmchen, dem Gift-Häubling (Galerina marginata).

Aufgaben

  1. Pflanzen am Weg- und Ackerrand: Recherchieren und bewerten Sie die Zeigerwerte der von uns gefundenen Pflanzenarten.Ermitteln Sie die natürliche Verbreitung von Persischem Klee, Inkarnat-Klee, und Ungarischer Wicke. Erläutern Sie die besondere Bedeutung von Leguminosen als Zwischenfrucht.
  2. Beschreiben Sie die Rolle der Torfmoose bei der Bildung von Hochmooren und erklären Sie damit die extremen Bedingungen im Lebensraum Hochmoor.
  3. Zur Charakterisierung der Wiesenvegetation haben wir auf vier 1m2-Flächen die vorkommenden Pflanzenarten registriert. Stellen Sie die Ergebnisse in einer Tabelle zusammen und machen Sie mit Hilfe von Zeigerwerten eine Aussage zu Nährmineralgehalt, Feuchtigkeit und Bodenreaktion.
  4. Sauergräser können sehr unterschiedlich aussehen. Wir haben bisher die Gattungen Segge, Wollgras und Kopfried kennengelernt. Nennen Sie jeweils charakteristische Merkmale dieser drei Gattungen.
  5. Auf der „Orchideenwiese“ (am Weg Richtung Vorsee) haben wir drei ganz besondere Pflanzenarten gefunden:Breitblättriges Knabenkraut, Weiße Narzisse und Europäische Trollblume. Ermitteln Sie Schutzstatus, Verbreitung und Ökologie dieser drei Arten.
  6. Unter einer alten Rot-Buche hörten wir Vogelgepiepse. Dann entdeckten wir eine Spechthöhle. An dem Baumstamm waren mehrere Fruchtkörper des Zunderschwamms zu sehen. Beschreiben Sie die Lebensweise des Zunderschwamms und erklären Sie damit unsere Beobachtungen.

Eriskircher Ried (2.6.2017)

Geänderter Treffpunkt: Parkplatz beim Naturzentrum Eriskirch

Thematische Schwerpunkte: Bodenseeufer: Auwald, Riedwiesen; Uferschutz

URL des Naturschutzzentrums Eriskirch : http://www.naturschutz.landbw.de/servlet/is/67506/

Naturzentrum Eriskirch
Naturzentrum Eriskirch

Das Naturzentrumist im alten Bahnhofsgebäude untergebracht. Die Bahnstation existiert noch. Eine Anreise mit der Bahn ist deshalb möglich, aber von Weingarten nur mit zweimaligem Umsteigen.

TreffpunktEriskirchneu

 Zum Exkursionsverlauf

Im Naturschutzzentrum Eriskirch versammelten wir uns vor einem großen Reliefmodell des Bodensees. Herr Kersting, Diplombiologe und seit seiner Einrichtung vor 24 Jahren Leiter des Naturschutzzentrums, erklärte uns die ökologischen und biologischen Besonderheiten dieses  mit 536 km2 größten Voralpensees und seiner Uferregionen. Eine Besonderheit ist zum Beispiel, dass die jährlichen Wasserstandsschwankungen etwa 2 m betragen aber in extrem Jahren auch deutlich über diesem Wert liegen können. Weite Gebiete der flachen Uferregionen werden dann überschwemmt, zum Beispiel auch die Auwälder und Riedwiesen des Naturschutzgebietes Eriskircher Ried. Eine weitere Besonderheit ist die mit 250 m beachtliche Tiefe des Sees, die zum Beispiel dazu führt, dass in den tiefen Regionen eine konstante Temperatur von 4°C herrscht.

Das Naturschutzgebiet Eriskircher Ried wurde schon 1939 eingerichtet und diese frühe Unterschutzstellung hat dazu beigetragen, dass hier – zwischen dem sonst dicht besiedelten Bodenseeufer –  bis heute ein naturnaher Bereich mit ausgedehnten Ufer- und Flachwasserzonen, Auwäldern vor allem entlang der Schussen, Altwassern und Streuwiesen erhalten geblieben sind. Da die Streuwiesen nicht mehr genutzt werden, ist ihr Erhalt nur durch jährliche Mahd als Naturschutzmaßnahme möglich, sonst würden sie sich schnell in Auwald verwandeln. Herr Kersting berichtete mit eindrucksvollen Fotos von einigen besonderen Hochwasserereignissen, bei denen die Streuwiesen vollständig unter Wasser standen (und Bodenameisen, die zu ihrer Rettung ein Floß bildeten), von zahlreichen Vogelarten, die vor allem in den Zugzeiten hier zu beobachten sind, und dem erstaunlichen Lebenszyklus des Wiesenknopf-Ameisenbläulings, der seine Raupen nach dem Kuckucksprinzip von Ameisen aufziehen lässt. Nach einem Rundgang durch die Ausstellung sammelten wir uns wieder vor dem Naturschutzzentrum.

