Schlagwort-Archive: Photosynthese

Der grüne Pelz

LINK-NAME LINK-NAME

Entstehung

Die Erde bildete sich vor etwa 4,6 Mrd. Jahren. 0,5 bis 1 Mrd. Jahre später traten die ersten Lebewesen auf und schon vor ca.3,5 Mrd. Jahren entwickelten sich die ersten Cyanobakterien, die mithilfe von Sonnenlicht aus Wasser und  Kohlenstoffdioxid Kohlenhydrate und Sauerstoff herstellen konnten. Der Sauerstoff oxidierte Mineralien und löste sich in den Ozeanen. Erst nach etwa 1 Mrd. Jahren waren diese Oxidationsprozesse abgeschlossen und der O2-Gehalt der Atmosphäre begann stark anzusteigen – mit tödlichen Folgen für obligate Anaerobier aber mit einem großen Vorteil für Lebewesen, die zur aeroben Atmung mit Sauerstoff in der Lage waren. Mit Photosynthese und Atmung war die Grundlage für effektive chemische Kreisläufe in der Biosphäre geschaffen.

Seither hat sich die Stoffproduktion durch Photosynthese stetig vermehrt, auch wenn es immer wieder kleinere oder größere Rückschritte gab. Vor etwa 400 Mio J. begann die Besiedelung des Festlandes durch grüne Pflanzen und dieser grüne Pelz überzog von Feuchtgebieten ausgehend immer größere Flächen der Kontinente. Der Pelz wurde auch immer dichter und höher. Die höchsten Bäume können über 100 m  hoch werden und die Pflanzendecke ist vielfach geschichtet. Die Pflanzen wurden durch natürliche Selektion  an immer extremere Lebensbedingungen angepasst, sodass immer trockenere und immer kältere Gebiete  einen grünen Pelz bekamen.

Beschädigungen

Waren in der früheren Erdgeschichte  vor allem  plattentektonisch bedingte Veränderungen der Kontinente, Vulkanausbrüche und Asteroideneinschläge aber auch biogene Veränderungen des CO2-Gehalts der Atmosphäre für Rückschritte bei dieser Entwicklung verantwortlich, so ist es heute die menschliche Zivilisation, durch die der grüne Pelz des Bioplaneten Erde beschädigt wird. Diese Beschädigungen haben mittlerweile ein Stadium  erreicht, das für die menschliche Zivilisation und für die derzeitigen Ökosysteme gefährlich wird. Denn angesichts der großen Populationsdichte der Menschen und des Zivilisationsgrads wird der grüne Pelz der Erde verringert und in seiner Wirksamkeit beeinträchtigt.77% der Landfläche (ohne Antarctica) und 87 % der Meere sind derzeit durch menschliche Aktivitäten verändert worden (Watson, Allen u.a.2018).

  • Städte werden immer größer, Verkehrsnetze immer dichter, Agrarflächen, die mit ihren Monokulturen eine deutlich geringere regulatorische Wirkung haben als natürliche Vegetation, dehnen sich immer weiter aus und lassen das grüne Fell der Erde räudig werden.
  • Die Kapazität des grünen Pelzes wird im Hinblick auf eine ausgeglichene Stoffbilanz des Bioplaneten Erde dadurch überschritten, dass fossile Energieträger zur Energiebereitstellung verbrannt und zur (Kunst-)Stoffproduktion genutzt werden. Besonders die starke Zunahme des Treibhausgases CO2 führt zu einer deutlichen Klimaerwärmung.
  • Der Eingriff in den Stickstoffkreislauf durch anthropogene Umwandlung des Luftstickstoffs (N2) in reaktionsfreudige Stickstoffverbindungen kann sich über verminderte Biodiversität und Veränderung der Atmosphäre (Verringerung der UV-Licht filternden Ozonschicht) negativ auswirken.

Diese Veränderungen stellen für den Bioplaneten keine existentielle Gefahr dar, das Leben auf der Erde wird diese Veränderungen ebenso überstehen, wie es andere oft noch viel drastischere Ereignisse im Laufe der Erdgeschichte überstanden hat. Für die menschliche Zivilisation in ihrer heutigen Form stellen sie aber eine existentielle Bedrohung dar. Für eine nachhaltige Entwicklung des Bioplaneten als Lebensraum für die Menschen ist der Erhalt des grünen Pelzes deshalb von entscheidender Bedeutung.

Städte

Sao Paulo,12,3 Mio Einwohner (Quelle: pixibay, joelfotos)

Mit der zunehmenden Bevölkerung werden Städte immer größer und  überdecken immer größere Flächen (Liu u.a.2020). Herkömmliche Städte sind nicht grün, sie haben Oberflächen, die vorwiegend aus Beton, Steinen, Glas und Asphalt bestehen. Die photosynthetische Stoffproduktion ist niedrig, die CO2-Produktion ist viel höher als der CO2-Verbrauch, C-Speicherug in Vegetation und Boden ist gering. Ebenso gering im Vergleich zu natürlichen Ökosystemen ist das Rückhaltevermögen für Regenwasser, sodass es bei den durch Klimawandel vermehrten Starkregen immer häufiger zu Überschwemmungen kommt. Pflanzliche Oberflächen verdunsten Wasser und produzieren Verdunstungskälte. Steine und Beton speichern Wärme. Beides führt dazu, dass  das Stadtklima wärmer ist als das Klima in der Umgebung. Dabei spielt auch eine Rolle, dass der Luftaustausch mit der Umgebung durch die Gebäude behindert wird.

