Schlagwort-Archive: Ökosystem

Kompartimentierung – aufgeteilt und doch verbunden (zu UB 340)

LINK-NAME

Grenzen und Ordnung

Ein Schulhof in der großen Pause: Kinder und Jugendliche scheinen ungeordnet durcheinander zu laufen. Einige bilden Gruppen, die stehen oder sich langsam bewegen, andere rennen kreuz und quer, wieder andere gehen gemächlich einzeln oder zu zweit, sitzen auf Banketten oder auf dem Boden. Schaut man dem Treiben länger zu, erkennt man Regeln und Strukturen. Es gibt die sich lebhaft unterhaltenden Gruppen älterer Schüler, ebenso Mädchenzirkel oder auch einen handgreiflichen Streit mit Zuschauern, Pärchen und Einzelgänger, jüngere und ältere Schüler und Schülerrinnen, die sich räumlich streng getrennt aufhalten. Man kann feststellen, dass es eine unsichtbare, aber allen bekannte Kompartimentierung des Schulhofes gibt, die dem bunten Treiben deutliche Grenzen setzt. Dabei kann man zwischen räumlichen (Klassenraum, bestimmter Bereich des Pausenhofes, Lehrerzimmer…) und nicht räumlichen Kompartimenten (Jahrgänge, Klicken) unterscheiden.

Betrachtet man das Innere  einer Zelle mit einem starken Lichtmikroskop, kann man auch scheinbar Ungeordnetes beobachten, nicht zuletzt die zitternde Bewegung kleiner Cytoplasmabestandteile, die Robert Brown 1827 als „Molekularbewegung“ erklärt hat. Die exakte Beobachtung durch immer besser auflösende bildgebende Verfahren, Färbungen und Markierungen  hat  jedoch gezeigt, dass die „Protoplasten“ ein in viele definierte Kompartimente aufgeteiltes  sehr komplexes System darstellen.

Immer wenn Wechselwirkungen und Austauschvorgänge eingeschränkt werden, entstehen abgegrenzte Bereiche, in denen mehr solche Austauschvorgänge stattfinden, als in den Bereichen außerhalb des Kompartiments. Die Einschränkungen können auf verschiedene Weise stattfinden. Neben physischen Barrieren können dies auch Bindungen sein, die freie Beweglichkeit verhindern: Man kann einen Hund am Streunen hindern, indem man ihn in einen Käfig sperrt, aber auch indem man ihn an eine Kette legt. Schließlich ist auch in der Biologie eine Kompartimentierung nicht nur räumlich zu denken.  Auf molekularer Ebene gibt es bestimmte Markierungen von Molekülen  oder Zellorganellen,  die Kontakte und Wechselwirkungen begrenzen, z.B. bei der selektiven Wirkung von Hormonen oder Neurotransmittern. Andere nichträumliche Kompartimente sind biologische Arten und die Unterscheidung zwischen „eigen“ und „fremd“.

Im Zustand maximaler Unordnung oder maximaler Entropie gibt es keine Barrieren. Demgegenüber bedeutet Kompartimentierung Ordnung, aber auch unterschiedlich intensive Wechselwirkungen, Hierarchien, Netze, Transportsysteme, Informationen, Informationsverarbeitung, Steuerung und Regelung. Solche Ordnung durch Abgrenzung ist charakteristisch für den gesamten Kosmos. Hier soll es jedoch um die Kompartimente des Lebens und der Lebewesen gehen. Leben wie wir es kennen, ist an einzelne Lebewesen, an Individuen gebunden, die von ihrer Umwelt deutlich abgegrenzt sind. Individuen sind die „Grundkompartimente“ des Lebendigen. Aber jeder Organismus ist auch in seinem Inneren in mehr oder weniger abgeschlossene Reaktionsräume unterteilt. Ebenso geht die Kompartimentierung auf Ebenen oberhalb des Individuums weiter.

In der Regel geht man von einer Komplexitätszunahme dieser Grundkompartimente im Laufe der Evolution aus. Prokaryoten sind weniger kompartimentiert als Eukaryoten, Einzeller weniger als Vielzeller usw. Gleichzeitig bedeutet diese Komplexitätszunahme immer auch eine Überschreitung von vorher bestehenden Grenzen: Eukaryoten sind ein Symbioseprodukt verschiedener Prokaryoten, Vielzeller sind Aggregationen von Zellen, zwischen denen mehr Stoff- und Informationsaustausch stattfindet, als zwischen Einzellern. Seltener ist auch eine Reduktion der Kompartimentierung im Laufe der Evolution möglich, z.B. bei manchen Parasiten.

„Vernetzung“ ist  nur möglich, wo es abgegrenzte Bereiche gibt, aber eben auch nur, wo diese Grenzen ausreichend offen sind. In Science-Fiction Entwürfen werden immer wieder Visionen entwickelt, in denen durch neuartige und umfassende Vernetzungen „Superintelligenzen“ entstehen (vgl. z. B.  Stanislaw Lems „Solaris“, Crightons „Die Beute“ oder Schätzings „Der Schwarm“. Aber auch in der realen Biologie gibt es Beispiele für „extended organisms“ wie Polypenstöcke, Termiten- und Ameisenkolonien und natürlich alle Formen von Symbiosen.

Lebensentstehung

Schon die Entstehung des Lebens aus unbelebten Vorstufen ist mit zusätzlicher Kompartimentierung verknüpft. Die meisten Vorstellungen von der Biogenese gehen  davon aus, dass diese Abgrenzung bereits durch Membranen stattgefunden hat, deren Grundaufbau den heutigen Biomembranen ähnelte. Andere Vorstellungen nehmen an, dass die Grenzbereiche selbst Ausgangspunkt der Lebensentstehung waren, z. B. dass sich Lebensmoleküle an mineralische Oberflächen festgeheftet haben und dadurch ein geordneter Ablauf von Stoffwechselreaktionen möglich wurde (vgl. z. B. Wächtershäuser 2000).

Das „Genkonzept“ von der Entwicklung des Lebendigen sieht in den Nucleinsäuren die „Startmoleküle“ des Lebens. Am Anfang standen RNA-Moleküle, die auch als Enzyme wirken können. Aus der Kooperation solcher Nucleinsäuren mit einer zweiten Molekülklasse, den Proteinen, soll sich dann LUCA (Last Universal Common Ancestor), der letzte gemeinsamen Vorfahr aller Lebewesen, entwickelt haben. Eine Suche nach den Genresten von Luca war jedoch bisher nicht sehr erfolgreich. Deshalb wurde die  Vorstellung entwickelt, dass es eine Lebensgemeinschaft von Urlebewesen gab, die zwar gegeneinander abgegrenzt waren, und dadurch jeweils einen eigenen Stoffwechsel hatten, aber ihre Gene teilten. Der bis heute weitverbreitete horizontale Genaustausch bei Prokaryoten wäre dann Rest dieses Urzustandes, eines Zustandes, indem es das Kompartiment „Art“ noch nicht gab (Whitfield 2004).

Die inneren Kompartimente der Eucyten

Charakteristisch für die Zellen der Eukaryoten ist, dass sie stark differenzierte innere Membransysteme ausgebildet haben. Die meisten dieser Membransysteme sind entweder unmittelbar miteinander verbunden oder sie stehen über den Austausch von Vesikeln miteinander in Verbindung, Membran umschlossenen Blasen, die sich von Membranen abschnüren oder sich mit Membranen vereinigen können . Zu diesen Membransystemen gehören

  • Kernhülle und Endoplasmatisches Retikulum (ER)
  • Golgiapparat (Dictyosomen)
  • Lysosomen
  • Vakuolen
  • Peroxisomen bzw. Microbodies
  • Plasmamembran (als Abschluss des Zellkörpers nach außen)

Nicht mit den übrigen Membransystemen in Verbindung stehende Kompartimente, die durch Doppelmembranen vom Zytoplasma abgegrenzt sind:

  • Plastiden
  • Mitochondrien

Eine Erklärung für die Sonderstellung dieser beiden Zellorganelle ergibt sich aus ihrer stammesgeschichtlichen Entstehung aus Endosymbionten. Während die Innenmembran der Mitochondrien stark aufgefaltet ist, enthalten die Plastiden insbesondere die grünen Chloroplasten in ihrem Inneren ein weiteres Membransystem aus sogenannten Thylakoiden, das durch Abschnürung aus der inneren Plastidenmembran entsteht, aber im Endzustand nicht mehr mit ihr verbunden ist. In als Grana bezeichneten Thylakoidstapeln sind die Pigmente und Enzyme der Photosynthese untergebracht. Plastiden sind über dünne, von beiden Membranen umgebene ?lasmakanale, den sogenannten Stromuli untereinander und auch mit Zellkern und Mitochondrien verbunden (Krupinska et al. 2010).

Das zweite Kompartimentierungssystem der Zellen besteht aus fädigen Proteinstrukturen: Aktinfilamenten, Mikrotubuli und intermediären Filamenten. Alle drei stellen Polymere aus kleineren Proteinmolekülen dar (Abb.  ). Sie bilden in der Zelle ein netzartiges Gerüst, das auch an der Zellmembran verankert ist. Aktinfilamente sind, oft in Verbindung mit dem Motorprotein Myosin, für Bewegungen der ganzen Zelle – besonders augenfällig bei Muskelzellen – sowie unterschiedliche Viskositätszustände des Cytoplasmas zuständig. Sie können äußere Gestaltänderungen der Zellen bewirken. Mikrotubuli bewegen Zellorganelle durch das Cytosol und Chromosomen bei der Mitose. Sie sind die bewegenden Strukturen von Cilien und Geiseln. Intermediäre Filamente sind sehr stabile seilartige Fadenstrukturen, die z.B. für die Stabilität des Zellkerns und der Nervenfasern und für die Zerreiß- und Zugfestigkeit von Epithelien verantwortlich sind.

Kompartimente bei Prokaryota

Das innere Membransystem der Eucyten ermöglicht die vielfältigen nebeneinander ablaufenden Reaktionen in der Zelle, in dem es Reaktionsräume, Speicherräume und Entsorgungsräume gegeneinander abgrenzt. In Procyten ist das innere Membransystem im Allgemeinen nicht so stark ausgeprägt, wenngleich auch die Zellen vieler Prokaryoten reichlich innere Membranen enthalten, die aus Einstülpungen der Zellmembran hervorgehen. Bei den Cyanobakterien tragen diese intracytoplasmatischen Membranen (ICM) die Pigmente und Enzyme für die Photosynthese, bei aeroben Bakterien sind die Enzyme für die Zellatmung an inneren Membranen verankert. Dafür, dass auch in Prokaryoten viele Stoffwechselreaktionen parallel stattfinden können, ohne sich gegenseitig zu behindern, sind neben Membranabgrenzungen Proteinstrukturen verantwortlich, die im Cytosol oder an der Zellmembran relativ fest verankert sind und Stoffwechselpartner an sich binden.

Es gibt Hinweise, dass die stärkere Kompartimentierung der Eucyten mit dem steigenden Sauerstoffgehalt der Atmosphäre zusammenhängt. Nach Acquisti et al. (2007) sind sauerstoffreiche Membranproteine bei einer reduzierenden Umgebung weniger stabil als sauerstoffarme. Gerade für Signal übertragende Transmembranproteine sind solche sauerstoffreichen Domänen aber charakteristisch. Mit der Erhöhung des atmosphärischen Sauerstoffgehaltes  konnte der Einbau solcher Proteine in Biomembranen zunehmen. Dies betrifft insbesondere die für die Signalübertragung durch Membranen nötigen Proteine mit relativ großen auf der Außenseite der Membran liegenden Rezeptorstrukturen.

Struktur und Funktion von Biomembranen

Schon bevor man Biomembranen im Elektronenmikroskop sichtbar machen konnte, ließen bestimmte chemische und physikalische Eigenschaften darauf schließen, dass Lipide ein wichtiger Bestandteil dieser Membranen seien. So beobachtete man, dass fettlösliche Substanzen von den Zellen viel leichter aufgenommen wurden, als wasserlösliche. Außerdem stellte man fest, dass Zellmembranlipide auf Wasser einmolekulare Schichten bilden, um die Zelle aber in einer Doppelschicht vorliegen müssen (Gorter, Grendel 1925 nach Helmich 2001/2005). Dass Zellmembranen auch für Wasser und anorganische Ionen in gewissem Umfang durchlässig sind, kann man sich nur erklären, wenn man annimmt, dass in die Lipiddoppelschicht auch Proteinmoleküle eingelagert sind. Eine der ersten Vorstellungen vom Aufbau der Membranen ging von einer Lipiddoppelschicht, vorwiegend aus Phospholipiden, aus, auf der Proteine aufgelagert sein sollten. In einer Weiterentwicklung dieses Modells gingen Singer und Nicolson 1972 davon aus, dass die Proteinmoleküle in der Lipidschicht wie Eisberge im Meer schwimmen. Einige Proteinmoleküle durchdringen die Lipidschicht (Tunnelproteine, Kanalproteine), sie können passiven oder aktiven Stofftransport und Signalübertragung durch die Membran vermitteln.

Die Vorstellung einer Membran als Flüssigkeitsfilm mit frei beweglichen Proteinen stimmt jedoch nicht ganz, die Proteine sind in ihrer Beweglichkeit durchaus eingeschränkt, dabei kann z. B. das Cytoskelett an der Membraninnenseite eine Rolle spielen, das Bereiche mit bestimmten Proteinmolekülen „einzäunt“. Gleichzeitig wirken bestimmte Proteine wie „Zaunpfosten“ (Fence-and-Picket-Modell, Suzuki 2005). Diese abgegrenzten Bezirke können aber von bestimmten Proteinen auch übersprungen werden (Abbot 2005). Eine andere Modellvorstellung geht davon aus, dass es in den Membranen floßartige Lipidschollen („lipid rafts“) gibt, die zähflüssiger sind und mit ihren Proteinen in dem Lipidfilm driften. Dabei können einzelne Proteine von diesen Flößen aufgenommen oder abgegeben werden (Simons, Ikonen 1997).

Der Aufbau der Lipiddoppelschicht ist für deren Flüssigkeit von Bedeutung. Ungesättigte Fettsäuren in den lipophilen Schwänzen der Phospholipide haben einen Knick, der die Moleküle am dichten Zusammenrücken hindert, und fördern dadurch die Fluidität. In die Lipiddoppelschichten eingebaute Cholesterinmoleküle vermindern bei mäßigen Temperaturen die Membranflüssigkeit, weil sie die Beweglichkeit der Phospholipide einschränken. Bei niedriger Temperatur stören sie jedoch die regelmäßige, dichte Packung und verhindern dadurch, dass die Membranen „kristallisieren“.

Die wichtigsten Funktionen der Membranproteine sind:

  • Transport (passiv, aktiv)
  • Enzymaktivität
  • Signalübertragung
  • Verbindung von Zellen
  • Zellerkennung
  • Verankerung am Cytoskelett und an der extrazellulären Matrix

Neben Proteinen sind für die Zellerkennung auch Membran gebundene Kohlenhydrate von großer Bedeutung (Glykoproteine und Glykolipide).

Vom Einzeller zum Vielzeller

Auch Vielzeller entstehen normalerweise aus einer Zelle. Nach den Mitosen bleiben die Zellen jedoch verbunden und geben damit einen Teil ihrer Selbständigkeit auf. Während sie zunächst noch weitgehend identisch und damit „totipotent“ sind, differenzieren sie sich im Laufe der weiteren Entwicklung und damit können nur noch bestimmte Zelltypen aus ihnen hervorgehen („multipotent“). Schließlich sind sie überhaupt nicht mehr teilungsfähig. Damit ist der natürliche Tod der Zellen der Vielzeller vorprogrammiert.

Dieser Übergang von Einzellern zu Vielzellern , der vor etwa einer Milliarde Jahre stattfand, konnte nur funktionieren, wenn weitere Probleme gelöst wurden. Bei Einzellern läuft die natürliche Selektion zwischen den einzelnen Zellen ab. Sie sind die Einheiten der Selektion. Bei Vielzellern darf es keine Selektion zwischen den Körperzellen geben. Das kann nur gelingen, wenn es einen Erkennungsmechanismus von „eigen“ und „fremd“ gibt. Ein solches Selbsterkennungssystem kann als der Anfang eines Immunsystems aufgefasst werden.

Dieses Selbsterkennungssystem ist bei „niederen“ Vielzellern noch nicht sehr ausgeprägt. Deshalb funktioniert z.B. das Propfen bei Pflanzen – sogar zwischen Individuen verschiedenen Arten – meist sehr gut. Auch bei koloniebildenden Tieren ist das Erkennungssystem im Allgemeinen so, dass es zwischen den Einzelindividuen einer Kolonie nicht unterscheidet. Relativ gut untersucht sind die Verhältnisse bei dem koloniebildenden Manteltier Botryllus schlosseri. Das genetisch verankerte „Selbsterkennungssystem“ dieser Seescheide erlaubt nur die Fusion von genetisch nahe verwandten Kolonien. Von manchen Forschern wird daraus gefolgert, dass der ursprüngliche  Sinn des Immunsystems die Verhinderung solcher Zellinvasionen war, die eine Konkurrenz unterhalb des Individuums bewirken würden. Evolutionsbiologisch gesehen könnte man sagen, das Selbsterkennungssystem sorgt bei Vielzellern dafür, dass  der Gesamtorganismus und nicht einzelne Zellen oder Zelllinien die Einheit der Evolution sind.

Diese Sicht  könnte auch ein neues Licht auf das Wirkungsgefüge von Krebsbildungen werfen. So weiß man heute, dass spezielle Krebsstammzellen für die Krebsbildung und die Metastasenbildung entscheidend sind (Clarke, Becker 2007). Weissmann (Ainssworth 2006) sieht gewisse Parallelen zwischen Krebszellen und den Gewinner-Stammzellen von Botryllus. Er meint, wenn man die Gene der Botryllus-Übernahme-Zellen entschlüsseln würde, würde man wahrscheinlich Ähnlichkeiten bei den Genen finden, die Krebszellen ihre tödliche Entwicklung ermöglichen.  Aus dieser Sichtweise könnte man Krebs als ein Relikt bzw. einen Atavismus aus der Zeit des Übergangs von Einzellern zu Vielzellern ansehen.