Unser Exkursionsweg führte zunächst durch Herbicid-behandelte Obstanlagen – über uns ein Schwarzer Milan – und dann direkt an die Schussen, die von großen Silber-Weiden gesäumt wird. Dann ging es durch eine feuchte Wiese, auf der man in der Ferne einige Sibirische Schwertlilien erkennen konnte, weitere blühende Arten waren Scharfer Hahnenfuß, Echter Baldrian, Kleiner Klappertopf und Kuckucks-Lichtnelken. Ein Versuch, die verschiedenen Schichten der Wiese durch unser Laken deutlicher zu machen, gelang nicht sehr überzeugend, da die Oberschicht an der ausgewählten Stelle nur von Gräsern gebildet wurde. Dieser Gruppe, der Familie der Süßgräser (Poaceae) widmeten wir im Schatten eines Walnuss-Baumes die nächste halbe Stunde.

DSCN0002

Rispengräser: Wolliges Honiggras, Wiesen-Schwingel, Glatthafer, Gewöhnliches Rispengras, Knäuelgras

Ährenrispengräser: Wiesen-Fuchsschwanz, Wiesen-Lieschgras

Ährengras: Weidelgras

DSCN0635

In Erinnerung an Herrn Kerstings Vortrag wurden an dem angelegten Demonstrationsteichs „Laubfrösche“ entdeckt. Auf den Fotos zeigte sich allerdings, dass sie alle zu den Wasserfröschen gehören (Teichfrosch bzw. Kleiner Wasserfrosch).

Z-S-Winder_bearbeitet-1
Z-Winder (z. B. Zaunwinde) und S-Winder (z.B. Hopfen)

Über eine Brücke querten wir einen Schussen-Altarm mit vielen Teichrosen und Schilfufer (aus Schilf und Rohrglanzgras) und gelangten dann in einen Wald mit großen Stiel-Eichen, Eschen, Hainbuchen und Sträuchern wie Gewöhnlichem Schneeball, Blutrotem Hartriegel und Hasel (Hartholzaue). Oft werden die Eichen von alten Efeupflanzen mit armdicken Sprossachsen umrankt. Eine krautige Kletterpflanze ist der Hopfen, dessen oft viele Meter langen Triebe jeden Herbst absterben. Er windet – wie die meisten Kletterpflanzen – immer in eine Richtung um die Unterlagen (Der Hopfen ist Rechtswinder oder S-Winder, die Zaunwinde dagegen Linkswinder oder Z-Winder).

Der Weg führte dann in einen 1-2 m tieferen Bereich. Nun sind die vorherrschenden Bäume Silber-Weiden und Schwarz-Pappeln, auch einige Birken und Zitter-Pappeln (Espen) wurden registriert (Weichholzaue). An einem Silber-Weiden-Stamm entdeckten wir die großen Fruchtkörper des Schwefel-Porlings (Laetiporus sulphureus). Der Pilz ist für eine rasch voranschreiende Baunfäule – das Holz wird brökelig und rotbraun – verantwortlich.

Abgeflachter Blattstiel der Espe oder Zitter-Pappel (Populus tremula) lässt das Blatt zittern
Abgeflachter Blattstiel der Espe oder Zitter-Pappel (Populus tremula) lässt das Blatt zittern

Über einen steilen Absatz gelangten wir auf den Hauptweg durchs Ried. Von der Brücke, welche die Schussen kurz vor ihrer Mündung quert, sahen wir zwei Haubentaucher. Dann ging der Weg zurück, zuerst durch Auwald, dann durch Streuwiesen,auf denen noch zahlreiche Sibirische Schwertlilien blühten. Kurz vor der Schranke am Zufahrtsweg zum Strandbad erfreute uns eine Nachtigall mit lautem Gesang.

An dieser Stelle beendeten wir den offiziellen Teil der Exkursion. Mit einigen Teilnehmerinnen fuhr ich noch zu dem neu gestalteten Strandabschnitt mit Grillplatz und Beobachtungsplattform neben dem Strandbad. Der hoch mit Kies aufgeschüttete Zugangsweg ist für Rollstuhlfahrer  allerdings nur mit kräftiger Anschubhilfe passierbar.

Aufgaben

  1. Die grünen Frösche, die wir in dem angelegten Teich gesehen haben, waren Wasserfrösche (oder Grünfrösche) aus der Familie der Echten Frösche (Ranidae). Der Europäische Laubfrosch ist der einzige mitteleuropäische Vertreter der vor allem in den Tropen verbreiteten, sehr artenreichen Familie der Laubfrösche (Hylidae), die wegen ihres guten Klettervermögens auch „Baumfrösche“ genannt werden. Vergleichen Sie Merkmale und Lebensweise von Europäischem Laubfrosch und Wasserfröschen (tabellarische Gegenüberstellung).
  2. Wiesen zeigen eine mehr oder weniger deutliche Schichtung: Oberschicht (Blütenschicht), Mittelschicht (Blattschicht), Unterschicht. Zählen Sie einige Pflanzenarten (einschließlich Gräsern) auf, die für die verschiedenen Schichten typisch sind. Ordnen Sie folgende Tiergruppen verschiedenen Wiesenschichten zu: Schwebfliegen, Feldheuschrecken, Schmetterlinge, Schmetterlingsraupen, Blattwanzen, Laufkäfer, Bienen, Hummeln, Blütenböcke, Zikaden, Blattläuse, Asseln, Tausendfüßler, Krabbenspinnen, Trichterspinnen.
  3. Erläutern Sie die besonderen Eigenschaften des Lebensraumtyps „Auwald“ und erklären Sie die Unterschiede zwischen Hartholzauen und Weichholzauen.
  4. Obwohl das Eriskircher Ried ein Naturschutzgebiet ist, werden die Riedwiesen im Winterhalbjahr regelmäßig gemäht. Erklären Sie die Bedeutung dieser Pflegemaßnahme und erläutern Sie, welche Folgen es hätte, wenn die Wiesen nicht mehr gemäht würden.