Mögliche Verbesserungen:

Stichworte

Grüne Stadt: Dächer; Fassaden; Boden; Schichten: Kraut, Strauch, Baum

Blaue Stadt: Teiche; Zisternen; Überflutungsflächen; veränderte (entrohrte, mäandrierende) Fließgewässer

Vernetzung: Grünschneisen; Verbund begrünter Dachflächen

Eine Stadt mit großen Grünanlagen wie Parks und Gärten bietet zwar eine hohe Lebensqualität und eine bessere Ökobilanz. Dies geht aber insofern auf Kosten der Umgebung, als sie mehr Fläche für denselben umbauten Raum benötigt. Wenn die Umgebung aus intensiv bewirtschafteten Ackerflächen besteht, kann deren Umwandlung in gartenreiche Wohngebiete trotzdem Vorteile bieten (Reichholf 2018). Für die heutigen, von dicht stehenden Hochhäusern dominierten Großstädte ist das aber keine realistische Alternative, da die benötigten Flächen viel zu groß wären. Eine Erfolg versprechende Möglichkeit für dicht bebaute Großstädte ist die Integration von Bauwerken und Grünanlagen.

Schon lange zählt es zu Attributen ökologischer Bauweise, Dächer zu begrünen. Die Etablierung und Ausgestaltung solcher Dachgärten und Wiesen ist aber noch sehr stark ausbaufähig, wie man auf Luftbildern von Städten leicht erkennen kann. Neben der Flächenvergrößerung könnte auch die Ausgestaltung verbessert werden. Dickere Bodenschichten verbessern die Stoffbilanz, die Wasser- und Kohlenstoff-Speicherung.  Zisternensysteme können für die Bewässerung während Trockenperioden genutzt werden und den Wasserabfluss bei Starkregen mindern.

Begrünte Dachflächen könntemn durch Brücken verbunden werden.

Vernetzte Dachgärten (Entwurf W. Probst, 2020)

Auch begrünte Fassaden gibt es schon lange, aber eher an alten Bauernhäuser auf dem Land als an mehrgeschossigen Stadthäusern, Bankhochhäusern und Industrieanlagen. Für diese traditionelle  Fassadenbegrünung sind vor allem Lianen wie Efeu oder Wilder Wein (Parthenocissus) verantwortlich, die sich mit besonderen Haftorganen an den Fassaden festhalten – ein Grund dafür, dass sich viele Hausbesitzer wegen der dadurch erschwerten Fassadenrenovierung davon abhalten lassen, eine solche  Wandbegrünung zu erlauben. Auch die Furcht vor Beschädigungen durch die wuchernden, oft auch in Risse und Öffnungen eindringenden Lianen spielt dabei eine Rolle. Diese Probleme können durch vorgebaute Rankgerüste teilweise vermindert werden. Eine staatlich finanzierte Förderung der Fassadenbegrünung, wie sie ähnlich bei Fassadendämmungen sehr erfolgreich angewendet wird, könnten ein wirkungsvoller Anschub sein. Besonders wirkungsvoll könnte eine solche Förderung werden, wenn flächenhafte Begrünungsmodule zur Verfügung stünden, die mit einfachen Mitteln an Fassaden angebracht werden könnten und die durch Anschluss an eine Bewässerungsanlage wartungsarm wären. Die Elemente könnten aus einem Gerüst bestehen, an dem mehrere auswechselbare Pflanzgefäße aufgehängt werden.

Eine weitere Möglichkeit der vertikalen Begrünung, die in wenigen Beispielen schon verwirklicht ist, wäre die Ausgestaltung von Pflanzbalkonen mit Sträuchern und Bäumen. Große Gebäudekomplexe könnten durch grüne Brücken vernetzt werden. Verkehrswege, insbesondere Straßen und Schienenverkehr, könnten wie U-Bahnen unter die Oberfläche verlegt werden, wodurch Platz für bodenständige Grünanlagen aber auch Rad- und Fußwege gewonnen würde, So könnten schließlich Städte entstehen, die ganz in einem grünen Pelz eingehüllt sind und die sich fast übergangslos in die umgebende Landschaft einfügen (vgl. Jean Nouvel 2014, Stefano Boeri 2015).

Verkehrswege

Verkehrswege, insbesondere Straßen für den KFZ-Verkehr, tragen einmal durch Versiegelung zur Reduktion des grünen Pelzes bei, zum anderen  zerschneiden sie Ökosysteme, führen zur Verinselung und  darüber insbesondere zur Schädigung von Tierpopulationen und damit zur Verringerung der Biodiversität. Schließlich belasten die Abgase der Kraftfahrzeuge die Luft.

Autobahn (Quelle: pixabay: Alexas_Fotos)

Mögliche Verbesserungen:

Stichworte

  • Zerschneidungseffekte minimieren (Brücken über wertvolle Landschaftsteile, grüne Brücken zur Minderung von Zerschneidungseffekten, Tunnel),
  • Begleitgrün verbessern (Straßenränder, Randstreifen,Verkehrsinseln),
  • nicht mehr benötigte Verkehrsflächen entsiegeln,
  • Verkehrsflächen unter die Erde verlegen; nicht nur Hindernisse (Berge, Gewässer) sondern auch besonders schützenswerte Landschaften untertunneln,
  • emissionsarme Verkehrsmittel nutzen.

Je dichter die Besiedelung, desto dichter sind nicht nur Städte, Siedlungen  und Industrieanlagen, desto dichter ist auch das Netz von Verkehrswegen, insbesondere Straßen und Autobahnen (in Deutschland  derzeit nach Erhebung des Umweltbundesamt knapp 20000 km², das entspricht rund 5,5% der  Landesfläche). Das wirkt sich aber nicht nur über den Flächenverbrauch sondern vor allem über den Zerschneidungseffekt nachteilig auf die Funktion von Ökosystemen aus. Mehr noch als Pflanzenarten sind Tierpopulationen durch die dadurch bedingte Verinselung betroffen. Auch die direkte Tötung von Tieren durch den Verkehr spielt eine Rolle. Indirekt wirkt sich dies über die Bestäuber und die Verbreitung von Früchten und Samen auf die Vegetation aus.