Zellen und Gewebe

Die Plasmamembran ist die äußere Grenze einer Zelle, aber die meisten Zellen bilden weitere Strukturen aus, die außerhalb der Plasmamembran liegen. Pflanzenzellen z. B. sind von einer festen Zellwand aus Zellulose umgeben. Bei Pilzen besteht diese Zellwand aus Chitin. Die Zellen vielzelliger Tiere besitzen zwar keine den Pflanzenzellen vergleichbare Zellwände, sie verfügen aber über eine hoch entwickelte extrazelluläre Matrix, die vorwiegend aus von der Zelle abgesonderten Proteinfasern (Kollagene, elastische Fasern) und einer Grundsubstanz aus Glykosaminglykanen, Proteoglykanen und  Adhäsionsproteinen (Glykoproteinen) besteht. Diese extrazelluläre Matrix ist mit Proteinen der Zellmembran verbunden (Integrine) und über diese in die Membran integrierten Proteinmoleküle ist auch ein Signalaustausch von der extrazellulären Matrix in das Cytosol der Zelle hinein möglich.

In einem Verband aus vielen Zellen (Gewebe) kann die extrazelluläre Matrix koordinierende Signale übertragen. Dies spielt eine wichtige Rolle bei der embryonalen Gewebe- und Organentwicklung, aber auch bei der Tumorbildung. Dabei spielt die Basallamina als besondere Ausbildung der Extrazellulären Matrix, die Zellen und Epithelien von umgebenden Bindegeweben trennt, eine wichtige Rolle.

In vielzelligen Tieren und Pflanzen sind viele Einzelzellen zu funktionsfähigen Geweben und Organen verbunden. Durch spezielle Plasmaverbindungen können nicht nur kleine Moleküle, Wasser und Ionen sondern auch Proteine und RNA-Moleküle ausgetauscht werden. Für den Transport dieser größeren Moleküle sind Cytosklelettfasern verantwortlich. Bei Pflanzen nennt man diese Verbindungen Plasmodesmen. Bei Tieren gibt es verschiedenen Typen von Zellverbindungen. Besonders häufig sind solche Zellverbindungen in Epithelgeweben, welche die inneren und äußeren Oberflächen eines Tierkörpers auskleiden. Gap Junctions (Kommunikationskontakte) bilden winzige Cytoplasmakanäle zwischen benachbarten Tierzellen. Durch diese Kanäle können Salze, Zucker, Aminosäuren und andere kleine Moleküle bis zu einem Molekulargewicht von 2.000 diffundieren. Weitere Zellverbindungen sind Tight Junctions oder Verschlusskontakte, die Epithelzellen gürtelartig verbinden und verhindern, dass extrazelluläre Flüssigkeit durch ein Epithel hindurchsickert. Im Gehirn bilden die dichten Tight Junctions  zwischen den Endothelzellen der Blutkapillaren die Blut-Hirn-Schranke. Desmosomen und Adhärenz-kontakte („Haftkontakte“) wirken nietenartig und verbinden verschiedene Zellen zu einer Gewebeschicht.

Von Geweben zu Organen

Gewebe setzen sich aus einheitlichen Zellen zusammen, verschiedene Gewebe sind im Tierkörper zu Organen zusammengefasst. Die verschiedenen Organe stehen zwar in enger Wechselwirkung miteinander, durch die  starke Abgrenzung dieser Einheiten sind aber verschiedene Funktionen wie Verdauung, Atmung, Blutkreislauf oder Exkretion erst möglich. Solche Organe bilden als Ganzes relativ abgeschlossene Systeme im Organismus und erst dadurch wird z. B. die Organtransplantation möglich.

Größere Organismen benötigen zum Stofftransport spezielle Transportsysteme. Bei Pflanzen handelt es sich dabei überwiegend um Durchflusssysteme, bei Tieren um Kreislaufsysteme. Auch diese Systeme müssen vom übrigen Körpergewebe mehr oder weniger abgeschlossen sein, um einen wirkungsvollen Stofftransport zu ermöglichen. Aber auch offene Kreislaufsysteme, wie es z. B. für die große Gruppe der Insekten charakteristisch sind, können sehr effektiv arbeiten.

Ein besonders wichtiges, stark kompartimentiertes Stoffwechselorgan des menschlichen Körpers und des Körpers der Wirbeltiere ist die Leber. Beim Menschen liegt sie im oberen Teil der Bauchhöhle unmittelbar unter dem Zwerchfell Sie ist mit einer Masse von rund 2 Kilogramm die größte Körperdrüse. Pro Minute wird sie  von einem Liter Blut durchflossen.

Die diffizile Kompartimentierung der Leber gestattet, dass mehr als 500 verschiedene Stoffwechselvorgänge hier stattfinden können. Zunächst sorgen zwei Zufluss- und zwei Abflusssysteme dafür, dass sich in den Hepatocyten die richtigen Konzentrationsgefälle einstellen können, die für die Umbaureaktionen Voraussetzung sind:

  • Die Pfortader stellt die Verbindung zum Darm her und sorgt dafür, dass die vom Darm resorbierten Nährstoffe zur Leber gelangen.
  • Über die Leberarterie werden den Hepatocyten Sauerstoff und Signalstoffe, aber auch Aufbaustoffe zugeführt.
  • Über die Lebervene werden Abfallstoffe zur Ausscheidung durch die Niere und CO2 zu Abgabe in der Lunge abtransportiert.
  • Auch mit Gallenflüssigkeit werden Abfallstoffe über die Gallengänge und die Gallenblase zum Dünndarm abtransportiert., z.B. die Abbauprodukte des Häms, die gelben Bilirubine.

Die Leber besteht aus einem größeren rechten und einem kleineren linken Lappen, die sich jeweils in Tausende Leberläppchen unterteilen. In der Mitte jedes dieser Läppchen von etwa 1 mm Durchmesser liegt eine kleine Zentralvene, die das Blut zur Lebervene leitet. Zwischen den Läppchen liegen Bindegewebsfelder, durch die sich je ein feiner Ast der Leberschlagader und der Pfortader zeiht, deren Blut durch das Leberläppchen zur Sammelvene sickert, sowie ein Gallenkanälchen, das im Läppchen produzierte Gallenflüssigkeit in zum Blutstrom entgegen gesetzter Richtung zur Gallenblase abtransportiert. Das kleinste Kompartiment des Organs Leber ist die Leberzelle (Hepatozyt). Die Leberzellen sind lamellenartig angeordnet und lassen Kanälchen frei, durch die das Blut sickern kann (Sinusoide).

In den Leberzellen werden viele Eiweißmoleküle aufgebaut, außerdem werden Giftstoffe und Stoffe, die aus dem Körper befördert werden, sollen für die Ausscheidung vorbereitet. Die Glucose aus der Verdauung der Kohlenhydrate kann in den polymeren und damit osmotisch unwirksamen Speicherstoff Glykogen umgewandelt werden, der zum Teil in der Leber selbst gespeichert werden kann. Verschiedene Lipide werden in der Leber aus ihren Bestandteilen aufgebaut und umgebaut, u. a. das Cholesterin.

Bei dem Abbau und Umbau von stickstoffhaltigen Proteinen wird mehr Stickstoff frei als für den neuen Eiweißaufbau benötigt wird. Dieser überschüssige Stickstoff wird in der Leber in Harnstoff umgewandelt, ein Sekretionsprodukt, das an die Lebervene abgegeben, von den Nieren herausgefiltert und mit dem Urin ausgeschieden wird. Auch die Gallenflüssigkeit wird in der Leber produziert und durch besondere Gallengänge zur Gallenblase befördert, von der aus sie über den Gallengang in den Dünndarm ausfließt. Sie besteht aus Gallensäuren bzw.-salzen, Lipiden, Cholesterin und Farbstoffen. Diese Farbstoffe sind Abbauprodukte des Hämoglobins, die sogenannten Bilirubine. Sie sind sowohl für die Gelbfärbung der Gallenflüssigkeit und des Urins als auch für die Braunfärbung des Stuhls verantwortlich. Die Gallensäuren sind Abbauprodukte des Cholesterins. Sie helfen als Emulgatoren bei der Fettverdauung im Dünndarm. Wird der Abfluss der Gallenflüssigkeit verhindert – z.B. durch Gallensteine oder eine Leberentzündung – kann der Bilirubinüberschuss im Blut eine Gelbsucht bewirken.

Durch Schädigungen, wie sie z. B. durch reichlichen Alkoholkonsum hervorgerufen werden können, kann es zur sogenannten Leberzirrhose kommen. Dabei handelt es sich um eine teilweise Zerstörung der Leberzellen. Abgestorbene Hepatozyten werden durch Bindegewebe ersetzt, welches das Organ durchzieht und noch funktionsfähige Zellen isoliert. Diese isolierten Inseln sind von den Zufuhr- und Abfuhrsystemen mehr oder weniger abgetrennt und können deshalb die vielseitigen Stoffwechselaufgaben nicht mehr erfüllen. Dadurch, dass weniger Pfortaderblut aufgenommen werden kann, kommt zu einem Rückstau. Durch die Gefäßwände wird Wasser in die Leibeshöhle filtriert. Der Abtransport der Gallenfarbstoffe über die Gallenblase wird behindert, wodurch es zu gelbsuchtartigen Zuständen kommt usw.

Kompartimente oberhalb des Individuums

Auch oberhalb der Organisationsebenen Zelle, Gewebe, Organ, Organismus ist die Biosphäre in viele Kompartimente gegliedert, wie Populationen, Arten, Biozönosen, Ökosysteme, Biome, Reviere, Areale usw. Dabei wird hier noch deutlicher, dass es neben räumlich definierbaren Kompartimenten auch Kompartimente gibt, die sich aus den besonderen Eigenschaften ihrer Bestandteile ergeben: Populationen und Arten sind durch den gemeinsamen Genpool und die Fähigkeit zum Genaustausch (Sexualität) gekennzeichnet. Räumlich kann sich eine Population aber über den ganzen Erdball erstrecken. Reviere und Areale können sich räumlich vielfach überlappen und überdecken. Derselbe geographische Raum kann z.B. viele Reviere verschiedener Arten enthalten. Ein geographischer Raum mit vielen gemeinsamen Artarealen wird als Floren- oder Faunenregion bezeichnet.

Besonders einschneidend ist die Grenze, die einen Organismus bzw. ein Individuum gegen seine Umwelt abgrenzt. Kreislaufsysteme überschreiten diese Außengrenze ebenso wenig, wie Zellen mit dem speziellen genetischen Programm, das nur für dieses Individuum gilt.  Ein  spezielles Signalsystem sorgt für  die Koordination aller Zellen, Gewebe und Organe innerhalb des Individuums, nur wenig davon dringt  nach außen. Innerhalb des Organismus wird durch aufeinander abgestimmte Stoffwechselvorgänge ein stoffliches Gleichgewicht aufrecht erhalten, das man mit einem eigenen Begriff „Homöostase“ kennzeichnet und das die Grenzen des Organismus nicht überschreitet.  Wenn die genannten individuellen Schranken überschritten werden, nehmen wir das als etwas Besonderes wahr: Bei Säugetieren ist der Kreislauf des Muttertieres mit dem Embryo verbunden, bei Kolonie  bildenden oder Staaten bildenden Tieren  sind die Individualgrenzen ebenfalls mehr oder weniger stark aufgelöst.

Auch der Sexualvorgang ist eine besondere Grenzüberschreitung, durch die gleichzeitig ein höheres Kompartiment gebildet wird, die Gemeinschaft aller Individuen, zwischen denen Gene ausgetauscht werden können, die Art. Die individuellen genetischen Programme machen die innerartliche Evolution möglich, die Genpools  der Populationen und Arten sind die Grundlage für die Evolution oberhalb des Artniveaus.

Die Individuen, die zu einer Art gehören, haben in der Regel ähnliche Ansprüche an ihre Umwelt. Im Bezug auf bestimmte Umweltfaktoren spricht man vom „Toleranzbereich“ der Art. Diese verschiedenen Toleranzbereiche beschränken die Verbreitung der Art. Die räumliche Verbreitung, das Artareal, wird aber auch durch erdgeschichtliche Entwicklungen bestimmt. Dazu gehören tektonischen Vorgänge, insbesondere Verschiebungen der Kontinentalplatten, Gebirgsbildungen und Überflutungen (Meerestransgressionen), Klimaeinbrüche und in der Folge auch Konkurrenzbeziehungen zu Arten, zu denen vorher kein Kontakt bestand.

Arten stehen in vielen Wechselbeziehungen mit der Umwelt und mit anderen Arten. Vorwiegend durch geografische und geologische Gegebenheiten werden diese Wechselbeziehungen aber beschränkt und gelenkt. In bestimmten Gebieten und zwischen den darin vorkommenden Arten sind die Wechselbeziehungen vielfältiger als nach außen. Die Folge ist, dass sich die Biosphäre abgestuft in viele Teilräume untergliedern lässt, die allgemein als Ökosysteme bezeichnet werden. Ein solches Ökosystem kann ein kleines Feldgehölz, eine Weidetümpel oder eine Blockhalde an einem Bergsturz sein, aber auch der Amazonas-Regenwald, das Kongobecken,  die circumpolare Tundra oder ein Ozean. Großökosysteme, die sich in viele Teilsysteme untergliedern,  werden auch Biome genannt (Whittaker 1975, Walter 1976, UB 299). Sind sie vorwiegend von den Klimazonen der Erde bestimmt, nennt man sie Zonobiome, in den verschiedenen Höhenstufen der Gebirge unterscheidet man Orobiome, besondere Bodenbedingungen führen zu speziellen Pedobiomen.

Kleine Ökosysteme, die eine Landschaft untergliedern, werden oft auch als „Biotope“ bezeichnet,  obwohl dieser Begriff in der ökologischen Terminologie ursprünglich nur den Lebensraum ohne die Lebensgemeinschaft bezeichnet. Der Begriffswandel lässt sich aus der Naturschutzpraxis erklären: Wenn man ein bestimmtes Ökosystem durch Naturschutzmaßnahmen einrichten will, muss man zunächst die standörtlichen Bedingungen schaffen. So „legt man einen Biotop an“ –  z.B. einen Gartenteich oder eine Natursteinmauer –, der dann durch Bepflanzung oder natürliche Ansiedlung von Arten zum Kleinökosystem wird.  Oft wird mit dem Begriff „Biotop“ auch gleich ein bestimmter ökologischer Wert verbunden.  „Biotopkartierungen“ in der Kulturlandschaft  erfassen in der Regel nur besondere, „ökologisch wertvolle“, „naturnahe“ Landschaftselemente.

Eine andere Kompartimentierung der Landschaft ergibt sich aus den Revieren verschiedener Tierarten. Die Grenzen werden hier vorwiegend durch das agonistische Verhalten der Revierbesitzer errichtet. Aber auch spezielle akustische, optische oder chemische Signale wirken begrenzend.

Grenzen in Naturlandschaften sind oft nicht sehr scharf, sondern durch Übergänge gekennzeichnet, die man mit einem eigenen Begriff erfasst: Ökotone. So ist es oft nicht möglich, die Grenzen zwischen zwei Ökosystemen (oder zwei Pflanzengemeinschaften) genau festzulegen. In Kulturlandschaften sind die Grenzen jedoch in der Regel scharf, da sie durch menschliche Aktivitäten bedingt sind. Sehr gut lässt sich dies von Flugzeug aus oder an den Bildern von Google Earth erkennen. So ist es auch kein Wunder, dass die durch die „Pflanzenoziologie“ gekennzeichneten Pflanzengesellschaften vor allem für Mitteleuropa zu einem sehr differenzierten System ausgebaut wurden. Allerdings wird sich „ein mehr Außenstehender … die Frage aufwerfen, ob die Katalogisierung aller, auch der kleinsten Vegetationseinheiten Mitteleuropas die dafür aufgewendete Mühe lohnt. Dies wäre vom wissenschaftlichen Standpunkt aus durchaus zu bejahen, wenn die derzeitigen Pflanzengesellschaften ähnlich unveränderliche Einheiten wären wie die taxonomischen, aber das sind sie nicht“ (Walter 1973, S.115).

In den heutigen Kulturlandschaften ist die „Überkompartimentierung“ ebenso ein Naturschutzproblem wie die „Unterkompartimentierung“ durch riesige Monokulturen. Von einem durch Ackerflächen umschlossenen Kleinkompartiment „Feldgehölz“ aus ist es z. B. für viele Tiere schwierig, in andere, ähnliche Biotope zu gelangen. Feldhecken begrenzen Kulturflächen, sie sind aber auch Verbindungswege zwischen Ökosystemen. Besonders stark wirkende Grenzen sind Verkehrswege, weshalb man an einigen wenigen Stellen sinnvoller Weise so genannte Biotopbrücken über Autobahnen gebaut hat, um deren Landschaft zerschneidende Wirkung zu mindern.

Das „Basiskonzept „Kompartimentierung“ im Unterricht

„Lebende Systeme zeigen abgegrenzte Reaktionsräume. Dieses Basiskonzept hilft z. B. beim Verständnis der Zellorganellen, der Organe und der Biosphäre“. So steht es in der „Einheitlichen Prüfungsanforderung in der Abiturprüfung Biologie“ nach dem Beschluss der KMK-Konferenz vom 05.02.2004. In Lehrbüchern tritt der Begriff jedoch meistens nur im Zusammenhang mit der „Zellkompartimentierung“ auf, seltener auch im Zusammenhang mit der „Kompartimentierung des Organismus“ (z.B. Biesalski, Grimm 2002).

Damit wird die Intention der „Basiskonzepte“ oder „Erschließungsfelder“ nicht erfüllt. Denn dadurch, dass Basiskonzepte biologische Phänomene umreißen, die in der Regel durch viele, wenn nicht alle Organisationsebenen des Lebendigen hindurchreichen, sollen sie biologische Fachkenntnisse strukturieren und dadurch fassbarer und merkbarer machen.

Wie könnte gerade das Basiskonzept „Kompartimentierung“ helfen, Lernen zu verbessern? Wie könnte es kumulatives und outputorientiertes Lernen fördern?

Die wichtigste Gemeinsamkeit der Kompartimente auf allen biologischen Organisationsebenen ist die selektive Abgrenzung. Dies betrifft den Austausch von Stoffen, von Energie und von Information. Diese Einschränkungen können aber – ähnlich wie eine Zollstation und eine Grenzkontrolle an einer Ländergrenze – zur Steuerung und  Regelung, auch zur gezielten Signalweitergabe genutzt werden.