Hepbach-Leimbacher Ried (18.6.2017)

(weitere Unterlagen und Infos vgl. das Exkursionsangebot von 2016 )

Treffpunkt: Wanderparkplatz bei Unterteuringen (Richtung Modellflieger-Platz, wie 2016)

von der B 33 bis nach Unterteuringen
TreffpunktUnterteuringen

Thematische Schwerpunkte: Landschaftsgeschichte, Landschaftpflege und Naturschutz mit Heckrindern, Bedeutung von Saumbiotopen in der Agrarlandschaft

Zum Exkursionsverlauf

18.6.17-Exkursionsweg

Der Treffpunkt beim Hof Reinöhl nahe Unterteuringen liegt in einer weiten Talebene zwischen Gehrenberg im Norden und mehreren kleineren Hügeln – Drumlins – im Süden. Morphogenetisch handelt es sich um ein ehemaliges Eisrandtal am Nodrand des zurückweichenden Rheingletschers, durch das Wasser vom Eisrandsee im Schussenbecken bei Ravensburg bis zum Eisrandsee im heutigen Bereich des Überlinger Sees abfloss. Das Eisrandtal wurde durch mehrere Schuttkegel in verschiedene Abschnitte aufgeteilt, die in der Nacheiszeit teilweise vermoorten. Die Torfmächtigkeit beträgt im sog. Unterried bis 9,9 m, in anderen Teilen über 7 bzw. über 4 m (Würdigung  des Natur- und Landschaftsschutzgebietes “Hepbach-Leimbacher Ried“, Dr. Rixen 1982).

Vom Treffpunkt am Wanderparkplatz gingen wir zunächst ein paar Schritte bis zum Beginn einer Benjeshecke, die 1991 auf der ehemaligen Trasse der Teuringertal-Bahn (https://de.wikipedia.org/wiki/Teuringertal-Bahn). Als Benjeshecken werden – nach ihrem sehr wirkungsvollen Förderer und Propagandisten Hermann Benjes – Feldhecken bezeichnet,  für deren Anlage zunächst Baum- und Heckenschnitt aufgeschichtet wird.

Da die Weg- und Feldränder teilweise noch nicht gemäht waren, nutzten wir die vielen blühenden bzw. fruchtenden Gräser zu einer Wiederholung unserer Gräserkennübungen von der vorigen Exkursion.

Merkhilfe für häufige Grasarten

In der Talsenke vor Hepbach wurde in den 1970iger Jahren nach Erdöl gebohrt und eine kurze Zeit auch etwas Öl gefördert (mündl. Mitteilung von Franz Beer). Oberschwäbische Ölvorkommen entstanden zu Zeiten der Molasse Ablagerung in sumpfigen Bereichen am Rand von Süßwasserseen bzw. in sehr flachen Meeresbecken.

Hier trafen wir mit Herrn Jörg Münch vom Vorstand des BUND Markdorf zusammen..

Der Weg führte uns über einen kurzen steilen Anstieg auf einen Höhenrücken, von dem man einen guten Blick über das Hepbach-Leimbacher Ried hat. Herr Münch gab uns eine Einführung in das Naturschutzmanagement mit Heckrindern. Das Beweidungsprojekt mit dieser Robustrinderrasse wurde hier  – betreut von der BUND-Gruppe Markdorf – 2001 begonnen. Zur Zeit werden 20 Rinder auf 17 ha Weidefläche gehalten.

Wir führten nun zwei Vegetationsaufnahmen auf der extensiv beweideten Fläche am Südosthang und zum Vergleich eine Aufnahme auf der angrenzenden Mähwiese durch.

Vegetationsaufnahme bei den HeckrindernWir gingen weiter auf einem durch zwei artenreiche Hecken gesäumten Weg bis zur reetgedeckten Beobachtungshütte. Nach der Mittagspause ging Herr Münch mit der Gruppe ins Ried hinab und erläuterte –  im Anblick zweier Storchenhorste – das ebenfalls vom BUND Markdorf betreute Storchenschutzprojekt.

Weiter führte uns der Weg bergab – vorbei an einem Weizenfeld mit vielen einzelnen Roggenähren – und dann wieder steil bergauf auf den bewaldeten Höhenrücken des Drumlin „Franzenberg“. Vom Waldrand blickten wir auf den gegenüberliegenden Gehrenberg. Mit 754 m ü. NN erhebt sich der weitgehend aus Molasse bestehende Höhenrücken ca. 300 m über das Hepbach-Leimbacher Ried. Sein höchsten Punkt liegt im Wald und bietet keine Aussicht, aber von dem etwas tiefer stehenden 30 m hohen Turm hat man einen sehr schönen Ausblick auf den Bodensee und die Alpenkette.

Weiter ging es bergab durch den Wald bis zur Kreisstraße 7742, der wir eine Zeit lang folgten. Sie durchquert das Feuchtgebiet und deswegen wurden bei ihrer Anlage Maßnahmen für den Amphibienschutz getroffen (Barriere aus Betonsteinen und einige Durchgangsröhren unter der Straße).