Eine Verbesserung kann einmal durch geeignetes Straßenbegleitgrün erreicht werden (Kühne/Freier 2012). Vor allem aber kann die trennende Wirkung von Verkehrsflächen durch Brücken, sowohl Brücken über schützenswerte Landschaftsteile als auch verbindende Grünbrücken, und Tunnel erreicht werden. Schutzgräben oder Zäune können in Kombination mit kleinen Tunneln insbesondere  Amphibien bei ihren Laichwanderungen schützen (Krötenzaun, Krötentunnel).   

Eine Grünbrücke über die A50 bei Woeste Hoeve in den Niederlanden.. (Quelle: Wikipedia, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=618784)

Natürlich ist das Hauptproblem die hohe Verkehrsdichte und die Emissionen der Verkehrsmittel. Sie wird einmal durch den Individualverkehr, zum anderen durch den Güterverkehr verursacht. Beide haben in den letzten Jahrzehnten ständig zugenommen. Eine größere Verlagerung dieses Verkehrs auf die Bahn wird schon lange als Ziel formuliert, ließ sich aber bisher politisch nicht durchsetzen. Auch eine Förderung dezentraler Produktion könnte der ständigen Zunahme des Güterverkehrs entgegenwirken.                              

Landwirtschaft/Nahrungsmittelerzeugung

Moderne Landbewirtschaftung hat zwar zu immer höheren Erträgen pro genutzter Fläche geführt, die Gesamtstoffbilanz, in die man den Verbrauch von fossilen Energieträgern einrechnet, ist aber immer schlechter geworden. Nach Smil (2019) wird heute pro Ackerfläche 10x soviel produziert wie vor 100 Jahren aber dafür wird 90x soviel Energiezufuhr benötigt.

Riesige Monokulturen, Pestizid- und Düngemitteleinsatz erhöhen zwar die landwirtschaftliche Produktion, vermindern aber insgesamt die Leistungsfähigkeit des grünen Pelzes und schädigen Böden und ihre Kohlenstoff-Speicherfähigkeit. Artenarme, mit Pestiziden behandelte Agrarflächen sind die Hauptursache für den starken Rückgang der biologischen Vielfalt. Die Massentierhaltung ist nicht nur ein ökologisches sondern auch ein ethisches Problem.

Weizenfeld nach der Ernte (Quelle: pixabay: ulleo)

Mögliche Verbesserungen:

Stichworte

  • Beachtung ökologischer  Zusammenhänge (Kreislaufwirtschaft, integrierter Pflanzenschutz)
  • artgerechte Nutztierhaltung
  • Vernetzung durch Feldhecken und Randstreifen
  • Feldgehölze und andere artenreiche Biotope als ökologische Inseln
  • Agroforestry
  • Vertical Farming
  • Landwirtschaft 4.0 (KI)

Das gewichtigste Argument für eine immer stärkere Rationalisierung und Industrialisierung der Landwirtschaft ist, dass nur dieser Weg für die ständig steigenden Bedürfnisse der wachsenden Erdbevölkerung die notwendigen Nahrungsmittel und weiteren Rohstoffe liefern kann. Dieses Argument greift aber insofern nicht, als die derzeitige Landbewirtschaftung auf irreversiblem Verbrauch basiert, Verbrauch von fossilen Energieträgern, Verbrauch von Wasser, Verbrauch von nicht regenerierbaren Düngemitteln (insbesondere Phosphat, Greuling 2011), Verbrauch von Böden, Verbrauch von selbstregulierenden Ökosystemen wie z.B. Regenwäldern.

Systeme, die auf Verbrauch basieren, sind aber nur nachhaltig, das heißt, für längere Zeit funktionsfähig, wenn die verbrauchten Ressourcen ständig regeneriert werden können, Dies ist gegenwärtig eindeutig nicht der Fall. Deshalb ist eine Veränderung  vorhersehbar. Sie kann nur ohne Katastrophen stattfinden, wenn sie  basierend auf wissenschaftlichen Erkenntnissen der Ökologie vorgenommen wird.

Das kann natürlich nicht bedeuten, dass man zu Methoden des Neolithikums zurückkehrt. Eine den Produktionserfordernissen der Gegenwart genügende Landbewirtschaftung, die gleichzeitig nachhaltig ist, bedeutet nicht weniger Technik sonder mehr Technik, genauer gesagt mehr intelligente Technik.

Sehr große, von Monokulturen bestandene Flächen erlauben den Einsatz von riesigen Maschinen und  haben dazu geführt, dass mit wenigen menschlichen Arbeitskräften große Stoffmengen produziert werden können. Gleichzeitig werden dadurch aber lebenswichtige Ressourcen, Artenvielfalt, Böden, Dünger und Energie liefernde Stoffe „verbraucht“ und andere Ökosysteme durch Eintrag von Düngemitteln und Schadstoffen geschädigt.

Das Grüne Band Deutschland bezeichnet einen Geländestreifen entlang der ehemaligen innerdeutschen Grenze, der als arten- und biotopreicher Grüngürtel erhalten bleiben soll und der zudem wertvolle Biotope miteinander verbindet. Wenn von diesem grünen Band weitere Grüngürtel ausgehen würden, könnte es Ausgangspunkt für eine landesweite oder sogar europaweite Netzstruktur werden.