Damit hat man ein strukturierendes Prinzip für viele biologische Sachverhalte gewonnen, das so unterschiedliche Inhalte, wie „Stoffkreisläufe in Ökosystemen“ und „Intrazelluläre Regelprozesse“ oder „Biomembranen“ und „Vernetzung von Biotopen“ in Beziehung bringen kann. Gleichzeitig kann man neue Inhalte mit diesem Prinzip aufschließen, erklären, besser verstehen und einordnen (Outputorientierung).

Kompartiment Grenze für Abgrenzung durch Grenzüberwindung durch
Membranumschlossenes Zellkompartiment Moleküle, Ionen Lipiddoppelschicht Tunnel- und Carrierproteine, signalübertragende Proteine, lipophile Moleküle
Organ Blut, Lymphe u.a. Körperflüssigkeiten Epithelien Blutgefäße, Lymphe
Organismus Stoffe, Energie, Signale Haut, Epithelien Verdauungssystem, Sinnesorgane, Kommunikationssysteme
Art, Population Gene Kreuzungsbarrieren, Inkompatibilitätsfaktoren Migration, Hybridisierung, horizontaler Gentransfer
Areal (Verbreitungsgebiet) Individuen einer Art (oder einer höheren Verwandtschaftsgruppe) Geographische und geologische Barrieren, Konkurrenzdruck anderer Arten Verschleppung von Individuen durch natürliche oder vom Menschen verursachte Vorgänge
Revier Individuen Agonistisches Verhalten; akustische, optische, chemische Signale Revierkämpfe
Ökosystem Individuen, Stoffe, Energie Geografische Barrieren Tierwanderungen, Transport von Vermehrungseinheiten, Stofftransport über Gewässer, Wettergeschehen wie Luftströmungen
Biom Ökosysteme,  Arten/Populationen, Individuen Klimagrenzen, geographische Barrieren Klimaänderungen, Erosion, Tektonik

Wenn man erkannt hat, dass Grenzen auch etwas mit Austausch zu tun haben, versteht man das in lebenden Systemen  immer wiederkehrende Prinzip der Oberflächenvergrößerung zur Förderung von Austauschprozessen besser. Auch der modulartige Aufbau von Lebensstrukturen kann mit dem Prinzip der Kompartimentierung in Verbindung gebracht werden (Grundorgane der Pflanze, die sich immer wiederholen; Metamerie bei Tieren). So kann dieses Basiskonzept, wie auch andere, helfen, über Querverbindungen  vernetztes Lernen zu erleichtern und doch bei dieser Vernetzung Chaos zu vermeiden. „Alles hängt mit allem zusammen“, ist zwar eine korrekte Beschreibung der Welt, verhilft aber kaum zu einem besseren Weltverständnis.

In diesem Artikel sind wir von den kleinsten Kompartimenten des Lebendigen in den Zellen ausgegangen und haben uns dann über Organe und Organismen zu den Überindividuellen Kompartimenten der Biosphäre emporgearbeitet. Dies muss aber nicht der Weg sein, der sich auch für den Schulunterricht anbietet. Die frühe Behandlung cytologischer und sogar molekularbiologischer Inhalte  führt zwangsläufig dazu, dass die „organismische Biologie“ an Bedeutung verliert. Gerade in den Klassenstufen 5 bis 7 hat die unmittelbare Begegnung mit Tier- und Pflanzenarten, möglichst in ihren natürlichen Lebensräumen, einen besonders animierenden und prägenden Einfluss. Dies ist nämlich der Zeitabschnitt, in dem sich bei mangelnder Förderung das Interesse an der „grünen Biologie“ allmählich verliert. Ziel einer ausgewogenen Allgemeinbildung sollte es aber sein, Interesse und Kenntnis der „Vielfalt des Lebendigen“ in den makroskopischen Dimensionen zu erhalten und zu fördern. Deshalb wäre es durchaus sinnvoll, von Individuen und Arten ausgehend in den unteren Klassen der SI einen deutlichen Schwerpunkt auf Lebensräume und Ökosysteme zu legen und diese „Landschaftsbiologie“ auch mit Unterrichtsabschnitten im Gelände zu vermitteln. Das würde z. B. bedeuten, dass man wichtige heimatliche Lebensräume wie Fließgewässer und Teich, Hecke und Wald, Wiese und Weide aus eigener Anschauung kennen lernt und dass man möglichkeiten der landschaftsgestaltung im eigenen Schulgarten erfährt.. Cytologische und molekularbiologische Inhalte sollten schwerpunktmäßig auf die letzten Klassenstufen verlegt werden. Die in der Makrobiologie gewonnen Vorstellungen  zur Kompartimentierung könnten dann als Modelle für mikroskopische und submikroskopische Vorstellungen dienen. Begriffe wie „Tunnelprotein“, „Fence-and-Picket-Modell“ oder „aktiver und passiver Transport“ bauen  ja ohnehin makroskopischen Vorstellungen auf.

Literatur und URLs

Abbot, A.: Cell biology: Hopping fences. Nature 433, p.680-683, 2005

Acquisti, C., Kleffe, J., Collins, S.: Oxygen content of transmembrane proteins over macroevolutionary time scales. Nature 440, p.47-52, 2007

Ainsworth, C.: Cell biology: The Story of I. Nature 440, p. 730-733, 2006

Alberts, B., Bray, D. Lewis, J., Raff, M., Roberts, K., Watson, J.D.: Lehrbuch der molekularen Zellbiologie. Wiley-VCH, 2001

Archibald, J.: One plus one equals one- symbiosis and the evolution of complex life. Oxford University Press 2014

Biesalski, H.K., Grimm, P.: Taschenatlas der Ernährung. Thieme, Stuttgart, 2.A., 2002

Brenner, K.-U.: Der Körper des Menschen. Weltbild, Augsburg 1990

Campbell, N.A., Reece, J.B. (Hrsg. d. dtsch. Ausg. H. Markl): Biologie. Spektrum, Heidelberg/Berlin, 6. A. 2003

Clarke, M.F., Becker, M.W.: Krebs – sind Stammzellen schuld? Spektrum der Wissenschaft ,  S. 56-63, Januar 2007

Einheitlichen Prüfungsanforderung in der Abiturprüfung Biologie. Beschluss der Kultusministerkonferenz vom 01.12.1989 i. d. F. vom 05.02. 2004

Faller, A.,  Schünke, M.: Der Körper des Menschen. Thieme, Stuttgart 1999

Frey, W., Lösch, R.: Lehrbuch der Geobotanik. Elsevier, München 2.A. 2004

Graf, D.: Nano-Katastrophen (Michael Crighton: Die Beute). UB Kompakt 312 (Jg. 30), S.25-28, 2006

Heinrich, D., Hergt, M.: dtv-Atlas zur Ökologie. dtv, München, 3.A. 1994

Helmich, U. :Biomembranen. http://www.u-helmich.de/bio/cyt/reihe03/membran01.html , 2001/2005

Höffeler, F.: Bildatlas Cytologie. Harri Deutsch, Frankfurt a. M. 2003

Kattmann, U. (Hrsg.): Bioplanet Erde. UB 299 (Jg. 28), 2004

Krupinska, K., Desel, C., Mulisch: Stromuli – Plastidenbrücken im Netzwerk der Zelle. In: Biologie in unserer Zeit 40/3: S. 162–17, 2010,

Pott, R.: Allgemeine Geobotanik: Biogeosysteme und Biodiversität. Springer, Berlin 2005

Probst, W., Schuchardt, P. (Hrsg.): Biologie Ausgabe B. Duden-Paetec, Berlin/Frankfurt a.M. 2007

Probst, W. (Hrsg.): Miteinander- Beziehungennund Wechselwirkungen. UB 280 (Jg. 26), 2002

Probst, W. (Hrsg.): Ameisen und Termiten. UB 306 (Jg. 29), 2006

Rottmann, S.: Hier geht´s an die Nieren. UB 313 (Jg. 30), S.30-37, 2006

Ruppert, W. (Hrsg.): Struktur und Funktion. UB 232 (Jg.22), 1998

Simons, K., Ikonen, E. : Functional rafts in cell membranes. Nature 387, p. 569–572. 1997.

Suzuki, K. et al.: Rapid Hop Diffusion of a G-Protein-Coupled Receptor in the Plasma Membrane as Revealed by Single-Molecule Techniques. Biophysical Journal 88:3659-3680 (2005) http://www.biophysj.org/cgi/content/full/88/5/3659#FIG1

Wächtershäuser, G.: Evolution of the first metabolic cycles. Proceedings of the National Academy of Sciences, Vol. 87, Jan. 1990, p. 200–204

Wächtershäuser, G.: Origin of Life: Life as we don’t know it. Science 289 (5483), 25. August 2000, S. 1307–1308

Walter, H.: Die ökologischen Systeme der Kontinente (Biogeosphäre). G. Fischer, Stuttgart 1976

Walter, H.: Allgemeine Geobotanik. Ulmer, Stuttgart 1973

Whitfield, J.: Born in a watery commune. Nature 427, 19.  Febr. 2004, p.674-676

Whittaker, R.H.: Communities an ecosystems. Macmillan, London/New York, 2.ed. 1975

Extrazelluläre Matrix:

http://www.unifr.ch/anatomy/elearningfree/allemand/bindegewebe/sfa/d-sfa.php

http://www.uni-tuebingen.de/uni/kxm/Courses/documents/GV0607ECM.pdf

Genzyme Deutschland: Einführung in das Krankheitsbild des Morbus Pompe. Neu-Isenburg, 2008. http://www.genzyme.de/thera/pompe/de_p_tp_thera-pompe.asp

Arealkunde

http://weinmannia.botanik.uni-hohenheim.de/Studienunterlagen_Dalitz/PDF/Arealkunde.pdf

Biotopbrücken

http://www.umweltbundesamt.at/umweltschutz/naturschutz/lebensraumschutz/vernetzung/lrv_empfehlungen/

Der Mensch als Beschützer der Natur

LINK-NAME
In dem Beitrag „Zehn Jahre Nachhaltigkeitsstrategie“ habe ich G. C. Daily zitiert: ‚Until the next big asteroid hits us, the future of life on earth will depend much more on humanity than on anything else“  (G. C. Daily, Nature 411, 17 . Mai 2001,p.245). Damit wird – zwar mit einem relativierend fatalistischen Ausblick – die Erkenntnis zum Ausdruck gebracht, dass die Menschheit eine große Verantwortung für den Bioplaneten Erde trägt. In dieser Rolle des Erdenbeschützers sehen sich vor allem Naturschützer und Umweltschützer. „Natur- und Umweltschutz“ ist eine Wortkombination, die sich in vielen politischen Programmen, Forderungskatalogen und Absichtserklärungen findet. Doch zunächst einmal sind diese beiden Schutzziele keineswegs identisch.

Natur- und Umweltschutz

Während es dem Naturschutz darum geht, die Natur vor dem Menschen und den menschlichen Aktivitäten zu schützen, ist es das Ziel des Umweltschutzes, die Umwelt für den Menschen zu bewahren (Hupke 2015). In den 1990 er Jahren wurde versucht, diese anthropozentrische Orientierung des Umweltschutzes durch den Begriff der „Mitwelt“ und des „Mitweltschutzes“ zu ersetzen und damit Natur- und Umweltschutz zu vereinen (Meyer-Abich 1990),  Dieser Begriff hat sich allerdings nicht durchgesetzt.

Ein wichtiges Ziel des Naturschutzes, vielleicht sogar das wichtigste Ziel, ist der Erhalt der biologischen Vielfalt. Dabei geht es um die Vielfalt der Arten und die Vielfalt der Lebensräume bzw. Ökosysteme und schließlich auch noch um die genetische Vielfalt innerhalb der Arten, in den Populationen.

Alle Fachleute sind sich weitgehend einig darüber, dass das von der menschlichen Zivilisation verursachte Aussterben von Arten eine katastro­phale Dimension angenommen hat. In der Folge der UN-Konferenz für Umwelt und Entwicklung in Rio de Janeiro wurde deshalb schon 1993 ein „Übereinkommen zum Schutz der biologischen Vielfalt“, die sogenannte Bi­odiversitätskonvention (Convention on Biological Diversity – CBD) getroffen. Dieses Abkommen wurde mittlerweile von 188 Staaten – auch von der EU – unterzeichnet und in deren Gesetzgebung übernommen. Als Begründung für die Notwendigkeit, biologische Vielfalt zu erhalten, werden in dieser  in dieser Konvention folgende Punkte angeführt:

  1. Ökonomische Interessen. Vielfalt ist eine genetische Ressource und eine Ressource an Naturstoffen. Artenverlust führt zu einer Beeinträchtigung poten­tieller Nutzungsfähigkeit. Wenn eine Art ausgerottet wird, wird damit menschliche Handlungsmöglichkeit für die Zukunft unwiderruflich beschränkt.
  2. Ökologische Interessen. Das Wirkungsgefüge der Biosphäre, die Prozesse des Energieflusses und des Recyclings, sind auf Vielfalt angewiesen. Sie sind die Basis für den Erhalt der „natürlichen Lebensgrundlagen“.
  3. Gesellschaftliche und kulturelle Interessen. Biologische Vielfalt spricht uns unmittelbar emotional an. Sie dient der Befriedigung emotionaler Bedürfnisse. Natur, insbesondere auch ursprüngliche, vom Menschen nicht oder wenig beein­flusste, kann als „Kraftquelle“ genutzt werden. Aber auch reich strukturierte traditionelle Agrarlandschaften, wie sie für Mitteleuropa bis vor 50 Jahren charakteristisch waren, haben einen besonderen ästhetischen Wert für Erholungssuchende.
  4. Biologische Vielfalt ist ein Wert in sich. Die Schöpfung ist es Wert, um ihrer selbst willen erhalten zu werden. Dieser Argumentation folgt vor allem die Tiefen­ökologie und die „radikale Ökologie“.

Genaugenommen sind allerdings nur der letzte Punkt  und eingeschränkt der zweite Punkt wirkliche Naturschutzargumente. Die beiden anderen Begründungen sind letztlich auf den Menschen bzw. die menschliche Gesellschaft bezogen und damit als Ziele des Umweltschutzes zu werten.

Artenschutz: Seltene Arten häufig machen?

Artenschutz ist bis heute ein wichtiger wenn nicht der wichtigste Teil der Naturschutzarbeit. Rote Listen dienen dazu, die Gefährdung von Arten einzuschätzen. Sie spielen bei der Bewertung von allen Eingriffen in den Naturhaushalt eine wichtige Rolle. Aber was bedeutet „Artenschutz“ eigentlich? Schon 1987 fragte Hermann Ellenberg „Was will der Naturschutz eigentlich – seltene Arten häufig machen?“. Er weist zu Recht auf die Probleme mit „Roten Listen“ hin, die nicht nur zeitlich begrenzt sind (etwa auf die letzten 120 Jahre) sondern vor allem auch räumlich auf die jeweilige politischen Grenzen. Außerdem haben seltene Arten nur einen geringen Anteil an der Individuenzahl einer Lebensgemeinschaft. Daraus ergibt sich logischerweise, dass sie auch für das Wirkungsgefüge eines Ökosystems, für Energieflüsse und Stoffkreisläufe, nur von untergeordneter Bedeutung sind. Ist es deshalb wirklich gerechtfertigt, dem Schutz solcher seltener Arten eine so hohe Bedeutung beizumessen? Ein besser begründbares Ziel ist der Erhalt einer großen Artenvielfalt. Sie hängt einmal von einer Vielfalt der Lebensräume zum anderen aber auch in starkem Maße von dem Nährmineralgehalt des Bodens ab. Der hohe Nitrat-und Phosphatseintrag, der einmal der Landwirtschaft zum anderen den Verbrennungsmotoren geschuldet ist, trägt dazu bei, dass auf hohe Nährmineralgehalt des Bodens angewiesene Pflanzen (sogenannte Stickstoff-Zeigerpflanzen) sehr gut gedeihen. Bei den krautigen Pflanzen sind das durchweg sehr schnell wachsende und hochwüchsige Arten. Schnell verdrängen sie die niederwüchsigen, langsam wachsenden („sparsamen“) Konkurrenten. Eine wichtige Voraussetzung für den Erhalt der Artenvielfalt ist deshalb, zumindest in Mitteleuropa, ein ausgeglichener Stoffhaushalt.  Artenvielfalt kann nur gesichert werden, wenn nicht mehr Nitrate und Phosphate in das System eingebracht als entzogen werden. Die im Rahmen des Klimaschutzes erhobene Forderung der CO2-Neutralität müsste im Hinblick auf die Biodiversität auch für Stickstoff- und Phosphorverbindungen erhoben werden.

Selektiver Artenschutz

Diptam – Dictamnus albus -, in Deutschland geschützte Art, nach der Roten Liste für Deutschland „gefährdet“ (Foto Probst 2004, Edelweiß bei Retzbach/Main)

Das öffentliche Engagement für zu schützende Arten verteilt sich nicht gleichmäßig auf alle Verwandtschaftsgruppe. Es gibt besondere Tier- und Pflanzengruppen, denen der Naturschutz mehr Aufmerksamkeit widmet als anderen. Bei den Pflanzen sind es zum Beispiel die Orchideen, bei den Wirbeltieren die Vögel und die Amphibien, bei den Wirbellosen etwa die Schmetterlinge oder die Bienenverwandten. Dies mag daran liegen, dass diese Organismengruppen besonders viele Menschen ansprechen und dass es besonders viele Hobbybotaniker und Hobbyzoologen gibt, die sich mit diesen Tiergruppen beschäftigen. Dies ist auch eine Ursache dafür, dass die Gefährdungssituation für diese Gruppen besonders gut untersucht ist. Im strengen Sinne naturwissenschaftliche Gründe, diese Artengruppen besonders zu schützen, sind aber nicht so leicht erkennbar. Teilweise werden ökonomische Gründe genannt: Bienen und „Wildbienen“ sind Bestäuber von Nutzpflanzen, Singvögel und Kröten vertilgen Schädlinge. Bei bestimmten seltenen Arten –  wie vielen Orchideen, Diptam oder Frühlings-Adonisröschen – wird angenommen, dass das Vorkommen dieser spektakulären Arten gleichzeitig ein Zeiger für ein insgesamt ein schützenswertes Ökosystem sind.