Bevor wir auf einen weiteren Drumlin stiegen, blickten wir auf den Ort Raderach, der auf der Kuppe eines Drumlins liegt und nachdem das ganze Gebiet von Geologen als Raderacher Drumlinfeld benannt wurde. Der neue Drumlin ist auf der Karte mit dem Namen „Heidengestäud“ eingetragen, vermutlich, weil auf seiner Kuppe der Ringwall einer Keltenburg liegt.

Vom Waldrand hatten wir einen schönen Ausblick auf das Hepbach- Leimbacher Ried und unseren Exkursionsweg. Exkursions-dramaturgisch wurde das Aussichtserlebnis durch eine vorangehende „blinde Raupe“ verstärkt. Durch einen Blick rückwärts durch die Beine kann der räumliche Eindruck einer Landschaft verstärkt werden.

Wieder bergab und dann durch Felder und Obstanlagen ging der Weg etwa 1,5 km zurück zum Ausgangspunkt.

Aufgaben

Das Hepbach-Leimbacher Ried ist das größte Niedermoorgebiet des Bodenseekreises.

  1. In den verschiedenen Bereichen der Niederung wurden Torfmächtigkeit zwischen 4 und fast 10 m gemessen. Erläutern Sie, wie man sich die nacheiszeitliche Entstehung von Niedermooren vorstellen kann und welches die Ursachen der unterschiedlichen Torfmächtigkeiten in den verschiedenen Bereichen sein könnten.
  2. Im und am Hepbach-Leimbacher Ried sorgt eine Herde Heckrinder seit 2001 für die Landschaftspflege. Charakterisieren Sie diese Rinderrasse und erklären Sie die Namensherkunft.
  3. Nutzen Sie die Ergebnisse ihrer Vegetationsaufnahmen, um die Auswirkung der extensiven Beweidung zu beschreiben und bewerten Sie dies aus der Sicht Naturschutzes. Erläutern Sie, wie sich die Flächen verändern würden, wenn man die Beweidung aufgeben würde. Nennen Sie Möglichkeiten alternativer Pflegemaßnahmen.

Pfrunger-Burgweiler Ried (1.7.2017)

(weitere Unterlagen und Infos vgl. das Exkursionsangebot von 2016 )

Treffpunkt: Naturschutzzentrum Wilhelmsdorf (wie 2016)

TreffpunktWilhelmsdorf

Thematische Schwerpunkte: Konzeption des Naturschutzzentrums Wilhelmsdorf, Landschaftsgeschichte, Insekten

Zur Erdgeschichte Oberschwabens

Man geht davon aus, dass sich die Erde vor etwa 4,6 Milliarden Jahren gebildet hat. Aber von den ersten 4 Milliarden gibt es leider nur sehr wenige Sedimente, die wichtigsten Informationsquellen über die Erdgeschichte. Erst die letzten 541 Millionen Jahre sind relativ gut durch Ablagerungen dokumentiert und in diesen Sedimenten finden sich meistens zahlreiche fossile Lebensreste. Deshalb nennt man diesen letzten Zeitabschnitt auch das Äon Phanerozoikum oder „Zeitalter des sichtbaren Lebens“. Es wird in Erdaltertum, Erdmittelalter und Erdneuzeit eingeteilt (http://www.oekosystem-erde.de/html/geologische_zeittafel.html).

Unter normalen Bedingungen liegen die höchsten Ablagerungen oben, die ältesten unten. Doch durch Abtragung der oberen Schichten, Hebungen, Senkungen und sogar Faltungen und Überlappungen ist es hier im Laufe der Erdgeschichte zu erheblichen Veränderungen gekommen. Wichtigste Ursache hierfür sind die ständigen Bewegungen der obersten festen Erdkruste, Vorgänge, die als Plattentektonik bezeichnet werden. Diese oberste Erdkruste kann man sich nämlich aus Platten zusammengesetzt vorstellen, die sich ständig gegeneinander verschieben. Sie werden sogar untereinander geschoben und dann an solchen Subduktionszonen ganz im flüssigen Erdinneren eingeschmolzen, während an anderen Stellen durch aufsteigendes Magma aus dem Erdinneren neue Krustenabschnitte entstehen. Diese Plattenbewegungen betreffen die Kontinente ebenso wie den Meeresboden, allerdings sind die Platten unter den Meeren in der Regel etwas dünner.

Man kann sich vorstellen, dass es zu Auffaltungen der Erdkruste und zur Gebirgsbildung kommt, wenn zwei Platten gegeneinander geschoben werden. Der letzte große Gebirgsbildungsprozess, bei dem auch unsere Alpen entstanden sind, begann schon im Erdmittelalter, in der Kreidezeit, erreichte aber erst in der Neuzeit, im Tertiär vor 50-30 Millionen Jahren seinen Höhepunkt. Dabei wurde die afrikanische Platte gegen die europäische Platte geschoben. Die Folge war die Auffaltung der Alpen. Aber schon während der Hebung wurden die emporgehobenen Teile durch Erosion wieder abgetragen. In den Zentralalpen sind dadurch alle Sedimentgesteine abgetragen worden, so dass das vorwiegend aus Granit bestehende Grundgebirge zu Tage tritt. In den nördlichen und südlichen Kalkalpen finden sich kalkhaltige Sedimente des Erdmittelalters, vor allem aus Trias und Kreide.