Würden die Monokulturen durch ein Netz naturnaher linearer Elemente wie Feldhecken und Wildpflanzenstreifen unterbrochen, könnte dieser Verbrauch zwar gemindert werden, gleichzeitig wäre aber eine Bewirtschaftung mit den derzeit üblichen Methoden nicht möglich oder viel aufwändiger. Mit kleineren, intelligenten Maschinen, wie sie in einfacher Form  heute schon allgemein zum Staubsaugen oder Rasenmähen eingesetzt werden, wäre das aber durchaus denkbar. Solche intelligenten, lernfähigen Roboter könnten – mit Luftbildern von Drohnen oder auch Satelliten versorgt – sehr gezielt arbeiten. Zusammen mit der  Roboter eigenen  Sensorik würde eine gezielte und damit sparsamere Unkrautvernichtung, Schädlingsbekämpfung, Düngung und Bewässerung möglich. Statt flächendeckender Düngung könnten gezielt nur solche Teilbereiche gedüngt werden, die tatsächlich unterversorgt sind. Pestizide könnten nur auf tatsächlich befallene Pflanzen  gesprüht werden, dasselbe gilt für die Bekämpfung von Unkräutern. Statt  Riesentraktoren und Megamaschinen würden dann viele kleine Roboter die Ackerflächen bearbeiten. Eine solche von künstlicher Intelligenz bestimmte Agrarwirtschaft wird auch als Landwirtschaft 4.0 bezeichnet.

Alternative, Ressourcen schonendere Formen der Landbewirtschaftung wie Mischkulturen und  Agroforestry,  spielen heute nur in Nischen und Subsistenzwirtschaften eine Rolle, da sie sehr arbeitsintensiv sind. Durch Einsatz intelligenter Technik könnten manuelle Tätigkeiten durch Roboter und Regelsysteme ersetzt und damit solche nachhaltigen Wirtschaftsformen rentabler werden.

Eine weitere zukunftsweisende Form zur Produktion von Nahrungsmitteln und anderen nachwachsenden Rohstoffen wird mit dem Begriff „Vertical Farming“  bezeichnet. Dadurch könnte der Flächenverbrauch der Produktion stark verringert werden. Schon auf der Internationalen Gartenschau in Wien 1964 wurde ein von dem Maschinenbauingenieur Othmar Ruthner konstruiertes Turmgewächshaus gezeigt. Weitere Verbreitung dieser Idee sorgte der New Yorker Professor für Umweltgesundheit und Mikrobiologie Dickson Despommier, der mit seinen Studenten ab 1999 entsprechende Ideen  zunächst für die Nahrungsmittelversorgung der 50000 Einwohner Manhattans entwickelte. Ausgangspunkt waren Überlegungen zum möglichen Gemüseanbau auf Dachflächen. In der Weiterentwicklung  wurden Hochhäuser geplant, die insgesamt der Pflanzenkultur dienen sollen. In jedem Stockwerk eines solchen  Hochhauses sollen Pflanzen auf optimale Weise automatisch gesteuert und reguliert kultiviert werden. Gleichzeitig sind diese Kulturen in  Kreislaufsysteme, insbesondere der  Wasserwiederverwendung und Abwasseraufbereitung, eingebunden (Despommier 2011).

Das Prinzip „Wachsen lassen“

Wenn  die möglichst optimale Förderung der Vegetation als wichtigstes Naturschutzziel im Sinne einer für die menschliche Zivilisation nachhaltigen Entwicklung des Bioplaneten anerkannt wird, müssen Pflanzenwachstum und Vegetationsentwicklung so gut wie möglich gefördert werden. Das bedeutet, dass man Pflanzen überall dort wachsen lässt, wo sie nicht wichtige Funktionsabläufe stören.

Die Bearbeitung von Kulturflächen ist in vielen Fällen notwendig. Wenn man eine Wiese in Mitteleuropa nie mehr mäht, wird daraus in ein, zwei Jahrzehnten ein Gebüsch und in einem Jahrhundert ein Hochwald. Einen Acker muss man regelmäßig bestellen, abernten, düngen und auch spritzen, um ernten zu können.  Aber wie sieht es mit den Rändern und den Grenzen zwischen den verschiedenen Nutzungsflächen aus? Hier besteht für den Naturschutz ein riesiges Potenzial, das für den Naturhaushalt vermutlich ergiebiger ist, als die in ihrem Flächenanteil sehr beschränkten Naturschutzgebiete. Außerdem hilft der Randschutz, verinselte naturnahe Flächen zu vernetzen. Eine vielversprechende Initiative, welche diese Idee verfolgt, ist das „Konzept der Ehda-Flächen“. Initiator und Träger dieses Projektes ist das Institut für Agrarökologie des Landes Rheinland-Platz (IfA). In den  Stadtkernen betrifft dies Parkanlagen, aufgegebene Verkehrsflächen, Brachflächen, die vorübergehend nicht bebaut sind, Randstreifen  und Verkehrsinseln, die man zeitweilig der Spontanvegetation überlassen kann. Auch die Grünflächen um öffentliche Gebäude wie Krankenhäuser, Verwaltungs- und Regierungsgebäude liefern große, bisher nicht sinnvoll genutzte Flächen.