Ein weiterer Aspekt der besonderen Hervorhebung einzelner Arten ist ihre Werbewirksamkeit. Wenn bestimmte Tiere – wie der Fischotter, der Storch oder der Laubfrosch – vom Naturschutz in den Vordergrund gerückt werden, so hat dies damit zu tun, dass sich der Schutz und Erhalt dieser Tierarten bei einer breiten Öffentlichkeit besonders gut „verkaufen“ lässt.

Ein naturwissenschaftlich fundiertes Argument dafür, einzelne Arten als besonders schutzwürdig einzustufen, ist ihre Rolle als Schlüsselarten in bestimmten Ökosystemen. Darunter versteht man Arten, die einen unverhältnismäßig großen Einfluss auf die Artenvielfalt und Artenzusammensetzung eines Ökosystems nehmen können. Oft handelt es sich um Konsumenten höherer Ordnung, durch deren Fraßdruck auf besonders häufige Beutearten deren Konkurrenzkraft verringert wird, wodurch andere, vorher unterlegene Arten koexistieren können. Auch die Naturschutzmaßnahme der Beweidung wirkt sich so aus: durch den Fraßdruck der Robustrinder  – in diesem Falle Primärkonsumenten – werden Gehölze zugunsten offener Landschaftsformen zurückgedrängt. Auf den extensiv beweideten Flächen bleibt eine hohe Artenzahl an Pflanzen erhalten, davon profitieren auch Insekten und Vögel.

Naturschutz contra Umweltschutz

Es gibt einige unüberbrückbar scheinende Kontroversen zwischen Naturschutz und Umweltschutz, die sich mit der unterschiedlichen Zielsetzung erklären lassen. Besonders deutlich wird dies zum Beispiel bei den sogenannten „alternativen Energien“. Aus Sicht des Umweltschutzes ist es dringend erforderlich, bei der Bereitstellung von Energie auf regenerative Energiequellen zu setzen, denn nur dadurch können Ressourcen geschont und die – vor allem für die Menschheit gefährlichen –  Klimaveränderungen in Grenzen gehalten werden. Aus Sicht des Naturschutzes gefährden Windräder viele Vogelarten, Biogas und Biotreibstoffe führen zu großen Monokulturen, in Mitteleuropa zum Beispiel von Raps und Mais, welche der Biodiversität schaden. Auch Freiland-Solarparks erregen nicht ganz zu Unrecht die Kritik von Naturschützern, zum Beispiel vom BUND: „Für Vögel können Irritationen beim lokalen, regionalen und internationalen Vogelzug durch eine Spiegelwirkung der Paneel-Oberflächen entstehen. Bei sehr großen Freiland-Solarparks kann es zu einer Trennwirkung (Barrierewirkung) kommen, die durch die erforderliche Einzäunung verstärkt wird. Durch die Aufstellung der Anlagen gehen wertvolle Nahrungsflächen verloren, insbesondere für Tiere, die freie Räume benötigen.“ (http://www.bund-sh.de/uploads/media/Freiland-Solarparks.pdf )

Ein weiteres Beispiel für die unterschiedlichen Sichtweisen ist die Einstellung zu Wäldern und Waldbewirtschaftung. Die Forstwirtschaft argumentiert mit dem Ziel des Klimaschutzes, dass es im Sinne einer maximalen Kohlenstoffspeicherung am besten sei, Bäume dann zu fällen, wenn die Hauptzuwachsphase zu Ende geht. Der Naturschutz hält den Erhalt bzw. die Wiederherstellung von Urwäldern erstrebenswert, in die der Mensch nicht eingreift. In einem solchen Wald bleiben Bäume so lange stehen, bis sie durch natürliche Einflüsse umfallen oder absterben. Der Förster und Bestsellerautor Peter Wohlleben (2013,2017) argumentiert im Sinne dieses Urwaldschutzes (und damit gegen viele seiner Kollegen): Mit dem derzeit gängigen Begriff des Naturschutzes würde der Schutz echter, unberührter Natur verwässert. Wohlleben fände es viel sinnvoller, die Vielfalt ursprünglicher Lebensräume zu schützen und nur dafür den Begriff „Naturschutz“ anzuwenden. Damit folgt er den Argumenten der nordamerikanischen Naturschutzbewegung, die unberührte und unbeeinflusste Natur, „wilderness“, als höchstes Schutzziel sieht (Hendersen o.J.). Dies bedeutet aber auch, dass aus seiner Sicht die vielen mitteleuropäischen Naturschutzbemühungen, die dem Erhalt einer vielseitigen, extensiv genutzten Kulturlandschaft dienen, weniger dem Bereich Naturschutz als den Bereich Denkmalschutz zuzuordnen wären. „Da werden ursprüngliche Haustierrassen, etwa Konikpferde oder Heckrinder, in Naturschutzgebieten ausgesetzt, um eine Beweidung ausgestorbener europäischer Wildpferde und Auerochsen nachzustellen. Das ist zwar idyllisch, aber nichts anderes als extensive Landwirtschaft“ (Wohlleben 2013,S.139). Also soll man nicht länger Wachholderheiden beweiden, Riedwiesen mähen, Moore entkusseln, Heidegebiete plaggen (http://www.nabu-selfkant.de/2011/12/plaggen-oder-schoppern-von-heideflachen/ )   und Wallhecken auf den Stock setzen?

Naturschutz und Landschaftspflege

Lanschaftspflege durch Schafe (Foto Probst, 2004, Fröruper Berge bei Flensburg)

Ich meine, eine differenzierte Betrachtung ist wichtig. Die in Mitteleuropa seit der letzten Kaltzeit in etwa 12 000 Jahren – also einer erdgeschichtlich sehr kurzen Zeitspanne – entstandene Landschaft war von Anfang an vom Menschen beeinflusst. Die menschliche Nutzung hat ein kleinräumiges Mosaik von Lebensräumen geschaffen und zu einer Artenvielfalt geführt, die sich vermutlich ohne den Menschen und seine Nutztiere nicht oder zumindest nicht so schnell entwickelt hätte. Diese Situation ist nicht ganz mit den großflächigen, weitgehend unberührten Naturräumen Nordamerikas zu vergleichen, die zudem durch die Kaltzeiten wegen der vorwiegend von Norden nach Süden streichenden Gebirge nicht so stark dezimiert wurden wie die Biozönosen Mitteleuropas.

Aus diesem Grunde kann Landschaftspflege im Sinne eines Landschaftsschutzes in Mitteleuropa durchaus dem Erhalt der biologischen Vielfalt und damit dem Naturschutz dienen. Allerdings sollten Pflegeeingriffe immer dem Prinzip der Eingriffsminimierung unterliegen und sich deutlich von Landschaftsarchitektur und Gartenbau unterscheiden. Diese Einschränkung gilt nicht unbedingt für Städte und Ballungsräume. Hier könnte eine „grüne“ Architektur und Gestaltung durchaus Biodiversität und Umwelt verbessern.

Die dicht besiedelten Landschaften Mitteleuropas sind – wie hier im Bodenseekreis – sehr reizvoll und haben ökologisches Potenzial. Skizze aus meinem Tagebuch vom Juni 2005, als wir uns nach einem Wohnort in Bodenseenähe umgesehen haben.

Der Erhalt unberührter, von menschlichen Eingriffen frei gehaltener Flächen hat auch in Mitteleuropa seine Berechtigung. Eine Beschränkung des Naturschutzes auf die „unberührte Natur“ wäre aber ein Fehler. Dies sei an einigen Beispielen gezeigt: In den heutigen Kulturlandschaften ist die „Überkompartimentierung“, also die Zerschneidung durch Verkehrswege und die Verinselung von Kleinbiotopen, ebenso ein Naturschutzproblem wie die „Unterkompartimentierung“ durch riesige Monokulturen. Von einem durch Ackerflächen umschlossenen Kleinkompartiment „Feldgehölz“ aus ist es z. B. für viele Tiere schwierig, in andere, ähnliche Biotope zu gelangen. Feldhecken begrenzen Kulturflächen, sie sind aber auch Verbindungswege zwischen Ökosystemen. Schutz, Pflege, Erhalt und Neupflanzung von Feldhecken  sind deshalb sinnvolle Naturschutzmaßnahmen. Ähnliches gilt für die Einrichtung und den Schutz von Ackerrandstreifen mit blühenden (mehrjährigen) Wildkräuter (Kirmer 2016). Besonders stark wirkende Grenzen sind Verkehrswege, weshalb man an einigen Stellen sinnvoller Weise so genannte Biotopbrücken über Autobahnen gebaut hat, um deren Areale zerschneidende Wirkung zu mindern. Auch die Einrichtungen von Krötentunneln unter Straßen dienen diesem Zweck.

Meeresschutz

Mangrove auf Qeshm,Straße von Hormuz,Iran; Einschub: Schlammspringer – Periophthalmus barbarus (Fotos Probst, 1976)

Meere bedecken 71 % der Erdoberfläche. Dieser größte zusammenhängende Lebensraum der Erde ist seit langem vielen verschiedenen menschlichen Einflüssen ausgesetzt, doch erst in den letzten Jahrzehnten wurde deutlich, dass auch die Ressourcen des Meeres und seine Kapazität für die Aufnahme von Abfällen und Schadstoffen – Stichwort Plastikmüll – begrenzt sind. Meeresschutz ist deshalb ein wichtiger Teil des Naturschutzes und des Umweltschutzes geworden. Moderne Fischereimethoden haben dazu geführt, dass Fischbestände bis zum Verschwinden zurückgegangen sind. Es konnte aber gezeigt werden, dass strenge Schutzvorschriften schnell zu einer Erholung von Beständen führen können. Besonders bedrohte dein Lebensräume sind die Korallenriffe, mit die artenreichsten Lebensräume der Erde, und die Mangrove-Gebiete als wichtige Brutstätten für Fische und Wirbellose und „natürliche Pflanzenkläranlagen“. Für beide Ökosysteme greifen die bisher ergriffenen Schutzmaßnahmen noch nicht. Die Wiederaufforstung von verschwundenen Mangroven erweist sich als sehr schwierig und bei den Korallenriffen dürfte die klimabedingte Veränderung der Meere (höhere Temperaturen, niedrigere pH-Werte) effektive Schutzmaßnahmen verhindern. Ein weiteres Problem bei Meeresschutz ist die politische Zuständigkeit für Schutzbestimmungen.

Plastikmüll war schon vor Jahrzehnten ein Problem, hier am Strand von Euböa, Griechenland, 1984  (Foto Probst)

Die große Zunahme von marinen Aquakulturen könnte zwar ein Weg sein, die Nutzung mariner Produktion nachhaltiger zu gestalten, derzeit sieht es aber so aus, als würden bei der Meeresbewirtschaftung die Fehler wiederholt, die man von der Landbewirtschaftung kennt.

Tierschutz

Hausschweine auf der Peloponnes,Griechenland, Sommer 2004 (Foto Probst)

Einige der Organisationen, die sich für Naturschutz und Umweltschutz stark machen, engagieren sich auch für Tierschutz. Dabei geht es nicht um den Erhalt der Artenvielfalt, dem Schutz gefährdeter Tierarten oder dem Schutz der Umwelt insgesamt, sondern um den individuellen Schutz von Tieren. Tieren soll ein „artgerechtes“ Leben ermöglicht werden. Vom Menschen verursachte Torturen sollen ihnen erspart bleiben. Deshalb ist es naheliegend, dass sich Tierschützer vor allem um Tiere bemühen, die sich in der Obhut des Menschen befinden. Besonders große Kritik wird in diesem Zusammenhang an der Haltung von Tieren geübt, die der menschlichen Ernährung dienen sollen, also der Massentierhaltung von Geflügel, Schweinen, Rindern. Aber auch das oft qualvolle Leben in Pelztierfarmen wird angeprangert. Die Forderung von Tierschützern, bei der Herstellung von Kleidungsstücken auf Tierpelze und -häute zu verzichten, hat etwas mit der tierquälerischen Haltungsweise von Pelztieren zu tun, aber auch mit dem grausamen Abschlachten junger Seehunde oder – und hier trifft sich der Tierschutz mit dem Artenschutz – mit der Gefährdung großer Pelztiere wie Ozelot, Jaguar oder Leopard. Tierschützer wie Artenschützer bemühen sich, dass die Jagd auf Elefanten des Elfenbein wegen unterbunden wird, ebenso die illegale Jagd auf Nashörner.

Die schrecklichen Haltungsbedingungen bei der Schweine- und Hähnchenmast, die abschreckende Praxis bei Tiertransporten und Schlachtungen, werden zum einen vom Tierschutz kritisiert, weil er das Tierwohl im Auge hat. Andererseits sind mit diesen Formen der industriellen Fleischproduktion auch nachteilige Einwirkungen auf die Umwelt verbunden. Dies betrifft zum Beispiel die Produktion von Treibhausgasen oder den Gefahren, die mit übermäßigem Medikamenteneinsatz, insbesondere von Antibiotika, verbunden sind. Der Import von Futtermitteln schädigt die Ökosysteme und die landwirtschaftlichen Produktionsbedingungen in den Herkunftsländern. Die großen Mengen an Tierexkrementen (Gülle) tragen nicht nur zur Eutrophierung von Gewässern sondern auch zu einem hohen Stickstoffgehalt terrestrischer Ökosysteme bei, was sich wieder negativ auf die Biodiversität auswirkt. In Kombination mit der Stickstoffoxidproduktion von Verbrennungsmotoren prägt Massentierhaltung über die Bildung von Ammoniumnitrat auch zur Feinstaub Problematik bei.

Ein wichtiger Antrieb für eine vegetarische oder vegane Ernährungsweise ist der Wunsch, dass für die Produktion von Nahrungsmitteln kein Tier sterben oder leiden soll. Aber auch die ökologischen Auswirkungen des hohen Fleischkonsums und damit der Umweltschutz und der Naturschutz werden immer häufiger als Gründe für eine vegetarische Lebensweise genannt.

Pflanzenschutz

Dieser Begriff sei hier erwähnt, er passt aber nicht in die Reihe der übrigen Schutzbegriffe. Denn man versteht darunter nicht den Schutz von Wildpflanzen, sondern „die Gesamtheit der Bemühungen, Schäden und Leistungsminderungen von Nutzpflanzen durch Ausnutzung aller einschlägigen wissenschaftlich Erkenntnisse in einer ökologisch und ökonomisch angemessenen Weise zu verhindern oder zu mildern“ (Heitefuß 2000). Es geht also in erster Linie um den von Natur- und Umweltschutz  oft heftig kritisierten Einsatz von Pestiziden gegen Krankheiten und Schädlinge von Nutzpflanzen.

Ziele und Wege

Ist das ein Blick in die Zukunft? Agrarlandschaft in Iowa,USA, Google Earth Aufnahme vom 26.7.2016

Auch wenn sich die verschiedenen Schutzziele deutlich unterscheiden und die einzelnen Schutzmaßnahmen sogar zum Teil widersprechen, so kann man doch eine gemeinsame Zielsetzung feststellen: Die vielen Einflüsse des Menschen auf natürliche Abläufe und Entwicklungen des Bioplaneten Erde sollen nicht dazu führen, dass sich die Lebensbedingungen drastisch verändern. Auch wenn solche drastischen Veränderungen – wie die Erdgeschichte zeigt – nicht das Ende des Bioplaneten bedeuten würde, so hätten sie doch für viele Ökosysteme und  insbesondere für die Menschen  katastrophale Folgen. Es wird deshalb angestrebt, die menschlichen Aktivitäten und die menschlichen Wirtschaftssysteme so zu gestalten, dass es keinen Verbrauch gibt, der nicht ersetzt werden kann. Im allgemeinen werden diese Ziele mit „Nachhaltigkeit“ oder „nachhaltiger Entwicklung“ bezeichnet.

Diese Zielsetzungen sind kaum umstritten. Umstritten sind allerdings die Wege, auf denen diese Ziele erreicht werden könnten. Zwar ist klar, dass es auf der Erde „Grenzen des Wachstums“ gibt, trotzdem gibt es unterschiedlice Auffassungen zum Thema Konsum:

  • Ist eine Konsumsteigerung grundsätzlich schädlich und muss mindestens für die westliche Welt gelten, dass nur eine strenge Konsumbeschränkung eine nachhaltige Entwicklung ermöglicht, oder
  • muss es nur darum gehen, den Konsum durch Kreislaufwirtschaft nachhaltig zu gestalten? (Ökoeffektivität erhöhen)

https://de.wikipedia.org/wiki/%C3%96koeffektivit%C3%A4t

Für eine sofortige Konsum-bzw. Wachstumsbeschränkung spricht, dass es keinen Stoffkreislauf ohne Verluste gibt und die Erdbevölkeung derzeit schon Ressourcen „über ihre Verhätnisse“ verbraucht. Andererseits sind Konsumbeschränkungen weltweit kein  realistisches Ziel angesichts der großen Armut, die weite Teile der Weltbevölkerung betrifft. Für eine stärkere Ausrichtung auf eine strikte Kreislaufwirtschaft spricht, dass der Energiefluss von der Sonne zur Erde noch eine deutliche Steigerung der Primärproduktion zulassen würde . Damit wäre ein weiteres Wachstum der Stoffumsätze möglich und dies wäre für eine friedliche Koexistenz aller Menschen förderlich. Allerdings wird auch eine konsequente Kreislaufwirtschaft nur dann Nachhaltigkeit ermöglichen, wenn es in gewissen Bereichen zu einem Konsumverzicht kommt. Dies gilt zum Beispiel für den Fleischkonsum in westlichen Industrieländern und für die Nutzung aller fossilen Ressourcen, nicht nur der Energieträger sondern auch anderer Rohstoffe.