Die Alpen haben sich im Norden über die Schichten geschoben, die aus den marinen Ablagerungen von Jura und Trias stammen. Dieses Schichtenpaket wurde dadurch nach unten gedrückt und geriet in eine Schieflage. Durch rückschreitende Erosion entstand daraus die Südwestdeutsche Schichtstufenlandschaft mit markanten Abbruchkanten im Nordwesten (z. B. Albtrauf).  Die Senke am Nordrand der Alpen, die teilweise vom Meer überflutet, teilweise als Süßwassersee ausgebildet war, füllte sich im Laufe des Tertiär mit den Sedimenten aus dem Abtrag der Alpen. Diese tertiären Sedimente werden als Molasse bezeichnet, und zwar in  Folge von unten nach oben als Untere Meeresmolasse, Untere Süßwassermolasse  (mächtigste Schicht) Obere Meeresmolasse und Obere Süßwassermolasse. Grobe, durch Kalk verbundene Schotter nennt man Nagelfluh.

Geologischer Untergrund Oberschwabens (verändert nach Zier : Das Pfrunger Ried, 2.A.1997)
Geologischer Untergrund Oberschwabens (verändert nach Zier : Das Pfrunger Ried, 2.A.1997)

Mit dem Ende des Tertiär vor 2,6 Millionen Jahren begann eine Periode mit regelmäßig wiederkehrenden  starken Klimaabkühlungen (Eiszeiten), die durch etwas wärmere Zwischenzeiten unterbrochen wurden. In dieser Zeit waren die Alpen von dicken Gletschern bedeckt, die sich nach Norden teilweise bis zum heutigen Verlauf der Donau und sogar etwas darüber hinaus ausdehnten. Von den Gletschern wurde weiteres  Schotter-, Sand- und Tonmaterial aus den Alpen über der Molasse abgelagert. Dabei wurden vor allem die Täler mit Schotter aufgefüllt, der teilweise durch kalkhaltiges Wasser zu einem betonartigen Gestein verbackte (eiszeitlicher  Nagelfluh). Diese harten Nagelfluhschichten widerstanden der späteren Erosion und ließen so die Höhenrücken von Höchsten (838 m ü. N.N.) und Gehrenberg (754 m ü. N.N.) entstehen (Reliefumkehr).

Eiszeitliche Bildungen im voralpinen Vereisungsgebiet von Oberschwaben (aus Geyer, O.F./Gwinner. M.P.: Geologie von Baden-Württemberg, Stuttgart 1986)
Eiszeitliche Bildungen im voralpinen Vereisungsgebiet von Oberschwaben (aus Geyer, O.F./Gwinner. M.P.: Geologie von Baden-Württemberg, Stuttgart 1986)

Am Ende der letzten Kaltzeit, der Würm-Kaltzeit, zog sich der Rheingletscher, der seine nordwestlichste Ausdehnung bei Schaffhausen hatte, langsam nach Südosten zurück. Eine Zunge des Rheingletschers reichte etwa bis zum heutigen Ostrach, wo eine deutliche Endmöräne abgelagert worden war. Der Rückzug kam in der Höhe des heutigen Wilhelmsdorf zu einem zeitweiligen Stillstand, vielleicht gab es auch einen zweiten Eisvorstoß bis zu dieser Linie. So bildete sich dazwischen ein Eisrandsee, in den mit der Zeit viel Schottermaterial verfrachtet wurde, das heute eine bis zu 75 m mächtige Schicht unter dem Pfrunger Ried bildet. Mit dem weiteren Rückzug des Eises wurden die Sedimente feinkörniger und bildeten schließlich eine Abdichtung aus Ton. Nachdem sich der Gletscher weiter nach Süden zurückgezogen hatte, wurde von den Zuflüssen kalkhaltiges Feinmaterial in den See transportiert und führte zu, einer Sedimentschicht aus Seekreide. Darüber folgten dann vorwiegend organische Ablagerungen, zunächst feinkörnige Leber- und Torfmudde, dann zunehmend torfige Ablagerungen. Aus dem verlandeten See hat sich das Pfrunger-Burgweiler Ried gebildet, das an der Europäischen Wasserscheide liegt: Nach Norden entwässert die Ostrach zur Donau, nach Süden fließt die Rotach, die bei Friedrichshafen in den Bodensee mündet.

Autor: Thommi Gitter, entnommen aus: Markdorf, Geschichte und Gegenwart, 1990
Autor: Thommi Gitter, entnommen aus: Markdorf, Geschichte und Gegenwart, 1990

Die Panoramakarte zeigt ein Landschaftsbild, bei dem sich der Gletscher etwa auf eine Linie vom Schussenbecken bei Ravensburg bis Markdorf zurückgezogen hat. Dabei hat sich im Bereich des heutigen Hepbacher-Leimbacher Rieds ein ähnlicher Eisstausee gebildet wie zwischen den heutigen Orten Wilhelmdorf und Ostrach. Im Gegensatz zum Pfrunger-Burgweiler Ried kam es hier aber nicht zur Hochmoorbildung.