Ein besonders großes Potenzial stellen Privatgärten dar, die meist in den Randbereichen der Städte in  Vierteln mit Einfamilien- und Reihenhäusern konzentriert sind. Hier gilt meist das Prinzip, dass nur wachsen darf , was gepflanzt wurde. „Un“kraut jäten ist deshalb  neben Rasen mähen und Hecken schneiden die häufigste Beschäftigung des Hobbygärtners. Um das Unkraut ohne zu viel manuelle Tätigkeit fern zu halten, hat sich schon vor einigen Jahrzehnten verbreitet, die Beete mit einer Schicht aus keimungs- und wachstumshemmendem Rindenmulch zu bedecken.Seit einigen Jahren wird eine noch pflanzenfeindlichere Methode, das Auskiesen von Gartenflächen, immer beliebter.

Durch solche Maßnahmen gehen sehr viele potenzielle Flächen für einen ökologisch wirkungsvollen „grünen Pelz“ verloren.

Einige Regeln, die helfen können, aus einem Garten eine ökologisch wertvolle Grünfläche zu machen:

  • Zierpflanzen, die gut gedeihen, fördern, auf solche, die schlecht wachsen oder sehr viel Pflege benötigen, verzichten,
  • auf Pestizide verzichten oder sie nur sehr gezielt bei einzelnen befallenen Pflanzen einsetzen,
  • Wildpflanzen nur entfernen, wenn sie gewünschte Zier- oder Nutzpflanzen schädigen oder verdrängen,
  • Wildpfanzen unter Hecken oder Sträuchern wachsen lassen,
  • Rasenflächen, die rein ornamentale Funktion haben, zu mageren (nicht gedüngten), höchstens zweimal im Jahr gemähten Wiesen umwandeln,
  • Abstellflächen (z.B. Autostellplätze) nicht pflastern oder asphaltieren, sondern als Schotterrasen gestalten,
  • Einfahrten mit unterbrochenen Pflastersteinen befestigen, die Bewuchs und Wasserversickerung ermöglichen,
  • abgeblühte Blütenstände und abgestorbene  Fruchtstände wenigstens teilweise stehen lassen, auch über Herbst und Winter (Überwinterungsplätze für Insekten)
  • Gartenabfälle vor Ort kompostieren,
  • aus Strauch- und Baumschnitt Reisighaufen anlegen,
  • Gartenmauern als Trockenmauern anlegen, Mauerritzen können zur schnelleren Begrünung mit passenden Pflanzen geimpft werden (Zimbelkraut, Mauerraute, Schöllkraut, Polster von Mauermoosen wie Drehzahnmoos, Kissenmoos)
  • Abwechslungsreiche Besiedelungsflächen schaffen (Sandflächen, Lehmböden, humusreiche Böden, Stein- bzw. Bauschutthaufen),
  • Regenwasser vom Dach (und versiegelten Flächen) in Zisterne sammeln und als Gießwasser (ggf. auch für Teich /Bachlauf) nutzen.
Wildwuchs an der Gartengrenze
Wildwuchs an der Gartengrenze (Großblutige Königskerze – Verbascun densiflorum)

Quellen

Blanc.P. (2009): Vertikale Gärten, Die Natur in der Stadt. Stuttgart: Ulmer

Boeri, S. (2015): A vertical Forest. Milano: Editione Mantova

Delwiche, C., F., Cooper, E., D. (2015): The evolutionary origin of terrestrial flora. Current Biology25, S. R899 – R919

Dasgupta,  P. (2020): Interim Report – The Dasgupta Review: Independent Review on the Economics of Biodiversity. Crown copyright. https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/882222/The_Economics_of_Biodiversity_The_Dasgupta_Review_Interim_Report.pdf

Despommier, D. (2011): The vertical  farm: Feeding the world in the 21th century. Picador (Nachdruck der Ausgabe von 2010)

Glatron, S., Granchamp, L. (eds. , 2018) : The urban garden city. Springer

Greuling, H. (2011): Am Phosphor hängt das Schicksal der Menschheit. Die Welt bewegen. Berlin: Axel Springer SE https://www.welt.de/dieweltbewegen/article13585089/Am-Phosphor-haengt-das-Schicksal-der-Menschheit.html

Haft, J. (2.A. 2019): Die Wiese – Lockruf in eine geheimnisvolle Welt. München: Pengiun

Hendershot, J., N. u.a. (2020): Intensive farming drives long-term shifts in avian comunity composition. Nature 579, p.393-396

Kühne, S./Freier, B. (2012): Saumbiotope und ihre Bedeutung für Artenvielfalt und biologischen Pflanzenschutz. Workshop „Biological Diversity in Agricultural
Landscapes“ – February 09-10, 2012, Berlin-Dahlem

Liu, Xiaoping et al. (2020): High spatiotemporal resolution mapping of global urban change from 1985 to 2015: Nature Sustainability. DOI: 10.1038/s41893-020-0521-x

Probst, W. ,Hrsg. (2017): Saumbiotope – Grenzen und Übergänge. Unterricht Biologie 425. Seelze: Friedrich

Reichholf, J. H. (2018): Schmetterlinge: Warum sie verschwinden und was das für uns bedeutet. München: Hanser

Schilk, D. (2019): Die Wiederbegrünung der Welt. Klein Jasedow: Drachen-Verlag

Smil, V. (2019): Growth – From microorganismes to megacities. Cambridge MA.: MIT-Press

Watson, J. E. M., Allen, J. A. U:A: (2018): Protect the last of the wild. Nature 563, pp. 27-30

http://pub.jki.bund.de/index.php/JKA/article/view/2201/2585

https://umwelt.hessen.de/s/default/files/media/hmuelv/ackerrandstreifen.pdf

https://mashable.com/article/green-cities-china/?europe=true

https://www.floornature.de/jean-nouvel-und-die-gruenen-apartments-one-central-park-in-sidney-11253/

Frühe Evolution und Symbiose

LINK-NAME
Was ist Leben? Wie ist Leben entstanden? Wie hat sich Leben entwickelt? Diese Fragen sind alt, es werden immer wieder neue Antworten gefunden, aber wirklich beantwortet sind sie noch nicht. Hier soll ein Aspekt besonders betrachtet werden, dessen Bedeutung für die Entstehung und erste Entwicklung des Lebens und der Lebewesen auf der Erde erst in den letzten Jahrzehnten allgemein anerkannt wurde, die Symbiose.