Bei der Frage, ob es sinnvoller ist,  Natur zu schützen, indem man sie sich selber überlässt oder indem man sie sinnvoll „managet“, würde ich für eine differenzierte Vorgehensweise plädieren, wie sie Trommer schon 1994 vorgeschlagen hat:

  • Tu nichts-Leitbild für Gebiete, die den ursprünglichen Naturzustand repräsentieren, zum Beispiel Bannwälder, aber auch verwilderte Gärten, Ruinen, Brachflächen und allen Bereiche, wo „wachsen lassen“ nicht wichtigen Interessen entgegensteht
  • Pflege-Leitbild für Formen der traditionellen Kulturlandschaft mit dem Ziel, nachhaltige Bewirtschaftungs- und Pflegeformen für Weidelandschaften, Feuchtwiesen, Streuobstwiesen usw. zu finden
  • Tu was-Leitbild für urban-industrielle Räume. Hierher gehören zum Beispiel die Konzepte der „Green Cities“ (vgl. https://www.stefanoboeriarchitetti.net/en/portfolios/liuzhou-forest-city/ )

Green Cities (Grafik Probst 2012)

Quellen

Baur B (2010) Biodiversität. Bern: Haupt

Ellenberg, H. (1987): Fülle – Schwund – Schutz: Was will der Naturschutz eigentlich? Vehandlungen der Gesellschaft für Ökologie 16: 449-450

Heitefuß. R. (2000,3.A.): Pflanzenschutz. Grundlagen der praktischen Phytomedizin. Stuttgart: Thieme

Hendersen, D. : American Wilderness Philosophy. In: Internet Encyclopedia of Philosophy (IEP)  http://www.iep.utm.edu/am-wild/  (zuletzt aufgerufen am 5.9.2017)

Hobohm,C. (2000): Biodiversität. Wiebelsheim: Quelle und Meyer

Hupke, K.-D. (2015):: Naturschutz. Ein kritischer Ansatz. Heidelberg: Springer Spektrum

Kirmer, A. et al. (2016): Erfolgreiche Anlage mehrjähriger Blühstreifen  auf produktiven Standorten  durch Ansaat wildkräuterreicher Samenmischungen und standortangepasste Pflege. Natur und Landschaft 91(3): 109-118

McDounough, W./Braungart, N. (2009): Cradle-to-cradle. New York: Vintage

Meyer-Abich KM (1990) Aufstand für die Natur. Von der Umwelt zur Mitwelt. Hanser, München

Piechocki, R. (2010): Landschaft – Heimat – Wildnis. Schutz der Natur – aber welcher und warum? München: Beck

Probst, W. (2017): Saumbiotope – Grenzen und Übergänge. Untericht Biologie 425: 2-11

Trommer, G. (1992): Wildnis – die pädagogische Herausforderung. Weinheim: Deutscher Studienverlag

Trommer, G. (1994): Didaktisch differenzierte Leitbilder – ein Drei-Umwelten-Modell zum pägagogischen Umgang mit Natur und Landschaft. Workshop Ökologische Leitbilder, Cottbus 9.6.1994. TUC Aktuelle Reihe 6/94:57-62

Wohlleben, P. (2013): Der Wald. Ein Nachruf. München: Ludwig

Wohlleben, P. (2017): Gebrauchsanweisung für den Wald. München/Berlin: Piper

Pilze (zu UB 405)

LINK-NAME
Die Fadengeflechte der Pilze bilden dichte Netzwerke in Böden und durchwachsen die unterschiedlichsten organischen Abfallstoffe. Die große Effektivität, mit der die Pilze diese Netzwerke aufbauen und zum Stofftransport nutzen, werden seit einiger Zeit mit dem Ziel erforscht, auch von Menschen konstruierte Netzwerke – zum Beispiel Stromnetze, Verkehrsnetze und Kommunikationsnetze – zu verbessern (Heaton 2012). Die zweite herausragende Fähigkeiten dieser Fadengeflechte ist die Verdauung unterschiedlichster energiereicher Stoffe. Dazu werden von den verschiedenen Pilzarten sehr viele verschiedene Enzyme gebildet. Mittlerweile wird diese Vielfalt von spezialisierten Chemiefirmen genutzt, um neue Enzyme und Enzymkombinationen für die Anwendungen in Haushalt, Technik und Medizin zu entwickeln. Das Rohmaterial, die Pilze, werden aus allen Ecken der Erde zusammengetragen, in Kultur genommen und in tiefgekühlten Containern aufbewahrt.
Durch ihre Fruchtkörper sind viele Pilze – ganz anders als andere Mikroorganismen – auch ohne optische oder andere Hilfsmittel wahrnehmbar und erfahrbar. Diese „Pilzfrüchte“, die landläufig als „Pilze“ bezeichnet werden, faszinieren nicht nur Wissenschaftler sondern viele Schwammerlsucher und Hobbymykologen. Neben Vögeln, Schmetterlingen und Orchideen gehören Pilze deshalb zu den Organismengruppen mit der größten Fangemeinde. Auf der Homepage der pilzkundlichen Zeitschrift „Der Tintling“ werden allein für Deutschland 91 pilzkundliche AGs und Ausbildungsstätten angeführt.
Doch obwohl Pilze in unserer Umwelt und unserem Leben allgegenwärtig sind, werden sie doch oft übersehen und unterschätzt, manchmal auch falsch beurteilt. Lange Zeit als Pflanzen eingestuft gelten sie seit einiger Zeit als eigenes Reich der Lebewesen und dies wird nicht nur ihrer verwandtschaftlichen Stellung sondern auch ihrer großen Bedeutung für unseren Bioplaneten gerecht.

https://lehrermarktplatz.de/material/18898/vorlagen-fuer-die-gestaltung-einer-pilzausstellung

https://lehrermarktplatz.de/material/16562/grafiken-und-abbildungen-zu-schlauchpilzen-und-staenderpilzen

(vgl. die UB-Hefte 405 „Pilze“ und 406 (UB Schülerkompakt) „Ab in die Pilze“)

Die Funktion der Pilze in Ökosystemen

Funktionen der Pilze im Ökosystem Wald

Funktionen der Pilze im Ökosystem Wald

Die drei großen Reiche vielzelliger Lebewesen, Pflanzen, Tiere und Pilze stehen gleichzeitig in einem (terrestrischen) Ökosystem für die drei Haupternährungsformen:
• Primärproduzenten (Plantae),
• Konsumenten (Animalia) und
• Destruenten bzw. Reduzenten (Fungi).
Dabei kommt Pilzen außerdem als Symbiose- und Kooperationspartner von Pflanzen und Tieren eine besondere Bedeutung zu.

Als Destruenten zersetzen die Pilze alle Arten von organischen Abfällen, besonders auffällig in Wäldern (Laubstreu und Holz) aber auch in Grasländern (Streu, Dung). Seit es üblich geworden ist, in großer Menge Rindenmulch in Garten- und Parkflächen auszubringen, kann man dort besonders viele Pilze beobachten. Das aus einzellreihigen Zellfäden bestehende Mycel der Pilze ist besonders gut dafür geeignet, feste organischen Abfallstoffe zu durchwuchern und die darin enthaltenen Nährstoffe enzymatisch aufzuschließen und aufzunehmen. Ohne Pilze würde den Ökosystemen der Erde so etwas Ähnliches passieren wie einer Großstadt, bei der die Müllarbeiter streiken. Dabei scheiden die Pilzfäden (Hyphen) Enzyme aus, welche die organischen Makromoleküle in ihrer Umgebung in kleinere Bestandteile zerlegen („verdauen“), die dann von den Hyphen aufgenommen werden. Die Speicherung von Kohlenstoff durch Boden- und Streu- bewohnende Pilze und insbesondere durch Mykorrhizapilze wurde bisher vermutlich unterschätzt (Perkins 2013). Pilze sind entscheidend wichtig für die Bildung und Erhaltung der Böden (Moore/Robsen/Trinci 2011).
In flüssigen Substraten kommen Pilze als Zersetzer zwar auch vor, aber hier sind Bakterien noch wichtiger. Unter bestimmten Bedingungen, vor allem bei vorliegen von Zuckermolekülen, kommt hier eine spezielle, meist nicht fädig wachsende Form pilzlicher Destruenten zum Einsatz, die Hefepilze. Sie kommen in unterschiedlichen Verwandtschaftsgruppen vor.

Doch auch als Konsumenten spielen Pilze eine wichtige Rolle. Von besonderer Bedeutung sind parasitische Pilze an Pflanzen. Neben den Baumpilzen, die sich häufig auch parasitisch von lebenden Bäumen ernähren, sind dies vor allem phytopathogene Pilze wie Mehltaupilze, Brandpilze und Rostpilze, letztere z. T. mit komplizierten Wirts- und Generationswechseln (Abb. XX). Für manche Baumarten stellen phytopathogene Pilze eine echte Bedrohung dar, zum Beispiel die Schlauchpilze Ophiostoma ulmi bzw. O. novi-ulmi für Ulmen und Hymenoscyphus pseudoalbidus für Eschen. Manche phytoparasitischen Pilze stimulieren ihre Wirtspflanzen zur Bildung von Pflanzengallen und „Hexenbesen“ (Probst 2012).
Bei Tieren und Menschen kommen pathogene Pilze (Mykosen) vor allem auf der Haut und auf und in Hautbildungen wie Haaren und Nägeln vor, auch innere Oberflächen und Organe können – insbesondere beim schwachem Immunsystem – von Pilzen befallen werden. Nicht selten werden Insekten von parasitischen Pilzen infiziert. Besonders spektakulär sind Pilze, die von in der Erde eingegrabenen Puppen von Nachtschmetterlingen leben (Kernkeulenpilze). Eine ganze Wirbeltierklasse, die Amphibien, werden durch den parasitischen Geißelpilz Batrachochytrium dendrobatidis (s. S. XX) bedroht. Pilzliche Zooparasiten werden zu Nützlingen, wenn sie gefährlichen Krankheitserregern, wie zum Beispiel Malariamücken, schaden (Khamsi 2005).

Die Rolle der Pilze als Predatoren wurde lange unterschätzt. Bisher sind über 120 Pilzarten bekannt, die Nematoden, Rotatorien, Amöben und andere Protozoen mit Hilfe spezieller Einrichtungen ihres Mycels (Schlingfallen, Klebefallen) fangen und verdauen. Die meisten nematophagen Pilze gehören zu den Schlauchpilzen, aber auch bei den Ständerpilzen und bei den Jochpilzen kommen solche Tierfänger vor. Der Schopftintling, ein Ständerpilz, betäubt die Fadenwürmer mit einem Toxin aus Mycelauswüchsen und verdaut sie dann (Lyssek/Rubner in UB 183, 1993).
Es ist nicht verwunderlich, dass Pilze im Laufe der Evolution „gelernt“ haben, Fadenwürmer zu fressen, denn diese Tierchen finden sich in großen Mengen in allen Lebensräumen der Erde. Neben frei lebenden Arten gibt es viele Pflanzenparasiten und auch zahlreiche Tierparasiten. Überall wo Pilze vorkommen, lebt auch eine individuenreiche Nematodenfauna und so ist es nahe liegend, dass Pilze einen Weg gefunden haben, diesen Nährstoffvorrat zu nutzen.

Typisch für „Echte Pilze“ oder „Chitinpilze“, wie das Reich der Fungi auch genannt wird, sind chitinhaltige Zellwände. Als Destruenten und Konsumenten ist Stickstoff für Pilze – anders als für Pflanzen – meist kein begrenzender Faktor. Deshalb können sie es sich leisten, ein stickstoffhaltiges Polysaccharid als Hauptzellwandsubstanz zu nutzen. Dieser besonders robuste Baustoff schützt Pilzhyphen wie Insektenkörper. Möglicherweise dient diese Wandsubstanz ursprünglich auch dazu, überschüssigen Stickstoff loszuwerden.

Symbionten und Kooperationspartner

Zahlreiche Pilzarten leben in mehr oder weniger enger Symbiose mit Tier- oder Pflanzenarten. Als Spezialisten des Stoffabbaus helfen sie ihren Symbiosepartnern dabei vor allem, sonst unzugängliche Stoffquellen aufzuschließen.
Besonders wichtige und weit verbreitete Symbiosen zwischen Pflanzen und Pilzen sind die „Pilzwurzeln“ (Mykorrhiza). Die meisten Pflanzen gehen solche Mykorrhizasymbiosen ein und man vermutet, dass der Übergang der Pflanzen zum Landleben – also die Entstehung von Pflanzen im engeren Sinne (Embryophyta: Moose, Farne, Samenpflanzen) – ohne diese Pilzsymbionten nicht möglich gewesen wäre.
Pflanzen können mithilfe der Fotosynthese ihre Nähr- und Baustoffe selbst produzieren. Aber die dazu notwendigen Elemente Stickstoff, Phosphor, Kalium, Eisen und andere nehmen sie aus dem Boden auf. Den meisten Pflanzen helfen dabei bestimmte Pilze. Bei der Ektotrophen Mykorrhiza bildet das Mycel der Pilze einen dichten Mantel um die Wurzelspitzen und einige Pilzfäden dringen zwischen die Zellen der Wurzelrinde ein. Dabei ist die große Oberfläche des Pilzmycels von Vorteil. Die Pflanzen versorgen die Pilze dafür mit Kohlenhydraten, die sie über die Fotosynthese meist im Überfluss herstellen können. Die Ektomykorrhiza ist typisch für Waldbäume wie Eichen, Buchen oder Fichten.
Bei den verschiedenen Formen der Endomykorrhiza bildet sich kein dichtes Pilzgeflecht um die Wurzelspitzen. Dafür dringen die Pilzhyphen in die Zellen der Wurzelrinde der Pflanzen ein. Diese Mykorrhizatypen kommen vor allem bei krautigen Pflanzen aber auch bei verschiedenen Gehölzen vor.
Orchideen können ohne eine solche Endomykorrhiza nicht leben.
Insbesondere auf „mageren“ Böden, das heißt Böden mit wenig stickstoff- und phosphorhaltigen Mineralstoffen, sind die Mykorrhizapilze für Pflanzen oft lebensnotwendig.

Es gibt einige Pflanzen, die kein Blattgrün ausbilden und alle Nähr- und Mineralstoffe sowie das Wasser von ihrem Mykorrhizapilz beziehen. Nach Merckx (2013) ist eine solche vollständige Mykoheterotrophie für mindestens 514 Pflanzenarten nachgewiesen. Teilweise Mykoheterotrophie kommt jedoch bei sehr vielen Mykorrhiza bildenden Pflanzen vor, zum Beispiel bei allen Orchideen, bei denen zumindest die Keimlinge ihre Nährstoffe von einem Pilz beziehen. Ein Beispiel für eine vollständig mykoheterotrophe Pflanze ist die Vogel-Nestwurz, die man relativ häufig in Buchenwäldern finden kann. Der Fichtenspargel, eine chlorophylllose Pflanze aus der Verwandtschaft der Heidekrautgewächse, bildet mit Ritterlingsarten eine Mykorrhiza. Diese Pilze haben außerdem Fichten, Buchen und noch einige andere Waldbäume als Mykorrhizapartner. Von diesen erhalten sie organische Kohlenstoffverbindungen, von denen auch der Fichtenspargel profitiert. Diesen indirekten Parasitismus, auch Epiparasitismus genannt, konnte man dadurch nachweisen, dass man Zuckerverbindungen in den Bäumen radioaktiv markierte.
Vermutlich kommt ein solcher Stofffluss von grünen Pflanzen über Mykorrhizapilze zu bleichen, mykoheterotrophen Pflanzen häufig vor. Auch für einen Pilzpartner der Nestwurz, die Erd-Wachskruste (Sebacina incrustans), ist ein solcher Transfer nachgewiesen. Dieser Pilz bildet eine Ektotrophe Mykorrhiza mit dem Haselstrauch und bezieht von ihm Kohlenhydrate, die er teilweise an die Nestwurz weitergibt .

Die Vernetzung verschiedener Pflanzenindividuen und -arten eines Ökosystems durch Mykorrhizapilze spielt vermutlich eine größere Rolle, als lange Zeit vermutet.
Für den globalen Kohlenstoffkreislauf ist von Bedeutung, ob Ektotrophe-Mykorrhiza (EM)- oder Arbuskuläre-Mykorrhiza (AM)-Symbiosen – die häufigste Form der Endomykorrhiza – vorherrschen. Im ersten Fall konkurrieren die Mykorrhizapilze mit anderen Mikroben um organische Abfallstoffe, dadurch wird der C-Gehalt des Bodens erhöht, im zweiten Fall nehmen die Pilze vorwiegend anorganischen Stickstoff auf und sind deshalb keine Konkurrenz für andere Destruenten. Organische Abfallstoffe werden deshalb schneller abgebaut und der Kohlenstoffspeicher im Boden ist kleiner (s. S. XX, Averill, Turner, Finzi 2014).

Flechten sind Doppelorganismen aus Pilzen, Algen oder/und Cyanobakterien. Mit Ausnahme der Gallertflechten gibt der Pilz der Flechte ihre Form. Die meist nur aus einer oder wenigen Zellen aufgebauten grünen Organismen sorgen durch ihre Fotosyntheseleistung für die Energieversorgung des Doppelorganismus..
Es ist kein Wunder, dass Flechten lange für eine eigenständige Organismengruppe angesehen wurden. Nicht nur die besondere Flechtenform sondern auch bestimmte Flechtenstoffe – wie zum Beispiel der gelbe Farbstoff der überall häufigen Gelbflechte (Xanthoria) – können nur in Symbiose produziert werden. Solche speziellen Stoffwechselleistungen sind auch dafür verantwortlich, dass Flechten noch gedeihen können, wo „echte Pflanzen“ keine Chance mehr haben: Auf eisigen Berggipfeln, auf trockenen Felsen und Wüstenböden und an Baumrinde, wo es auch Moosen zu trocken wird. Dank besonderer Proteine und Polysaccharide können sie vollständig austrocknen ohne abzusterben. Bei erneuter Befeuchtung kommen die Lebensvorgänge sofort wieder in Gang.

Bei vielen endophytischen (in Pflanzen lebenden) Pilzen ist nicht ganz klar, ob es sich um Parasiten oder Symbionten handelt. In jedem Fall sind sie eine besonders vielversprechende Gruppe, wenn es um die Entdeckung neuer biotechnisch bzw. medizinisch nutzbarer Stoffwechselleistungen geht. Sie sind deshalb in den Fokus moderner Screenings nach verwertbaren Enzymen gerückt. 2011 wurde im ecuadorianischen Amazonasgebiet ein endophytischer Pilz, Pestalotiopsis microspora, entdeckt, der ein Enzym produziert, mit dem er Polyurethane abbauen kann (Russell et al. 2011).
Gleichzeitig haben endophytische Pilze vermutlich eine große ökologische Bedeutung, indem sie z. B. Giftstoffe produzieren, die Pflanzen wie dem Taumel-Lolch (Lolium temulentum) und der Prunkwinde (Ipomea) als Fraßschutz dienen. Möglicherweise schützen Abwehrstoffe endophytischer Pilze die Wirtspflanzen auch vor Infektionen durch andere Mikroorganismen. Auch eine Verbesserung der Trocken- und Kälteresistenz der Wirtspflanzen wird diskutiert (Proksch et al. 2010).