Zum Exkursionsverlauf

Exkursionsweg am 1.7.2017
(aus L8122 1:50 000)

Nach der Begrüßung gab uns Frau Ackermann, Diplombiologin und Naturpädagogin und seit 2006 Mitarbeiterin des Naturschutzzentrums Wilhelmsdorf, einen Einblick in ihre Arbeit. Sie führte uns dann in den Ausstellungsraum des Naturschutzzentrums. An einer eindrucksvollen Luftaufnahme, in der das Pfrunger-Burgweiler Ried in Nord- Süd-Richtung mit dem Bodensee und der Alpenkette im Hintergrund zu sehen ist, erhielten wir eine Einführung in die spät- und nacheiszeitliche Entstehungsgeschichte und die derzeitige Situation. Die zahlreichen Renaturierungsmaßnahmen, die schon durchgeführt wurden und die noch in Planung sind, dienen vor allem der Regeneration von Moorkomplexen (Hochmoore, Überflutungsmoore, Durchströmungsmoore,Hangquellmoore) und dem größten Bannwaldgebiet Baden-Württembergs. Nach weiteren Erläuterungen zur inhaltlichen und didaktischen Konzeption der Ausstellung wurde uns – angereichert durch optische und haptische Demonstrationen – die Geschichte der Moorentstehung vom Schmelzwassersee bis heute erläutert. Diesem Ziel dient auch die vor allem für Kinder und Jugendliche konzipierte, simulierte Fahrt mit dem „Moorkäpsele“ in den geologischen Untergrund, die wir ausprobieren durften.

Anschließend begaben wir uns auf Insektenfang. Auf der Blumenwiese (es blühten vor allem Wiesen-Pippau und Gewöhnlicher Hornklee) und am Waldrand konnten mit Insektennetzen aber auch mit der bloßen Hand bzw. mit Becherlupen viele verschiedene Exemplare gefangen werden. Zunächst ging es um die grobe Zuordnung zu Großgruppen (Ordnungen). Mithilfe von Lupe, Binokularen und weitergehenden Bestimmungsbüchern konnten auch einzelne Arten bestimmt werden, zum Beispiel Pinselkäfer, Raps-Glanzkäfer, Kleiner Kohlweißling, Dickkopffalter, Gartenhummel, Heideschrecke, Becher-Azurjungfer. Das von dem Biologiedidaktiker Ulrich Kattmann vorgeschlagenen kindgemäße Einteilungsschema der Insekten in  „Elfen“ (alle Insekten mit ausschließlich durchsichtigen Flügeln wie Zweiflügler und Hautflügler), „Gaukler“ (mit bunt beschuppten Flügeln wie Schmetterlinge), und „Ritter“ (alle Insekten mit teilweise harten Flügeln wie Käfer, Wanzen, Heuschrecken) mit dem zugehörigen Buch wurde vorgestellt.

Frau Ackermann erklärt das Konzept des Bannwalds

Nach der Mittagspause unternahmen wir – ausgehend vom Parkplatz bei Ulzhausen am westlichen Rand des Rieds – eine Wanderung zum Fünfeckweiher, in den 1920iger Jahren durch industriellen Torfabbau entstanden, und weiter bis zum Bannwaldturm, einem 32 m hohen Holzturm, der im Frühjahr 2016 eingeweiht wurde. Von seiner Plattform hat man einen sehr guten Überblick über das ganze Pfrunger-Burgweiler Ried, insbesondere über den als Bannwald ausgewiesenen „Tisch“ und den „Großen Trauben“, der den besterhaltenen Hochmoorkern des Gebietes enthält. Am Weg zum Bannwaldturm entdeckten wir den Sprossenden Bärlapp (Lycopodium annotinum), auch Schlangen-Bärlapp genannt. Diese Gefäßsporenpflanze fand früher als Zauber- und Hexenpflanze Verwendung. Wegen des hohen Ölgehaltes verwendete man die Sporen von Bärlapp-Arten früher als Blitzlichtpulver.

Auf den teilweise von Robustrindern beweideten und nicht vor 15. Juni gemähten Feuchtwiesen östlich wie westlich der bewaldeten Gebiete finden viele Wiesenvögel wie Kiebitz, Bekassine, Braunkelchen und Schwarzkelchen Lebens- und Brutmöglichkeiten. In den Bannwaldgebieten brütet ein Schwarzstorch. Den Neuntöter, den wir bei der Vorexkursion auf einem Zaunpfahl sitzend beobachten konnten, haben wir nicht wieder gesehen.

Frau Ackermann erläuterte uns die verschiedenen wasserbaulichen Maßnahmen, die nicht nur der Wiedervernässung und Renaturierung der Bachläufe dienen, sondern auch eine Gasleitung durch das Ried bis zu einem unterirdischen Depot in der Molasse unter Wilhelmsdorf sichern sollen. Von der Donau her eingewanderte Biber sorgen noch effektiver für die Wiedervernässung als die wasserbaulichen  Maßnahmen. Eine Fischtreppe und ein Wanderweg mussten durch Elektrozäune vor der Verbauung und Überflutung durch die Biber geschützt werden. Als besondere Kostbarkeit des Rieds gilt die kleine Population der Europäischen Sumpfschildkröte, die man durch gezielte Fördermaßnahmen – wie Ausbrüten und Anziehen von Jungtieren, die dann wieder ausgesetzt werden –vergrößern will.