Die Einteilung der Lebewesen

Die Vielfalt der Lebewesen wurde traditionell in „Pflanzen“ und „Tiere“ eingeteilt. Schon LINNÉ verteilte alle Lebewesen auf diese beiden „Reiche“. In der makros­kopischen Welt fällt es uns im allgemeinen auch nicht schwer, ein Lebewesen als Pflanze oder Tier zu erkennen. Auch nachdem man mit Hilfe von Mikroskopen die Welt der Mi­kroorganismen immer besser kennenlernte, behielt man lange Zeit diese Eintei­lung bei. So wurden Einzeller zu den Tieren gerechnet, wenn sie kein Chlorophyll ent­hielten und keinen Kohlenstoff assimilieren konnten. Zu den Pflanzen rechnete man die Einzeller mit Chloroplasten. Manche, wie etwa die „Augentierchen“ (Euglena), brachten sowohl Zoologen als auch Botaniker in ihren Systemen unter.

Aber in der ersten Hälfte des 20. Jahrhunderts wurde immer deutlicher, dass der grundlegendste Unterschied zwischen den Lebewesen nicht  „Tier“ oder „Pflanze“ sondern die Organisation der einzelnen Zellen ist. Bei den „Kernlosen“ sind die Zellen wesentlich einfacher gebaut. Sie enthalten keinen Zellkern und es fehlen ihnen viele typische Zellorganelle. Bei den „Kernhaltigen“  sind außer den Zellkernen auch noch andere typische Zellorganelle, insbesondere Mito­chondrien, Plastiden, Zentriolen, Geißeln usw., in den Zellen enthalten und sie sind durch ein komplexes inneres Membransystem kompartimentiert. Die für diese unterschiedlichen Organisationstypen eingeführten Begriffe „Prokaryoten“ und „Eukaryoten“ gehen auf den französischen Mikrobenforscher Edouard Chatton zurück, der die Namen in einer Veröffentlichung von 1937 verwendete (Katscher 2004). Doch erst 25 Jahre später gewannen diese Bezeichnungen auf Grund einer Arbeit von Stanier und van Niel (1962) allgemeine Akzeptanz und wurden auch in Lehrbüchern übernommen.

In den 1970 er Jahren untersuchte der amerikanische Mikrobiologe Carl Woese die Verwandtschaftsbeziehungen innerhalb der Bakterien durch Vergleich der ribosomalen RNA. Dabei fand er heraus, dass es zwei grundlegend unterschiedliche Typen von Prokaryoten gibt, die er zunächst als Bakterien und Archaebakterien bezeichnete. Aufgrund der großen Unterschiede zwischen diesen beiden Gruppen und der teilweisen Ähnlichkeit der Archaebakterien mit den Eukaryoten schlugen er und andere (Woese, Kandler, Wheelis 1990) später vor, eine Dreiteilung der Lebewesen in die drei Domänen Archaea, Bacteria und Eukarya vorzunehmen. Dieses Drei-Domänen-Konzept setzte sich allmählich durch, obwohl es auch starke Gegner gab, zum Beispiel den Evolutionsbiologen Ernst Mayr (1998) und die Wiederentdeckerin der Endosymbiontentheorie Lynn Margulis (1998).

Aus Tiefsee-Geothermalquellen wurden 2010 Sedimente entnommen, in denen man in den folgenden Jahren Archäen nachweisen konnte, die sich deutlich von den bisher bekannten Archäen unterscheiden. Vergleichende Untersuchungen der Genome von Lokiarchaeum und von Eukaryoten deuten auf einen gemeinsamen phylogenetischen Ursprung, eine Monophylie, hin. Das würde bedeuten, dass die Eukarya eine Schwestergruppe der Lokiarchaeota innerhalb der Archaea, sind, dass es also aus kladistischer Sicht nur zwei Domänen Bacteria und Archaea gibt (Spring et al. 2015; Zaremba-Niedwiedzka et al. 2017).

Einteilung der Lebewesen. A, nach Zellen ohne Kern und Zellen mit Kern; B die Kernlosen bestehen aus zwei sehr unterschiedlichen Gruppen; C drei Domänen; D die Kernhaltigen sind Teil der Archäen (Grafik W.Probst)

Urzelle oder Ursuppe?

Allen Lebewesen gemeinsam sind eine Zellstruktur, DNA, der genetische Code sowie mRNA, tRNA und eine durch Ribosomen vermittelte Übersetzung (Translation) des Nukleinsäurecodes in Proteine. Dies spricht dafür, dass alle Lebewesen von einem gemeinsamen Vorfahr abstammen (last universal common ancestor LUCA). Wenn sich alle heute lebenden Arten auf  eine Ursprungsart zurückführen lassen, könnte man Rückschlüsse auf die Eigenschaften dieses Urahnen ziehen, wenn man in den Genomen Nukleinsäurenabschnitte finden würde, die allen heutigen Lebewesen gemeinsam sind.  Eine Analyse von 6,1 Mill. Protein-codierender Gene von sequenzierten prokaryotischen Genomen hat zu der Schlussfolgerung geführt, dass LUCA ein anaerober, CO2– und N2-fixierender, H2-abhängiger thermophiler Prokaryot war und danach an einer an CO2, H2 und Eisen reichen Hydrothermalquelle lebte (Weiss et al. 2016). Diese Ergebnisse sind jedoch nicht ganz unumstritten, da nicht immer eindutig geklärt werden kann, welche Gene wirklich ursprünglich sind und welche durch horizontalen Gentransfer später erworben wurden.