Als Symbiosepartner von Tieren helfen Pilze z. B., den schwer zugänglichen Holzstoff für die Verdauung aufzuschließen.
Die sogenannten Ambrosia-Käfer, die bei zwei verschiedenen Gruppen der Rüsselkäfer vorkommen, leben in Bohrgängen im Holz toter oder absterbender Bäume. Diese Gänge beimpfen sie mit dem Myzel von Ambrosia-Pilzen. Die Pilze ernähren sich vom Holz und kleiden die Bohrgänge mit einem speziellen Myzel dicht aneinander schließender Hyphen aus. Die Käfer und ihre Larven fressen ausschließlich dieses Myzel. Indem sie das Pilzmyzel und teilweise auch Konidien des Pilzes auf andere Bäume übertragen, helfen sie der Ausbreitung. Während jedoch die Käfer nur mithilfe des Pilzes leben können, ist der Pilz nicht unbedingt auf die Käfer als Partner angewiesen.
Eine ganz ähnliche Partnerschaft gehen Holzwespen mit Pilzen ein. Hier legen die Weibchen mit ihrem Legestachel zusammen mit den Eiern Pilzmyzel der Weißfäule erregenden Schichtpilze Stereum und Amylostereum in das Holz toter oder absterbender Nadelbäume. Von diesen Pilzen ernähren sich dann ihre Larven.

Besonders ausgefeilt ist die symbiotische Beziehung zwischen Pilzen und zwei Gruppen von sozialen Insekten, den Blattschneiderameisen und den Termiten (Angersbach/Groß 2005 in UB 306).
Blattschneiderameisen leben in tropisch-subtropischen Amerika zwischen 40° Nord und 44° Süd. Sie können in kurzer Zeit große Waldstücke entlauben. Die Blattstücke tragen sie in ihren Bau, dort werden sie zu Blattbrei zerkleinert und mit Pilzen der Gattungen Leucocoprinus und Leucoagaricus beimpft, von deren Mycel sich die Ameisen ernähren. Die Hyphenenden schwellen zu „Nährkörperchen“ an, die reich an Nährstoffen sind und von den Ameisen leicht geerntet werden können. Die Ameisen pflegen ihre Pilzkulturen, insbesondere sorgen sie dafür, dass sie nicht von anderen Pilzen überwuchert werden. Vor Befall durch den Schadpilz Escovopsis schützen die Ameisen ihren Kulturpilz mit speziell wirkenden Bakterien (Streptomyces, Pseudonocardia u.a.), die sie an ihrem Panzer mit sich führen. Diese Bakterien produzieren Candicidine (Stoffe, die auch gegen die humanpathogene Candida albicans wirken). Man kennt über 200 verschiedene Arten von Blattschneiderameisen vor allem aus den Gattungen Atta und Acromyrmex. Auf Grund von molekulargenetischen Untersuchungen nimmt man an, dass die Atta-Leucocoprinus-Symbiose schon mindestens 50 Mio. Jahre alt ist (Stephenson 2010).
Die zweite Gruppe von Pilzgärtnern, bei der es ebenfalls um den Aufschluss ligninreichen Pflanzenmaterials geht, findet sich bei den Termiten. Die „Höheren Termiten“ (Fam. Termitidae,) – sie sind auch für die hohen Termitenbauten verantwortlich – vermischen Holzschnitzel und andere Pflanzenteile mit Speichel und Kot zu einem Nährsubstrat für die Pilze. Solange die Bauten von Termiten bewohnt sind, bilden die kultivierten Pilze – vor allem der Gattung Termitomyces – keine Fruchtkörper. Doch aus verlassenen Termitenbauten wachsen die großen schirmförmigen Fruchtkörper, die auf afrikanischen Märkten als Speisepilze verkauft werden (Barnekow/Probst in UB 306).
Auch pflanzenfressende Säugetiere, insbesondere Wiederkäuer, sind bei der Verdauung der Cellulose auf pilzliche Endosymbionten angewiesen: Die erst in den 1970 er Jahren entdeckten Neocallimastigomyceten, seit 2007 als eigene Abteilung gewertet, sind anaerobe Darmbewohner, der große Bedeutung sich hier in den letzten Jahrzehnten herausgestellt hat.

Die Ameisenart Allomerus decemarticulatus bildet einer Dreiersymbiose mit dem tropischen Strauch Hirtella physophora und einem Pilz. Die den Baum besiedelnden Ameisen nutzen die abgeschnittenen Haare der Pflanze, um aus diesen mithilfe von Pilzhyphen effektive Insektenfallen zu bauen (Dejean et al. 2005)

In Pflanzengallen können manche Gallinsekten Pilzpartner nutzen, indem sie sich von deren die Galle auskleidendem Mycel ernähren (Kehr/Kost 1999)

Auch eine ernährungsphysiologische Symbiose zwischen Pilzen und Nicht-Insekten konnte nachgewiesen werden. Strandschnecken an der nordostamerikanischen Küste infizieren Schlickgras mithilfe ihrer Kotbällchen mit einem Pilz, den sie dann verzehren. Das Schlickgras alleine können die Schnecken nicht verdauen (Whitfield 2003).

Fortpflanzung, Vermehrung, Ausbreitung

Pilze können sich geschlechtlich und ungeschlechtlich fortpflanzen. Die ungeschlechtlich sich fortpflanzende Form bezeichnet man als Nebenfruchtform oder Anamorphe, die geschlechtlich sich fortpflanzende als Hauptfruchtform oder Telomorphe, die Gesamtheit der Entwicklungsstadien als Holomorphe (Dörfelt 2001, 2014). Da man dabei oft nicht erkannte, dass es sich um dieselbe Art handelt, wurden beide Formen zuweilen unterschiedlich benannt. So wurde der Verursacher des Eschentriebsterbens zunächst als Chalara fraxinea identifiziert, später erkannte man, dass es die Anamorphe zur Telomorphen Hymenoscyphus pseudoalbidus ist. Hat man die Zusammengehörigkeit nachgewiesen, gilt der Name der Telomorphen als der korrekte wissenschaftliche Artname.

Während bei den Töpfchenpilzen (Chytridiomycota) noch begeißelte Gameten und Zoosporen vorkommen – sie werden deshalb auch Geißel- oder Flagellenpilze genannt –, gibt es bei den übrigen Pilzen keine begeißelten Fortpflanzungsstadien.
Die heute in mehrere Abteilungen aufgeteilten Jochpilze (Zygomycota) pflanzen sich vorwiegend ungeschlechtlich fort, wie der überall häufige Brotschimmel Rhizopus stolonifer: Aus stark verzweigten Hyphen im Substrat wachsen lange Lufthyphen, die wie die Ranken einer Erdbeerpflanze der Ausbreitung dienen. Schließlich bilden sich Sporenträger mit einer endständigen Sporocyste, die viele asexuell entstandene Sporen enthält und in den Luftraum entlässt. Ihren Namen haben sie jedoch aufgrund der besonderen Form der geschlechtlichen Fortpflanzung bekommen: Zwei Hyphenenden, die vom selben oder von unterschiedlichen Mycelien stammen können, bilden so genannte Gametocysten, die sich vereinigen und dabei eine jochartige Struktur bilden. Aus dieser derbwandigen Zygospore bildet sich nach Kernverschmelzung und Meiose eine gestielte Sporocyste mit vielen Sporen, die äußerlich den asexuell entstandenen Sporocysten gleicht (Nomenklatur vgl. Dörfelt 2001).
Auf Grund molekulargenetischer Untersuchungen hat man die Arbuskulären Mykorrhizapilze oder kurz AM-Pilze als eigene Abteilung Gomerulomycota von den Jochpilzen abgetrennt. Es sind die phylogenetisch ältesten und bis heute verbreitetsten Mykorrhizapilze. Bisher ist nur eine asexuelle Fortpflanzung bekannt. An den Hyphenenden bilden sich Verdickungen, die sich schließlich mit einer festen Wand umgeben. Bei manchen Arten – wie bei Gigaspora margarita – können diese Sporen nahezu 1 mm Durchmesser erreichen.

Für die Abteilungen Schlauchpilze (Ascomycota) und Ständerpilze (Basidiomycota) ist charakteristisch, dass sie Hyphen mit Querwänden bilden,die allerdings einen Porus besitzen, durch den eine Verbindung des Cytoplasmas besteht. Dieser Durchlass ist bei den verschiedenen Verwandtschaftsgruppen recht unterschiedlich – teilweise sehr kompliziert – aufgebaut.
Bei den Ascomycota wird die geschlechtliche Fortpflanzung durch Gametocystenbildung eingeleitet. Die männliche Gametocyste entlässt ihre Kerne in die weibliche Gametocyste (Ascogon). Dort paaren sich je ein weiblicher und ein männlicher Kern ohne zu verschmelzen. Anschließend wachsen aus dem Ascogon so genannte ascogene Hyphen, die in jeder Zelle zwei Kerne enthalten. Schließlich kommt es in der Endzelle zur Kernverschmelzung und zur anschließenden Meiose und meist zu einer weiteren mitotischen Teilung. Um diese acht Kerne bilden sich Zellwände(„freie“ Zellbildung). So entsteht eine Zelle mit acht Ascosporen, ein Ascus oder Schlauch.
Bei den Basidiomycota verschmelzen zwei normale Hyphen mit haploiden Kernen zu einem Paarkernmyzel. Bei der Zellteilung teilen sich beide Kerne, einer wird über eine Schnalle an die nächste Zelle weitergegeben. Durch Verschmelzung dieser zwei Kerne – normalerweise erst nach vielen mitotischen Teilungen und der Bildung eines ausgedehnten dikaryotischen Myzels – kann es in bestimmten Zellen zur Bildung eines diploiden Kerns kommen, der sich anschließend durch Meiose wieder in vier haploide Kerne teilt, die in vier Auswüchse der Zelle einwandern. Das ganze Gebilde wird Basidie oder Ständer genannt. Funktionell wird durch die Zweikernigkeit ein Zustand erreicht, welcher der Ausbildung eines diploiden Chromosensatzes entspricht.

Die großen „Fruchtkörper“, besser eigentlich Sporenkörper, vieler Schlauchpilze und Ständerpilze sorgen für eine effektive Verbreitung der winzigen Sporen durch die Luft oder durch Tiere. In diesem Fruchtkörpern bilden sich meist eine große Zahl – oft Millionen – Asci bzw. Basidien. Bei den Schlauchpilzen werden die Fruchtkörper auch Ascoma genannt. Sie bilden sich jeweils nach der Verschmelzung von Gametocysten. Die Fruchtkörper der Ständerpilze – auch Basidioma genannt – können sich immer wieder in großer Anzahl aus einem Paarkernmyzel bilden, das aus der Verschmelzung von zwei Einkernmyzelien hervorgegangen ist (Dörfelt 2012).
Diese „Pilzfrüchte“, die landläufig als „Pilze“ bezeichnet werden, faszinieren Menschen seit alters her aus verschiedenen Gründen:
• sie erscheinen unverhofft und ziemlich plötzlich und sind auch schnell wieder verschwunden,
• sie haben oft auffällige Formen, Farben und Gerüche,
• man kann sie sammeln und essen,
• eine ganze Reihe sind giftig, manche sogar lebensgefährlich,
• manche enthalten halluzinogene Stoffe und eigen sich als Rauschdrogen.
Viele Jahrhunderttausende mussten die Menschen ihre Nahrung sammeln. Das Pilze Sammeln und das Zubereiten dieser selbst gesammelten Pilze ist möglicherweise deshalb so befriedigend, weil es an diese archaische Tradition anknüpft. Pilzexkursionen mit anschließender Besprechung und Bearbeitung der Funde – gegebenenfalls mit einem Pilzkenner zusammen – können ein Erlebnis sein, das Interesse an Naturbegegnungen weckt und fördert und als Einstieg in verschiedene ökologische Themen dienen kann.
Außer der klassischen Pilzform kommen noch viele verschiedene andere Fruchtkörperformen vor. Für die Windverbreitung von Sporen hat ein Fruchtkörper aus Stiel und Hut jedoch durchaus Vorteile: Durch den Stiel wird die sporentragende Schicht in etwas bewegtere Luftschichten emporgehoben, durch den Hut wird sie vor Regen geschützt, Lamellen oder Röhren sorgen für eine große Oberfläche. Dadurch, dass der Hut zunächst wie ein zusammengefalteter Schirm dem Stiel anliegt, wird die sporentragende Schicht vor Austrocknung geschützt. Bei vielen Fruchtkörpern – wie beim Grünen Knollenblätterpilz oder beim Fliegenpilz – werden die jungen Fruchtkörper durch zusätzliche Hüllen vor Verdunstung geschützt. Wenn der Hut aufschirmt, bleiben die Reste der Hüllen als Scheide, Ring und weiße Punkte auf der Hutfläche zurück.

Pilzfruchtkörper fallen nicht nur durch auffällige Farben und Formen sondern manchmal auch durch ihre besondere Größe auf: Macrocybe titans aus Mittelamerika und der afrikanische Termitomyces titanicus bilden die größten bisher bekannt gewordenen Fruchtkörper bei Blätterpilzen (Agaricomycetes). Gewaltige Fruchtkörper bis über 50 cm Durchmesser bildet auch der Riesen-Bovist , auch die konsolenförmigen, mehrjährigen Fruchtkörper von Baumpilzen können sehr groß werden, beim Abgeflachten Lackporling bis zu 1 m im Durchmesser.

Pilze als Umweltindikatoren

Pilze können bestimmte Stoffe aus dem Boden aufnehmen und in ihrem Mycel anreichern. Besonders deutlich wurde dies nach dem Reaktorunfall von Tschernobyl. Einige Zeit wurde die radioaktive Kontamination von Böden über die Messung der Radioaktivität von Pilzfruchtkörpern dokumentiert und noch bis heute gibt es Regionen, in denen die Pilze – z. B. Maronenröhrlinge – relativ hoch belastet sind. Hauptursache ist von den Pilzen aufgenommenes Cäsium 137 mit einer Halbwertszeit von 30 Jahren.
Auch Schwermetalle wie Cadmium und Blei können von Pilzen angereichert werden. Diese Fähigkeiten kann auch positiv genutzt werden, indem man Pilze zur Dekontamination schwermetallverseuchter Böden einsetzt. 2012 konnten britische Wissenschaftler nachweisen, dass aus Bleiminen isolierte Pilze elementares Blei in das besonders schwer lösliche Chloropyromorphit Pb5(PO4)3Cl umwandeln und damit verseuchte Böden entgiften können (Rhee/Hiller/Gadd 2012).

Ähnlich wie Fauna und Flora beeinflussen Umweltveränderungen auch die Funga – also die Gesamtheit der vorkommenden Pilzarten – eines Ökosystems. In Waldökosystemen können Pilzarten als Indikatoren für „Naturnähe“ verwendet werden. So gelten zum Beispiel Bergporling, Tannen-Stachelbart und Tannen-Stielporling als Zeigerarten für naturnahe Bergmischwälder (vgl. z. B. Blaschke et al. 2009). Die meist auffällig gefärbten Saftlings-Arten (Hygrocybe) sind Zeigerarten für magere Wiesen- und Rasengesellschaften, die als besonders schützenswert gelten. Flechten sind klassische Indikatoren für Luftverschmutzung, vor allem durch Schwefelverbindungen.

Seit einiger Zeit versucht man, Arten zu ermitteln, deren Erhalt in bestimmten Regionen eine besondere Bedeutung für die weltweite Erhaltung der Biodiversität hat. Eine Liste solcher „Verantwortungsarten“ wurden vom Bundesamt für Naturschutz für Deutschland bereits aufgestellt. Mittlerweile gibt es auch 19 Pilzarten, die als Verantwortungsarten für Deutschland ausgewählt wurden, weil ein hoher Anteil der Weltpopulation in Deutschland zu finden ist und weil die Biotope, in denen sie vorkommen, zu den gefährdeten zählen. Beispiele sind der Hauhechel-Samtfußrübling, die Strandlings-Erdzunge oder der Lilastielige Rötelritterling. Warum gerade diese 19 Arten ausgewählt wurden, hängt allerdings auch noch mit weiteren Kriterien zusammen, zum Beispiel, ob die Arten nicht schon durch eine andere Schutzverordnung ausreichend geschützt sind (Lüderitz/Gminder 2014).

Pilze und Menschen

Nahrungsmittel

Pilze werden vermutlich schon seit Urzeiten von Menschen als Nahrung genutzt. Sicher wurden Pilze auch schon von steinzeitlichen Menschen als Heilmittel und Rauschdrogen verwendet. Bei der 5300 Jahre alten Gletschermumie aus dem Ötztal („Ötzi“) hat man Reste vom Zunderschwamm gefunden, die auf seine Verwendung beim Feuermachen hindeuten. Ebenso trug Ötzi zwei Birkenporlinge mit sich, deren antibakterielle und entzündungshemmende Wirkung er möglicherweise zur Wundbehandlung nutzte.
Der gezielte Anbau von Pilzen ist nicht so alt. Die älteste Überlieferung von Pilzkulturen stammt aus China. Dort wurden Shiitake-Pilze (Lentinula edodes) schon vor mehr als 1000 Jahren kultiviert, indem man tote Baumstämme mit dem Pilzmycel beimpfte (Stephenson 2011). Bis heute zählen Shiitake-Pilze in Asien zu den wichtigsten Kulturpilzen , sie werden mittlerweile aber weltweit auf unterschiedlichsten Substraten kultiviert. Die in Europa am häufigsten angebauten Pilze sind Champignons.

Immer häufiger spielt beim Pilzanbau eine Rolle, dass man damit Abfallstoffe „upcyclen“, also sinnvoll weiter nutzen kann. Das gilt für Dung, Stroh, Sägemehl oder andere Holzabfälle, aber auch für Abfälle aus der Bierbrauerei (Biertreber) und aus der Kaffeeproduktion, sogar aus Kaffeesatz lassen sich Austernseitlinge gewinnen. Der Wiener Pilzzüchter Haidvogl http://www.pilz-kultur.at/Die%20Seite/ startete 1996 eine Aktion, bei der er alte Wiener Telefonbücher erfolgreich als Kultursubstrat für Austernseitlinge nutzte (Kasten Kaffeepilze).
Mittlerweile spielen Speisepilze und Heilpilze auch in der Hobbygärtnerei eine wichtige Rolle. Im Internet gibt es viele Angebote für Startkulturen, Kultursubstrate und fertige Ansätze, die nur ausgepackt und bewässert werden müssen.