Fünfeckweiher (1.7.201^7)

Der Weg zurück folgt dem „Riedlehrpfad“, zunächst etwa entlang der Gasleitung, und dann vorbei an einer Wiese mit Heckrindern durch das Bannwaldgebiet bis zu dem Weg, der uns schon von Ulzhausen zum Fünfeckweiher  führte. Bemerkenswert auf dem Weg nach Westen entlang der Gasleitung waren die großen Bestände von Echtem Baldrian (Valeriana officinalis). An dem feuchten Graben beobachteten wir nicht nur Breitblättrigen Rohrkolben und Sumpf-Schwertlilie sondern auch ausgedehnte Bestände des schilfähnlichen Rohr-Glanzgrases (Phalaris arundinacea), das im Gegensatz zum Schilf schwachfließende Gewässer bevorzugt. Den trockeneren Wegrand säumten Brennnesseln an denen wir die Raupen von Landkärtchen und Admiral, vorher schon vom Brennnessel-Zünsler, beobachten konnten.

Aufgaben

  1. Im Bereich des Pfrunger-Burgweiler Rieds kommen Hochmoore, Überflutungsmoore, Durchströmungsmoore und Hangquellmoore vor. Charakterisieren Sie diese verschiedenen Moortypen und beschreiben Sie die jeweilige Lage in der Riedlandschaft.
  2. Durch ganzjährige Beweidung mit Robustrindern der Rassen Heckrinder, Galloways, Schottische Hochlandrinder und Limousin-Rinder werden die feuchten Grünlandflächen in den Randbereichen des Pfrunger-Burgweiler Rieds offengehalten. Geben Sie eine kurze Beschreibung der drei letzgenannten Rinderrassen.
  3. In der Ausstellung des Naturschutzzentrums Wilhelmsdorf wird die Entstehung der Hochmoorkomplexe durch eine simulierte Fahrt in den Untergrund („Moorkäpsele“) vermittelt. Geben Sie eine didaktische Beschreibung und Bewertung dieser Vermittlungsmethode.
  4. Erstellen Sie eine Liste der von Ihnen auf der Exkursion beobachteten bzw. bestimmten Insekten (Arten bzw. Gruppen wie „Feldheuschrecke“, „Schwebfliege“ …)

Hangwald über Flappachweiher bei Ravensburg (16.7.2017)

Treffunkt: Parkplatz des Freibads Flappachweiher

Treffpunkt am Parkplatz des Strandbads Flappachweiher, 16.7.2017, 14.00h

Thematische Schwerpunkte: Kalktuffbildungen an Quellhorizonten der Jungmoräne,

http://www.wiesensteig.de/fileadmin/Dateien/Dateien/Wiesensteiger_Geopfad/Geopfad_Tafel_1-10_170709_1.pdf

Schulgeeignetes Video zur Kalktuffentstehung und Nutzung mit „Wetterfrosch“ Sven Plöger: http://www.planet-schule.de/sf/filme-online.php?film=10465

Zum Exkursionsverlauf

Die letzte Exkursion des Sommersemesters führte uns wieder an den Rand des Schussenbeckens, dieses Mal in die östliche Seitenmoräne, in die sich der Flappach, der bei Ravensburg in die Schussen mündet, tief eingegraben hat. An einem aufgestauten Weiher des Baches liegt eine große Badeanstalt („Flappachbad“). Wenn man beim Ort Knollengraben von der B 32 dem Wegzeiger „Flappachbad“ folgend abbiegt, fährt man zunächst durch den Ort Ittenbeuren. Die vielen Teiche, die man hier sehen kann, dienten früher der Flachsrösterei.

Treffpunkt war der Parkplatz des Schwimmbades. Unser Weg querte zunächst den Flappach und führte dann der Badeanstalt entlang und weiter in den bewaldeten Hang der Jungmoräne. Wir beschäftigen uns zunächst mit der Windepflanze Zaun-Winde (Calystegia sepium) an einem Bestand der Kanadischen Goldrute (Solidago canadensis). Auf den ersten Blick könnte man meinen, die großen weißen Windenblüten würden zu dieser Pflanze gehören. Aber bei genauerem Hinschauen sieht man, dass die dünnen Sprossachsen der Winde die Goldruten-Stängel umwinden und zwar in Wachstumsrichtung gesehen immer links windend.

Z-Winder (Linkswinder) Zaunwinde (Calystegia sepium)
S-Winder (Rechtswinder) Hopfen (Humulus lupulus)

Die Zaun-Winde als Vorbild nehmend schmuggelten nun drei Arbeitsgruppe jeweils 4 – 5 Objekte in ein etwa 3 m breites Stück der wegbegleitenden Vegetation ein (ein falsches Blatt, eine nicht passende Blüte oder Frucht …). Die anderen beiden Gruppen suchten dann jeweils gemeinsam nach den eingeschmuggelten Gegenständen.