Die Bedeutung des horizontalen Gentransfers bzw. des Austauschs und der Aufnahme von Nukleinsäuremolekülen durch frühe, zellulär organisierte Lebewesen  könnte  so stark gewesen sein, dass die Gene in einem Urzustand des Lebens noch nicht sehr eng an bestimmte zelluläre Lebewesen gekoppelt sondern eher Allgemeingut waren. In einer solchen „Ursuppe“ existierten zelluläre Elemente (Protocyten) neben freien RNA- und DNA-Molekülen (Ribozyme, Viroide) und Virus-ähnlichen Partikeln (Virionen, von Proteinhüllen umgebene Nukleinsäuremoleküle).  Zwar wurde lange Zeit angenommen, dass Viren erst entstehen konnten, nachdem es zelluläres Leben gab, da sie auf den Proteinsyntheseapparat von Zellen angewiesen sind. Aber die Entdeckung von Riesenviren (Mimivirus) hat diese Ansicht ins Wanken gebracht. Diese 2003 beschriebenen bakteriengroßen Viren aus Amöben haben zwar auch keine eigenen Ribosomen aber doch ein sehr komplexes Genom, das auch Gene enthält, die man vorher nur von zellulären Organismen kannte (La Scola et al. 2003).

„Ursuppe“ aus zellulären Elementen (Protocyten) neben freien RNA- und DNA-Molekülen (Ribozyme, Viroide) und Virus-ähnlichen Partikeln (Virionen, von Proteinhüllen umgebene Nukleinsäuremoleküle) und Proteinen, strukturiert durch anorganische Kompartimente (Grafik W.Probst)

Ein Austausch und eine Aufnahme von Nukleinsäureabschnitten durch Zellen und Virionen hätte zunächst die Ausbildung spezifischer Zelltypen, die in „darwinschen Wettbewerb“ miteinander treten konnten, verhindert. Der heute noch weitverbreitete horizontale Genaustausch bei Bakterien und Archäen wäre dann ein Relikt dieses Anfangszustandes.

Nach dieser Vorstellung wäre es auch möglich, dass Bakterien und Archäen sich nicht auf eine gemeinsame Protocyte zurückführen lassen, sondern dass ihre Wurzeln auf unterschiedliche Vorläuferzellen der Ur-Lebensgemeinschaft zurückgehen.

Entwicklung von Archäen und Bakterien ohne LUCA (Grafik W.Probst)

LECA und Mitochondrien

Die meisten neueren Untersuchungen deuten drauf hin, dass die erste eukaryotische Zelle (last eukaryotic common ancestor LECA) durch die Aufnahme eines α-Proteobakteriums durch ein Archaeum, vermutlich aus der Asgard-Gruppe (Eme et al. 2017, Zaremba-Niedzwiedzka et al. 2017), entstanden ist. Für diesen symbiotischen Weg zur ersten eukaryotischen Zelle gibt es zwei unterschiedliche Hypothesen.

Zwei Wege zur eukaryotischen Zelle (Grafik W.Probst)

Nach der traditionellen Vorstellung haben sich in der Archäenzelle als Voraussetzung für die Aufnahme des Proteobakteriums zunächst ein Großteil der für die Eukaryotenzellen typischen komplizierteren Innenstrukturen entwickelt, insbesondere das Cytoskelett, die Kernmembran und die Fähigkeit zur Phagocytose. Dann wurden α-Proteobakterien zunächst als Nahrung aufgenommen. Einige Bakterien widerstanden der Verdauung und wurden zu Endosymbionten, gut geschützt in der Wirtszelle, die vor allem von dem überschüssigen ATP ihrer Mieter profitierte. Die Endosymbionten gaben ihre Selbstständigkeit immer mehr auf, indem Gene aus ihrem Genom in das Wirtszellengenom verlagert wurden (Endosymbiontischer Gentranfer EGT). So entwickelten sich aus den endosymbiontischen Bakterien allmählich Organelle. Nach dieser Vorstellung betrieben die aufgenommenen α-Proteobakterien bereits eine aerobe Atmungskette, bei der als Endprodukte außer ATP CO2 und H2O gebildet wurden.

Eine Alternative Vorstellung geht davon aus, dass die symbiontische Zusammenarbeit von α-Proteobakterien und Archäen unter anaeroben Verhältnissen begann und dass die Archäen noch keine Eukaryoten-Innenstrukturen hatten. In einer sauerstofffreien Umgebung nutzten methanogene Archäen von zumindest fakultativ anaeroben α-Proteobakterien produziertes CO2 und H2 für die Energiebereitstellung durch Reaktion dieser Ausgangsstoffe zu Methan. Je größer die Berührungsflächen der beiden verschiedenen Prokaryoten-Zellen, desto effektiver konnte der Stoffaustausch sein. Dies führte schließlich dazu, dass das α-Proteobakterium ganz von dem Archaeum umschlossen wurde. Die weitere Entwicklung des Archaeums zur Eucyte und des Endosymbionten zum Mitochondrium verlief parallel.