Nahrungsmittelbearbeitung

Neben der direkten Verwertung von Pilzen als Nahrungsmittel spielen Pilze eine wichtige Rolle bei der Nahrungsmittelbearbeitung bzw. –fermentation.
Die Bedeutung der Hefepilze für die Geschichte der Menschheit kann kaum überschätzt werden. Die Art Saccharomyces cerevisiae, wörtlich übersetzt “Zuckerpilz des Bieres“, und bekannt als die Gewöhnliche Bierhefe kann Zucker zu Ethanol („Alkohol“) und Kohlenstoffdioxid abbauen. Beide Abbauprodukte werden von Menschen seit Jahrtausenden genutzt, das Ethanol zur Herstellung alkoholischer Getränke, das Kohlenstoffdioxid zum Brotbacken (Hefeteig). Einige Historiker glauben, dass das Bierbrauen aus gekeimten Getreidekörnern der erste Anlass für den Beginn des Ackerbaus war. Wenn dies stimmt, wäre die unbewusste Kultivierung von Hefepilzen die erste Voraussetzung für die Entwicklung von Hochkulturen gewesen (Reichholf 2008).
Neben der Bierhefe spielen auch noch zahlreiche andere Mikropilze eine wichtige Rolle in der biotechnischen Produktion und in der Mikrobiologie. Eine lange Tradition haben die verschiedenen Pilze, die in der Käseherstellung eingesetzt werden, wie Penicillium camembertii oder P. roquefortii, oder die verschiedenen Pilzarten, die man in Ostasien zur Fermentierung von Soja, Reis oder anderen Getreidearten nutzt. Der Schlauchpilz Fusarium venenatum wird seit den 1980iger Jahren in Großbritannien zur Herstellung eines als „Quorn“ bezeichneten Fleischersatzes verwendet. Der gefürchtete Pflanzenparasit Botrytis cinerea (s. S. XX) bewirkt auf reifen Weintrauben eine sogenannte „“Edelfäule“, die für die Produktion von besonderen Weinen (Beerenauslese, Trockenbeerenauslese) genutzt werden.

Antibiotika und Statine

Pilze sind seit der Entdeckung von Alexander Fleming die klassischen Lieferanten von Antibiotika. Ohne pilzliche Cyclosporine könnte man die Immunreaktion bei Organtransplantationen kaum unterdrücken. Auch die als Cholesterrolsynthesehemmer eingesetzten Statine stammen aus Schimmelpilzen.

Im mikrobiologischen Labor werden Pilze meist unter sterilen Bedingungen in Petrischalen auf festem Substrat (Agar mit Zusätzen) oder in flüssigen Medien kultiviert. Aus solchen Kulturen werden – heute oft unter Anwendung gentechnischer Methoden – immer wieder Stämme mit neuen Stoffwechselleistungen gewonnen. In der Biotechnik verwendet man große Bioreaktoren zur Produktion zum Beispiel von Zitronensäure (Aspergillus niger), weiteren organische Säuren, Antibiotika, Enzymen und Steroiden.

Pilzgifte

Viele Pilzgifte sind Stoffwechselbestandteile von Großpilzen. Obwohl schon seit dem Altertum bekannt, werden immer wieder neue Giftpilze und neue Gifte entdeckt, z. B. der Glutamatantagonist Acromelsäure aus dem Parfümierten Trichterling (Clitocybe amoenolens, 1987 nach DGfM) oder 2001 die in dem lange Zeit als guter Speisepilz geltenden Grünen Ritterling (Tricholoma equestre) enthaltene Cycloprop-2-en-carboxylsäure, die zumindest bei manchen Menschen Skelettmuskelzerfall (Rhabdomyolyse) verursacht. Die verschiedenen giftig wirkenden Substanzen aus Pilzen und die Funktionszusammenhänge im Organismus sind in vielen Fällen noch nicht genau erforscht. Üblicherweise werden die Vergiftungserscheinungen unter verschiedenen Syndromen zusammengefasst (Tabelle XX Pilzvergiftungen).
Von den rund 8000 in Mitteleuropa vorkommenden Großpilzen sind nur 150-200 Arten giftig. Als tödlich giftig werden von der französischen Gesellschaft für Mykologie 28 Arten genannt. Von 2003 – 2012 starben nach Angaben des Statistischen Bundesamtes durch Verzehr von giftigen Pilzen allerdings nur 31 Personen, insbesondere am häufigen Grünen Knollenblätterpilz (Amanita phalloides). Trotzdem sind Giftpilze eine nicht zu unterschätzende Gefahr, die nur vermieden werden kann, wenn man nur solche Pilze zu Speisezwecken verwendet, die man ganz sicher kennt. Diese Erkenntnis muss das wichtigste Unterrichtsziel bei der Behandlung von Giftpilzen sein. Im übrigen kann man auf die Möglichkeit der Pilzberatung und die verschiedenen Giftnotrufzentralen aufmerksam machen (s. S. XX).
In Abgrenzung zu den Giften in Fruchtkörpern der Großpilze werden giftige Inhaltsstoffe in Schimmelpilzen und anderen Mikropilzen (Aflatoxine, Ochratoxine u. a.) als Mykotoxine bezeichnet. Besonders Getreideprodukte und Nüsse können durch Schimmelbefall vergiftet werden. Über das Futter können die Gifte auch von Nutztieren aufgenommen werden und in Nahrungsmittel gelangen („carry-on“). Auch der giftige Mutterkornpilz (Claviceps purpurea) ist dieser Kategorie zuzuordnen (s. S. XX).

Halluzinogene Pilze

Psychoaktive Pilzinhaltsstoffe haben vor allem bei Azteken und Mayas schon seit Jahrtausenden eine wichtige Rolle gespielt. Die bekannten Pilzsteine der Mayas aus Guatemala wurden im 1. Jahrtausend unserer Zeitrechnung hergestellt. Von der Hippiekultur der 1960iger und 70iger Jahre wurden Pilze – insbesondere Psilocybe-Arten – als Rauschdrogen wiederentdeckt. Der Fliegenpilz (Amanita muscaria) spielte als wichtiger psychoaktiver Pilz vor allem in Nordasien und Nordamerika, wahrscheinlich auch in Europa, eine bedeutende Rolle. Dass er bis heute als Glückssymbol gilt, dürfte auf diese Verwendung zurückzuführen sein. Der Ethnologe Wasson vertrat die nicht endgültig gesicherte Ansicht, dass die in Sanskrittexten beschriebene göttliche Droge Soma der Fliegenpilz sei (Wasson 1968, Bauer/Klapp 2012).

Heilpilze

Heilpilze haben vor allem in der traditionellen chinesischen Heilkunde einen große Bedeutung, werden aber auch zunehmend in westlichen Ländern genutzt und oft über das Internet vertrieben. Kernkeulen (Cordiceps) sollen das Immunsystem stärken, der Stachelbart (Hericium) wird gegen Sodbrennen und empfindliche Magenschleimhäute empfohlen, der Eichhase (Polyporus umbellatus) soll herzstärkend wirken und Wassereinlagerungen verhindern, der Glänzende Lackporling (Ganoderma lucidum) wird nahezu als Allheilmittel gepriesen, besonders aber als Mittel gegen neurotische Erkrankungen. Der Brasilianische Mandelchampignon (Agaricus subrufescens, syn. A. blazei) gilt nicht nur wegen seines Gehalts an β-D-Glucanen als Immunsystem unterstützend, auch seinem hohen Selengehalt wird gesundheitliche Bedeutung zugemessen.

Vorratsschädlinge, Holzzersetzer

Als Saprobionten vernichten Pilze natürlich auch alle Arten von organischen Materialien, die vom Menschen genutzt werden: Nahrungsmittel (Vorratsschädlinge), Textilien und Lederwaren und Baumaterialien, vor allem Holz. Der Hausschwamm (Serpula lacrymans) ist für Holz- und Fachwerkäuser eine besondere Gefahr, da er ein höchst effektives Wasserleitungssystem besitzt und damit auch für völlig trockene Holzkonstruktionen gefährlich werden kann (Bavendamm 1974). Über die Bedeutung von Schimmelpilzen in feuchten Räumen ist viel geschrieben und gestritten worden. Gefährlicher als die Vernichtung von Bausubstanz sind hier vor allem allergische Reaktionen der Bewohner auf Pilzsporen.

Pathogene

Auf die Wirkung pflanzen- und tierpathogener Pilze wurde schon im Zusammenhang mit ihrer Rolle als Konsumenten in Ökosystem hingewiesen. „Although viruses and bacteria grab more attention, fungi are the planet’s biggest killers“ schrieb Nicola Jones 2013 in einem Artikel über mögliche zukünftige globale Bedrohungen. Dabei könnte der Klimawandel die Ausbreitung von Pilzparasiten begünstigen. So hat sich der ursprünglich tropische humanpathogene Pilz Cryptococcus gattii an Amerikas Pazifikküste nach Nordwesten ausgebreitet und 2010 bereits 280 Personen infiziert, von denen zahlreiche starben. Angegriffen werden die Atemwege. Der Pilz ist auch Pflanzenparasit, eine Infektion ist auch über befallene Bäume, vor allem Eukalyptusarten, möglich.

Kompostierbare Baustoffe

Schließlich eignen sich Pilze auch zur Herstellung von kompostierbaren Baustoffen und Verpackungsmaterialien. Als Beispiel sei die New Yorker Firma, Ecovativedesign genannt, die dafür mit mehreren Umweltpreisen ausgezeichnet wurde.

Verwandtschaft und Phylogenie

Pilze werden als „Fadenwesen“ bezeichnet (Holzer 2011). Dieser Name charakterisiert das Reich der Pilze recht gut, denn auch bei den nicht fädigen Hefepilzen gibt es zahlreiche Übergänge zu einer fädigen Lebensform. Andererseits gehören nicht alle fädigen chlorophyllfreien Lebewesen zur engeren Verwandtschaft der Pilze. Schon bei Prokaryoten kommen chlorophylllose „Fadenwesen“ vor, die folgerichtig zunächst auch als „Strahlenpilze“ oder „Actinomyceten“ bezeichnet wurden, heute aber korrekt Actinobacteria genannt werden. Die „Eipilze“ oder „Oomycota“ entwickeln Echten Pilzen ähnliche Fadengeflechte, ihre Zellwände enthalten jedoch kein Chitin sondern Cellulose, weshalb sie auch „Cellulosepilze“ genannt werden. Zu ihnen gehören gefährliche Pflanzenparasiten wie die Kartoffelfäule (Phytophthora infestans) und die „Falschen Mehltaupilze“ (Peronosporaceae). Verwandtschaftlich lassen sie sich zusammen mit Braunalgen, Goldalgen und Kieselalgen der Protistengruppe Chromista (Stramenopila) zuordnen.
Auch die Schleimpilze (Myxomycota) sind keine Pilze im engeren Sinne. Große Teile ihres Lebenszyklus leben sie als Einzeller, nur zur Fortpflanzung bilden sie größere Aggregate und morphologisch sehr unterschiedliche und auffällige Sporenkörper. Bei einer Untergruppe bilden sich vielkernige, nicht in einzelne Zellen unterteilte Syncytien (s. S. XX).

Die ersten Versuche einer systematischen Gliederung der Pilze im 18. und 19. Jahrhundert basierten auf der Makromorphologie der Fruchtkörper. Ende des 19. und zu Beginn des 20. Jahrhunderts rückten mikromorphologische Merkmale immer mehr in den Vordergrund. Seit Ende des 20. Jahrhunderts wurden zunehmend molekulargenetische Methoden zur Aufklärung der Verwandtschaftsbeziehungen der Pilze eingesetzt. 67 Mykologen erarbeiteten im Rahmen des Projekts „Assembling the Fungal Tree of Life“ ein vorläufiges Gesamtergebnis, das 2007 veröffentlicht wurde (Hibbett et al. 2007). Dieses System bedeutet in vieler Hinsicht eine völlige Neuordnung. So wurde die lange sehr gut etablierte Gruppe der Bauchpilze mit Bovisten, Erdsternen und Teuerlingen vollständig aufgelöst. Die einzelnen Taxa wurden unterschiedlichen systematischen Gruppen zugeordnet, der Kartoffelbovist zum Beispiel den Röhrlingsartigen, die Stäublinge und Teuerlinge in eine Familie mit den Champignons. 2001 wurde in Guyana ein Pilz entdeckt, der aussah wie ein Stielbovist (Gattung Tulostoma), sich aber bei genetischer Untersuchung als Verwandter der Hirschtrüffeln (Elaphomycetaceae, Ascomycota) herausstellte (Miller et al. 2001).
Die Schlauchpilze und Ständerpilze insgesamt blieben als einheitliche Verwandtschaftsgruppen (Abteilungen) erhalten, die früher als „Algenpilze“ oder „Niedere Pilze“ zusammengefassten Gruppen mit Jochpilzen und Geißelpilzen wurden – nach Ausschluss der Oomycota – neu aufgeteilt, ihre systematische Gliederung in neue Abteilungen ist jedoch noch im Fluss. Als gesichert gilt die Monophylie der Verursacher der vesikuär-arbuskulären Mykorrhizen, der Abteilung Glomeromycota.

Die stammesgeschichtliche Entstehung der Pilze reicht vermutlich weit ins Präkambrium zurück, sicherlich weiter als 1 Mrd. Jahre. 2017 entdeckten schwedische Forscher Pilzmyzel-ähniche Strukturen in 2,4 Mrd. J. alten südafrikanischen Basalten (Bengtson et. al 2017). Die Zuordnung der gefundenen Fadenstrukturen zu Pilzen ist jedoch nicht unumstritten. In 410 Mill. Jahre alten Sedimenten des Unterdevons kommen zusammen mit den ersten Landpflanzen auch schon alle Pilzgruppen außer den Basidiomyceten vor. Basidiomycota dürften wesentlich später entstanden sein, sichere Fossilfunde sind 90 Mill. Jahre alt (Stephenson 2010; Moore et al. 2011). Von einem bemerkenswerten Riesenfossil aus dem Devon, Prototaxites mit bis über 8m langen Stammstrukturen, wird heute angenommen, das es pilzlicher Natur war – ein wahrer Pilzbaum in der damals noch ziemlich niedrigen Vegetation (Boyce et al 2007, Abb. XX). Dieses größte Landlebewesen seiner Zeit hat sich aber nicht von den Abfällen der ersten Landpflanzen ernährt, das Isotopenverhältnis seiner Kohlenstoffverbindungen deutet darauf hin, dass es sich von den biogenen Abfallstoffen ernährt hat, die in den vorausgegangenen 2 Mrd. Jahren von Protisten angehäuft worden waren. Das große Artensterben vor 251 (Perm – Trias) und vor 65 (Kreide – Tertiär) Millionen Jahren hatte vermutlich jeweils zur Folge, dass saprobiotische Pilze besonders gute Entwicklungsbedingungen vorfanden. Entsprechend viele Pilzfossilien kennt man aus diesen Zeitabschnitten (Moore/Robsen/Trinci 2011).

Im Stammbaum der Lebewesen stehen Pilze zusammen mit den Tieren und den einzelligen Kragengeißlern (Choanoflagellatae) in einer großen Verwandtschaftsgruppe (Schubgeißler, Opisthokonta). Deren Schwestergruppe sind die Amoebozoa mit Amöben und Schleimpilzen. Zusammen werden sie auch als Amorphea bezeichnet und als monophyletische Gruppe von allen übrigen Eukaryoten abgegrenzt (Adl et al. 2012).

Resumé

In den folgenden Unterrichtsvorschlägen kann nur eine kleine Auswahl aus den möglichen pilzkundlichen Themen gegeben werden. Wir mussten auswählen, genau so, wie jede Lehrperson immer auswählen muss, wenn sie ein komplexes Thema bearbeiten will. Wir hoffen aber, dass deutlich wurde, dass Pilze in fast allen Teilgebieten der Life Sciences eine Rolle spielen, insbesondere auch in Bereichen der angewandten Biologie, und dass es sich lohnt, im Biologieunterricht nicht nur beim „Ökosystem Wald“ auf die Bedeutung dieser fantastischen Fadenwesen zu sprechen zu kommen.

Literarur und Quellen unter

http://www.wilfried-probst.de/site/wp-admin/post.php?post=709&action=edit

Saumbiotope – Grenzen und Übergänge (zu UB 425)

Immer häufiger sieht man an Straßenrändern, auf Verkehrsinseln oder an Ackerrandstreifen bunte Blumen blühen. Das sind nicht nur Klatsch-Mohn und Kornblume, Schafgarbe, Wilde Möhre und Wegwarte sondern auch Sommermalve (Malope trifida), Großblütiger Lein (Linum grandiflorum), Büschelschön (Phacelia tanacetifolia), Vogelfuß-Mädchenauge (Coreopsis palmata), Doldige Schleifenblume (Iberis umbellata) und andere Exoten, vorwiegend aus etwas wärmeren Regionen Europas und Amerikas. Für „Blühstreifen“ an Äckern gibt es für Landwirte sogar Fördermittel. Mittlerweile bieten Saatgutfirmen bereits ein differenziertes Angebot an Samenmischungen an. Sind es nur ästhetische Gesichtspunkte, die zu diesen „Blumenstreifen“ Anlass geben? Stehen dahinter auch ökologische Überlegungen und Ziele? Diese blühenden Wegränder sehen zweifellos schön aus, sie werden auch von blütenbesuchenden Insekten gerne angenommen. Ist es sinnvoll, dafür vor allem nicht einheimische Arten zu nutzen?

Diese Fragen führen zu der übergeordneten Frage, welche besonderen Merkmale solche Übergänge und Grenzen zwischen verschiedenen Landschaftselementen kennzeichnen. Was zeichnet Saumbiotope aus?

Das Unterricht Biologie Heft 425 „Saumbiotope – Grenzen und Übergänge“ ist im Juli 2017 erschienen

Grenzen und Übergänge

Räumlich begrenzte Lebensgemeinschaften, deren Organismen untereinander besonders zahlreiche Wechselbeziehungen zeigen, bezeichnet man zusammen mit ihrer unbelebten Umwelt als Ökosystem. Ein solches System kann ein begrenzter Waldbestand, ein kleines Moor, ein Dorfteich oder eine Felskuppe sein. Aber auch viel größere Einheiten, etwa ein großer See oder Meeresteil oder ein riesiges Waldgebiet wie das Amazonasbecken kann man als Ökosystem auffassen.
Bei naturnahen Landschaften sind die Grenzen zwischen verschiedenen Ökosystemen oft keine scharf gezogenen Linien, vielmehr sind es allmähliche Übergänge. Dies gilt für großräumige Übergänge, etwa vom tropischen Regenwald zur Savanne oder von der Taiga in die Tundra. Diese Übergangsbereiche werden auch als Ökotone bezeichnet.