Die Jungmoräne ist hier aus sehr unterschiedlichen Materialien aufgebaut. Insbesondere sind immer wieder wasserundurchlässig Mergelschichten eingeschoben, die dazu führen, dass sich Quellhorizonte ausbilden. Das an verschiedenen Stellen an kleinen Quellen und Sickerstellen austretende Wasser sammelt sich zu einem dem Weg folgenden Bachlauf. Immer wieder konnte man an Quellstellen und am Bachlauf frischgrüne, mehr oder weniger ausgedehnte Moospolster erkennen. Bei dem Moos handelt es sich um das Wandelbare Starknervenmoos (Palustriella commutata). Als wir die Moospolster an einigen Stellen abgehoben, konnte man erkennen, dass sie unten hart verkrustet waren und teilweise auf gesteinsartigen Brocken aufsaßen. Die Kosten an den unteren Moosteilen und das Gestein schwanken bei Behandlung mit Essigessenz, was auf ihre chemische Zusammensetzung – Calciumskarbonat (Kalk) – hindeutet. Wir versuchten im folgenden, uns die biogene Bildung von Kalktuff spielerisch verständlich zu machen.

Für den weiteren Exkursionsweg wurden folgende Sammel-Aufgaben verteilt:

  • Sammle mindestens fünf kräftig riechende Pflanzenarten
  • Sammle mindestens fünf Beispiele für Pflanzenteile, die sich sehr weich anfühlen
  • Sammle mindestens fünf Beispiele für Pflanzenteile mit Tierspuren
  • Sammle mindestens fünf verschiedene blühende Pflanzen
  • Sammle mindestens fünf Früchte oder andere Pflanzenteile, die „kletten“

Unterwegs wurden einige Pflanzen besonders in den Blick genommen:

  • Riesen-Schachtelhalm (Equisetum telmateia, typisch für Quellstellen, basenreiche Untergrund, R 8)
  • Adlerfarn (Pteridium aquilinum, größte einheimische Farn-Art, typisch für mageren sandigen Boden R 3, Kosmopolit)
  • Großes Hexenkraut (Circaea lutetiana, rhizombildende Schattenpflanze)
  • Wald-Bingelkraut (Mercurialis biennis, rhizombildende Schatten die ausgedehnte „Herden“ auf dem Waldboden bildet; an der windblütigen, zweihäusigen Pflanze entdeckte Johann Jakob Camerarius 1694 die Sexualität der Pflanzen)
  • Echtes Johanniskraut (Hypericum perforatum, an einer stärker besonnten Wegrandstelle, der „Blutstropfen“ den man aus den noch nicht geöffneten Blütenknospen pressen kann, enthält v. a. pupurfarbenes Hypericin und verwandte Antrachinonderivate, sie wirken antidepressiv und sedativ aber auch photosensibilisierend)
  • Winter-Schachtelhalm (Equisetum hyemale, wintergrüner, unverzweigter Schachtelhalm, dank seiner Siliziumdioxid-haltigen Warzen der Epidermiszellwand früher als Griffelspitzer und heute noch als Schleifwerkzeug für Klarinetten- und Saxophon-Blättchen verwendet)
Wald-Engelwurz (Angelica sylvestris)
  • Wald-Engelwurz (Angelica sylvetris, Doldenblütler mit sehr großen, dreifach gefiederten Blättern, medizinisch vor allem als schleimlösendes Mittel gegen Bronchitis eingesetzt)
  • Wir beobachteten in einer sehr schattigen Talniederung große Bestände des Winter-Schachtelhalms (R 7). Auf höheren Stellen des durch Hangrutschungen sehr ungleichmäßigen Reliefs wurden aber unmittelbar neben den Schachtelhalmen auch Heidelbeersträucher (R 2) gefunden.

    Schattige Talniederung mit Winter-Schachtelhalm (Equisetum hyemale)-Detailansicht rechts unten

    Über einen immer steiler werdenden Weg (vielen Dank für den Anschub!) erreichten wir schließlich die Kreisstraße von Oberhofen nach Grünkraut (K7982), von der wir – nach Besprechung der Sammelaufgaben – links in die K7985 zum Weiler Menisreute abbogen. Von dort ging es auf steilem Pfad geradewegs zurück an den Flappachweiher – ich bedanke mich hiermit noch einmal für die Bike-Bremser, die mich vor einer rasanten Gleitfahrt bewahrten!

    Aufgabe zum 13.7.2017

    Skizzieren Sie einen didaktisch begründeten Plan zum möglichen Exkursionsablauf durch den Hangwald am Flappachweiher.

    Aufgaben zum 16.7.2017

    1. Nennen Sie einige Beispiele für windende Pflanzen und erläutern Sie den Unterschied zwischen S-Winder und Z-Winder. Kommen die beiden Typen unterschiedlich häufig vor? Geben Sie eine biologische Erklärung zur Lebensform „Winden-Pflanzen“.
    Schema zur biogenen Kalktffbildung im Flappachtal (W.Probst)
  • Nutzen Sie die Abbildung zur Erklärung der Kalktuffbildung. Gehen Sie dabei besonders auf die Bedeutung von Moosen, Algen und Blaugrünen Bakterien ein (biogene Kalktuffbildung).
  • Im Hangwald oberhalb des Flappachweihers kommen dicht nebeneinander Pflanzenarten mit recht unterschiedlichen Zeigerwerten für Bodenreaktion und Nitratgehalt vor. Nennen Sie einige Beispielarten und erklären Sie den kleinräumigen Wechsel der Standortbedingungen.