Vegetationszonierung im Vorderrheintal bei Sedrun

Vegetationszonierung im Vorderrheintal bei Sedrun (Foto Probst)

Es gilt aber auch für kleinere Gebiete, zum Beispiel für die Baumgrenze an einem Gebirgsmassiv.

Scharfe Grenzen hängen oft mit menschlichen Aktivitäten zusammen: Waldränder, Feldraine und Straßenränder sind dafür typische Beispiele. Aber auch katastrophenartige Naturereignisse wie Waldbrände, Sturmschäden, Lawinen, Vulkanausbrüche oder Überschwemmungen haben die Ausbildung scharfer Grenzen zur Folge, die allerdings meist im Laufe der Zeit wieder ausgeglichen werden.
Auch steile Umweltgradienten, zum Beispiel die Wassertiefe an einem Gewässerufer oder die Meereshöhe in einem Gebirge, können zu deutlich erkennbaren Zonierungen führen, bei denen die einzelnen Pflanzengemeinschaften scharf gegeneinander abgegrenzt sind.

Der besondere Reiz solcher Grenzen besteht darin, dass es hier zu einer Vermischung von zwei verschiedenen Lebensgemeinschaften kommt. Solche „Säume“ oder „Ökotone“ bieten besonders viele ökologische Nischen und sind deshalb oft besonders artenreich. Sie erfüllen wichtige ökologische Funktionen, zum Beispiel als Brutplatz für Vögel, Wanderwege für Reptilien und Amphibien, Überwinterungsquartiere für Wirbellose oder Nahrungsspender für Blüten besuchende Insekten.

Saumbiotope in der mitteleuropäischen Kulturlandschaft

Mitteleuropäische Kulturlandschaft (Baden-Württemberg)

Mitteleuropäische Kulturlandschaft (Baden-Württemberg; Foto Probst)

Saumbiotope sind wesentliche Elemente der traditionellen Kulturlandschaft. Sie sind mit der Entwicklung des Ackerbaus seit dem Neolithikum und der Bronzezeit unter dem Einfluss des Menschen entstanden. In Mitteleuropa haben sich diese kleinräumigen Strukturen mit der Auflockerung und Zurückdrängung der ursprünglichen Urwälder in den vergangenen 6000 Jahren allmählich entwickelt. Dadurch hat sich die Anzahl der Pflanzen- und Tierarten, die Biodiversität, stark erhöht. Schaut man sich die Verteilung der Tier- und Pflanzenarten in einer kleinräumig strukturierten, von Wallhecken, Wegrändern, kleinen Gehölzen und Wasserläufen geprägten Landschaft an, so sind die flächigen Landschafselemente relativ artenarm, die meisten Arten konzentrieren sich in den Saumbiotopen. Viele Arten aus den bewirtschafteten Arealen haben

Hochgewachsener Straßenrand mit Glatthafer und Margeriten

Hochgewachsener Straßenrandstreifen mit Glatthafer und Margeriten (Foto Probst)

in den Saumbiotopen eine Rückzugsmöglichkeit gefunden. Dabei kam es im Laufe der Jahrhundrte auch zu Einnischungsprozessen, die Arten haben sich in Anpassung an die besonderen Bedingungen der Saumbiotope  etwas verändert. Auch für eine Reihe neu eingewanderter Arten bieten Saumbiotope günstige Bedingungen.

Eine besondere Bedeutung kommt Saumbiotopen für die Vernetzung von Ökosystemen zu. In einer wenig strukturierten Agrarlandschaft kann die ökologische Qualität durch Ökotone wesentlich verbessert werden. Ein besonderes Problem riesiger Felder in einer ausgeräumten Landschaft ist die Bodenerosion. In Mecklenburg-Vorpommern, einen Bundesland mit besonders vielen großflächigen Äckern, gelten mehr als die Hälfte der Böden als erosionsgefährdet, in ganz Deutschland immerhin 14% (Umweltbundesamt). Das ist ein Grund dafür, dass der Naturschutz ein besonderes Augenmerk auf die Ökotondichte einer Landschaft legt.

Schutz und Pflege von Saumbiotopen

Durch Beweidung stark degradierter Knick, Ausacker b.Flensburg, 1984 (Foto Probst)

Durch Beweidung stark degradierter Knick, Ausacker bei Flensburg, 1984 (Foto Probst)

Allerdings sind Grenzen in einer Kulturlandschaft nicht immer ein wertvoller Saumbiotop. Wallhecken wachsen zu weniger nischenreichen Baumreihen aus, wenn sie nicht regelmäßig „auf den Stock gesetzt“ werden. Dabei sollte man allerdings darauf achten, dass die zurückgeschnittenen Strecken nicht zu lang sind, damit sich für die Arten Rückzugsmöglichkeiten eröffnen. Durch Beweidung können die Wälle erodieren und die Krautvegetation vernichtet werden, durch Pestizideinsatz auf dem angrenzenden Acker können Tiere und Pflanzen geschädigt werden.

Herbicideinsatz am Wegrand (Foto Probst)

Herbicideinsatz am Wegrand (Foto Probst)

Ähnliches gilt für Wegränder und Straßenränder. Frühzeitiges und häufiges Mähen mindert ihren Wert. Erst wenn die Pflanzen blühen, können sie Blütenbestäuber ernähren und erst wenn sie reife Früchte ausbilden können sie sich selbt vermehren und auch als Futterpflanzen für Vögel und andere Tiere zur Verfügung stehen. Auch noch im Winter bieten Fruchtstände („Wintersteher“) Futter und Unterschlupf- und Überwinterungsmöglichkeiten für Insekten.

Waldränder sind umso artenreicher, je dichter der Gebüschsaum und der Hochstaudenbestand ausgebildet sind.Allerdings wird sich von einem Waldrand ausgehend in einem Waldklima der Wald allmählich ausdehnen, wenn man der Natur ihren Lauf lässt. Durch Wurzelausläufer und Keimlinge vordringende Gehölzpflanzen wird der Landwirt deshalb abmähen  und umpflügen müssen. Mäht man allerdings mit dem Schlegelmäher hart an der Waldgrenze entlang, führt dies schnell zu einer Auflockerung des dichten Gebüschstreifens, der dadurch viele seiner ökologischen Funktionen verliert.

Gewässerränder können je nach Uferprofil und Gewässertyp sehr unterschiedlich aussehen.Besonders stark wurden die Fließgewässer in der mitteleuropäischen Landschaft im Laufe der Jahrhunderte verändert. Um die landwirtschaftlich nutzbaren Flächer zu vergrößern wurden nicht nur die Übergangszonen, verschmälert, die Bäche selbst wurden begradigt, tiefer gelegt, und regelmäßig ausgeräumt und ihre Ufervegetation abgemäht. Die Renaturierung von Bachläufen ist deshalb heute ein wichtiger Bereich des Natur- und Umweltschutzes.

Die charakteristischen Saumbiotope an großen Wasserläufen, die Auwälder, sind fast vollständig aus unserem Landschaftsbild verschwunden. Dabei handelt es sich um ursprünglich besonders artenreiche für den Naturhaushalt einer Landschaft wichtige Biotope: “ In den Auen der Schweiz wurden bisher gegen 1200 Pflanzenarten erfasst, wobei die tatsächliche Zahl wahrscheinlich 1500 Arten übersteigt. Dies entspräche der Hälfte der Schweizer Flora auf einem halben Prozent der Landesfläche. Wie die botanische ist auch die zoologische Vielfalt gross: Schmetterlinge, Libellen, Heuschrecken nutzen die verschiedenen Auenbiotope im Lauf ihres Lebenszyklus; Amphibien und Fische, zahlreiche Vogel- und Säugetierarten finden hier Nahrung und Unterschlupf.“ http://www.waldwissen.net/wald/naturschutz/gewaesser/wsl_auen_schweiz/index_DE?dossierurl=http://www.waldwissen.net/dossiers/wsl_dossier_auen/index_DE

Auch an stehenden Gewässern kommt dem Schutz der Gewässerrandstreifen eine besondere Bedeutung zu und auch hier sind natürliche Verhältnisse nur noch an sehr wenigen Stellen zu finden.

Gewässerränder sollten durch Schutzstreifen vor Einträgen aus der Landwirtschaft (Dünger, Pestizide) aber auch vor menschlichem Zutritt geschützt werden.

Auch Meeresküsten zeigen eine charakteristische Zonierung, die allerdings je nach Küstenform sehr unterschiedlich aussehen kann. Bei den an der deutschen Nordseeküste so charakteristischen Wattflächen handelt es sich um flächenhafte Ökosysteme, die nicht  als Saumbiotope im eigentlich Sinne bezeichnet werden können.

Halophytenflur auf Baltrum, 1982 (Foto Probst)

Halophytenflur auf Baltrum, 1982 (Foto Probst)

Dünen und Salzwiesen zeigen schon eher die Charaktristika von Saumbiotopen, in denen sich Elemente der angrenzenden Lebensräume mit den typischen Vertretern mischen. Sehr enge Säume bilden sich an Felsküsten, die  in Deutschland allerdings weitgehend auf die Insel Helgeland begrenzt sind. Sie sind aber charkteristisch für mediterrane Küsten.

Natüriche Küstensäume sind durch anthropogene Einflüsse vielfach verändert worden. Ein Rolle spielen künstliche Befestigungen und Schutzanlagen (Deiche, Grabensysteme und Befestigungen zur Landgewinnung), Verbauungen, Hafenanlgen usw. . Hinzu kommen Einleitungen von Abwässern sowie Düngemitteln und Pestiziden. Tropische Mangroveküsten sind insbesondere durch Aquakulturen, vor allem Garnelenfarmen, bedroht.

Fragmentierung

Oft sind Saumbiotope besonders artenreich, da in ihnen die Arten beider angrenzender Biotope zu finden sind. Es wäre allerdings die falsche Schlussfolgerung, wenn man daraus ableiten würde, dass eine Zerstückelung großer Lebensräume grundsätzlich die Biodiversität erhöhen würde. Im Gegenteil, die Habitatfragmentierung, also die Aufspaltung der Lebensräume von Tier- und Pflanzenarten, wird als eine wichtige Ursache für die Verminderung der Biodiversität angesehen. Lebensraumzerschneidungen, der Aufbau von Barrieren und Grenzen zwischen verschiedenen Teilen einer Population, schränkt den genetischen Austausch ein und kann letzlich zum Aussterben von Arten führen, wenn die Teilpopulationen eine bestimmte Größe unterschreiten.  Um diese nachteiligen Effekte zu vermeiden, ist es wichtig, dass Korridore erhalten bleiben, durch die eine Verbindung der Teillebensräume bestehen bleibt. Der Zerschneidungseffekt von Verkehrswegen kann zum Beispiel durch grüne Brücken über Autobahnen oder durch Krötentunnel unter Landstraßen ein bisschen gemindert werden.

Besonders gefährlich ist die Fragmentierung für artenreiche, großflächige Ökosysteme, die eine lange Evolution hinter sich haben, wie zum Beispiel das Amazonasbecken. Rodungen und der Bau von Verkehrswegen haben hier zu vielen neuen Waldgrenzen geführt. Die Veränderungen durch eine solche Grenze wirken sich oft 100m in das Innere des Ökosystems aus. Das veränderte Mikroklima begünstigt die Einwanderung von neuen, auch invasiven Arten, dichterer Unterwuchs kann das Übergreifen von Feuern von angrenzenden Wirtschaftsflächen fördern. Dadurch verändert sich das Artengefüge, je kleiner die neuen Teillebensräume, desto größer ist der Verlust an Biodiversität.

Saumbiotope im Biologieunterricht

Saumbiotope haben oft etwas mit menschlichen Aktivitäten zu tun. Damit können Menschen aber auch Einfluss nehmen auf die  Qualität solcher Übergänge. Dabei bietet es sich besonders an, Beispiele aus dem direkten Umfeld der SchülerInnen, aus der eigenen Gemeinde, in den Mittelpunkt des Unterrichts zu stellen. In ländlichen Gemeinden können sich SchülerInnen  zum Beispiel über Aussehen und Pflege von Ackerrandstreifen informieren und eigene Vorstellungen mit betroffenen Landwirten diskutieren. In Städten können Parkpflegekonzepte und die Pflege von Weg- und Straßenrändern thematisiert und wenn möglich mit Anwohnern und Mitarbeitern des Umwelt- und Grünamtes besprochen werden. Dabei können  ökologische Grundkenntnisse über Artenschutz und Biodiversität, Verinselung und Vernetzung, Einnischung und Konkurrenz, Eutrophierung und Anreicherung von Schadstoffen in der Nahrungskette vermittelt werden. Es zeigt sich aber auch, dass wirtschaftliche Interessen, Fragen der Verkehrssicherheit und ästhetische Vorstellungen und Bdürfnisse der Bevölkerung berücksichtigt werden müssen. Auf dieser Basis kann es gelingen,  die Folgen von Pflegemaßnahmen und Eingriffen zu verstehen und dieses Verständnis zu nutzen, um sich in der Gemeinde aktiv für sinnvolle Naturschutzmaßnahmen einzusetzen.

Mögliche Themen

Vielfalt an Straßenrändern
Anzahl blühender Pflanzen in verschiedenen Saumbiotopen
Lebensraum Wallhecke (Knick)
Ackerrandstreifen
Bachufer
Seeufer (z. B. Kartierung eines Gewässerufers)

Uferkartierung mit Klebepunkten (Foto: Probst)

Uferkartierung mit Klebepunkten (Foto: Probst)

Meeresküste, Spülsaum
Leben am Waldrand (z. B. Tierspurensuche am Waldrand, Vegetationstransekt vom Wald auf die Wiese)
Transektmethode zur Aufnahme von Übergängen
Waldgrenze im Gebirge
Höhenzonierung
Luftbildauswertung zu Saumbiotopen in unterschiedlichen Landschaften
Verbesserung der Ökotondichte (Ausarbeitung von Vorschlägen für die eigene Gemeinde)
Biotopverbund

Literaturauswahl und URLs

Beck, E. (2015): Biodiversitätsforschung – wohin geht die Reise? Biol.Unserer Zeit 45(2), S. 98-105

Ellenberg, H./Leuschner, L. (6. A., 2010): Vegetation Mitteleuropas mit den Alpen Stuttgart: Ulmer (UTB)

Frey, ./Lösch, R. (3.A., 2010): Geobotanik. Pflanze und Vegetation in Raum und Zeit. Heidelberg: Spektrum

Heydemann, B./Hofmann, W./Irmler, U. (Hrsg, 1990): Verbundfunktion von Straßenrandökosystemen. Faunistisch-Ökol. Mitt., Suppl.9, Neumünster: K. Wachtholtz

Hobohm, C. (2000): Biodiversität. UTB 2162, Wiebelsheim: Quelle und Meyer

Kronberg, I. (Hrsgin.,1999): Saumbiotope. UB 245 (23.Jg.)

Kühne, S./Freier, B. (2012): Saumbiotope und ihre Bedeutung für Artenvielfalt und biologischen Pflanzenschutz. Workshop „Biological Diversity in Agricultural
Landscapes“ – February 09-10, 2012, Berlin-Dahlem
http://pub.jki.bund.de/index.php/JKA/article/view/2201/2585

Plachter, H. (1991): Naturschutz. Stuttgart: G.Fischer

Poschold, P. (2015): Geschichte der Kulturlandschaft. Stuttgart:Ulmer

Riedel, W./Lange, H. (Hrsg., 2. A., 2002): Landschaftsplanung. Heidelberg,Berlin: Spektrum

Schwarz, L. (2016): Als der Boden wegflog. TAZ vom 8.4.2016

Starkmann, T. (2017): Blühende Vielfalt am Wegesrand. Praxis-Leitfaden für artenriche Weg- und Feldränder. LANUV-Info 39 https://www.lanuv.nrw.de/fileadmin/lanuvpubl/1_infoblaetter/info39_Broschuere_Wegrain.pdf

Tschumi, M. et al.(2015): Wildflower strips enhance biological pest control and yield. In: Gesellschaft für Ökologie e. V. (Hrsg.): Verhandlungen der Gesellschaft für Ökologie. Band 45. S. 163ff, Marburg: Görich & Weiershäuser.

Walter, H. (1976): Die ökologischen Systeme der Kontinente (Biogeosphäre). Stuttgart, New York: G. Fischer

http://www.brodowin.de/naturschutz/saumbiotope/

http://www.karch.ch/karch/page-34517_de.html

http://www.landwirtschaftsamt.tg.ch/documents/2015_LQ-Merkblatt__205_Blumenstreifen_am_Ackerrand_Wegleitung_Projekthomepage.pdf

http://www.nachhaltigleben.ch/1-blog/3398-schaedlinge-bekaempfen-blumenstreifen-koennten-pestizide-ersetzen

https://umweltministerium.hessen.de/sites/default/files/media/hmuelv/ackerrandstreifen.pdf

http://naturschutzbund.at/service/newsletter-leser/items/bedrohte-wunderwelt-am-wegesrand.html?file=tl_files/Inhaltsbilder/Service/newsletter/pdf/062_wegraender_anhang.pdf.

https://www.sielmann-stiftung.de/projekte/sielmanns-biotopverbunde/

http://www.naturschutzinformationen-nrw.de/vns/de/foerderkulissen/extens_ackernutzung/ackerrandstreifen

http://www.fva-bw.de/publikationen/merkblatt/mb_48.pdf

http://www.kn-online.de/News/Aktuelle-Nachrichten-Rendsburg/Nachrichten-aus-Rendsburg/Bluetenpracht-der-Saumbiotope-bietet-neuen-Lebensraum

http://www.waldwissen.net/wald/naturschutz/gewaesser/wsl_auen_schweiz/index_DE?dossier_rated=1#bew

http://www.baden-wuerttemberg.de/de/service/presse/pressemitteilung/pid/start-des-modellprojekts-strassenbegleitgruen-1/

http://ifa.agroscience.de/index.php/de/news-projekte/beispielprojekte/eh-da-flaechen/