Es spricht vieles dafür, dass sich das intrazelluläre Membransystem einschließlich der Kernmembran dabei vom Endosymbionten ausgehend ausgebildet hat, und zwar durch Abschnürung von Vesikeln von der äußeren Zellmembran des gramnegativen Bakteriums (Gould, Garg, Martin 2016). So entstanden allmählich die verschiedenen membranumschlossenen Kompartimente der Eucyte: die doppelte Kernmembran, das Endoplasmatische Retikulum, der Golgi-Apparat und verschiedene Membranbläschen wie Lysosomen und Peroxisomen. Ein Argument für diesen Weg ist, dass die umhüllende Zellmembran der Eukaryoten, obwohl ursprünglich aus einer Archäenzelle hervorgegangen, in ihrem Aufbau mehr einer Bakterienzellmembran entspricht. Bei Archäen sind die Fettsäuren nicht – wie bei Bakterien oder Eukaryoten – verestert. Sie bilden Glyceroldiether oder sogar Bis-Glycerol-Tetraether (einschichtige Membran, Monolayer) und statt einfacher, unverzweigter Fettsäuren kommen oft verzweigte Ketten vor. Der Austausch dieser Glycerolether gegen Glycerolester könnte dadurch zustande gekommen sein, dass die äußere Zellmembran allmählich durch den Einbau von Membranvesikeln des Endosymbionten umgebaut wurde.

Eine weitere Stütze dieser Entstehungshypothese der Eukaryoten bilden die sogenannten Hydrogenosomen, ATP-bildende Organellen, die in anaerob lebenden Protisten und anderen niederen, in sauerstofffreiem Milieu existierenden Lebewesen vorkommen. Ihre Homologie mit Mitochondrien hat man erst durch Genomanalysen festgestellt. Die meisten Hydrogenosomen enthalten zwar keine DNA, aber in den Kernen der zugehörigen Organismen konnte man Mitochondriengene nachweisen. Anders als bei Mitochondrien dienen bei Hydrogenosomen zur ATP-Bildung nicht Sauerstoffmoleküle sondern Wasserstoffionen (Protonen) als Elektronenakzeptoren. Dabei wird CO2, H2 und Acetat freigesetzt.

ATP-Bildung in Hydrogenosomen (aus Wikipedia)

Nach der ersten Entstehungshypothese müsste man annehmen, dass sich die Hydrogenosomen durch Reduktion aus aeroben Mitochondrien entwickelt haben. Geht man davon aus, dass es sich um den ursprünglichen Zustand handelt und dass sich die Mitochondrien aus Hydrogenosomen entwickelt haben, wäre dies eine Stütze der zweiten Entstehungshypothese.

Für beide Vorstellungen gilt, dass im Laufe der Endosymbiose immer mehr Gene aus dem α-Protobakterium in das Wirtszellengenom übertragen wurden (EGT). So entstand schließlich das Mitochondrium, ein Zellorganell, das nur noch wenige eigene Gene  – bei menschlichen Mitochondrien 37 (Archibald 2014) – und einen stark reduzierten Proteinsynthese-Apparat besitzt. Die meisten Mitochondrien-Proteine werden im Cytosol produziert und über spezielle Membranproteine in die Mitochondrien transportiert.

Plastiden

Auch für die Chloroplasten und alle verwandten, insgesamt als Plastiden bezeichneten  Zellorganelle ist heute unbestritten, dass sie durch Endocytosymbiose entstanden sind. Dabei kann man zwischen primärer und sekundärer Endocytosymbiose unterscheiden. Bei der primären Endocytosymbiose wurden Cyanobakterien von eukaryotischen Zellen aufgenommen, bei der sekundären Endocytosymbiose bereits Plastiden enthaltende eukaryotische Zellen. Man kann drei Organismengruppen unterscheiden, deren Plastiden auf primäre Endocytosymbiose zurückzuführen sind:

  • die Chlorophyta mit Chloroplasten (Grünalgen einschließlich der grünen Pflanzen)
  • die Rhodophyta mit Rhodoplasten (Rotalgen)
  • die Glaucophyta mit blaugrünen Plastiden (übersetzt „Blaugraue Algen“, nicht zu verwechseln mit dem alten Begriff „Blaualgen“ für Cyanobakterien; kleine Gruppe einzelliger Algen)

Die Plastiden der Glaucophyta sind den Cyanobakterien noch sehr ähnlich. Sie werden deshalb auch als Cyanellen bezeichnet. Wie die Zellen der Cyanobakterien enthalten sie Phycobilisomen als Photosynthese-Antennen. Zwischen den beiden Zellmembranen existiert noch eine dünne Peptidoglycanschicht, die typische Zellwandsubstanz der Bakterien. Das Genom ist allerdings durch EGT schon sehr stark verkleinert auf etwa ein Zehntel der Größe eines frei lebenden Cyanobakteriums.

Phycobilisom – Lichtsammelkomplex in den Photosynthesemembranen von Cyanobakterien, Glaucophyta und Rhodophyta (W.Probst nach G.Richter aus Kadereit 2014)

Die Plastiden der Rhodophyta enthalten ebenfalls Phycobilisomen als Fotosynthese-Antennen aber keine Peptidoglycanschicht. Charakteristisch sind  als zusätzliche Pigmente Phycobiline (offenkettigen Tetrapyrrole) wie Phycocyan und Phycoerythrin, die für die häufig rötliche Färbung der Rotalgen verantwortlich sind.

Rhodoplast der Rotalgen mit Phycobilisomen auf den Thylakoiden; rechts einzellige (oben) und vielzellige (unten) Beispiele für Rhodophyta (W. Probst nach versch. Vorlagen)

Die Chlorophyta enthalten Plastiden ohne Phycobilisomen und Peptidoglycanschicht. Charakteristisch für ihre Chloroplasten sind geldrollenartig gestapelte Doppelmembran-Pakete (sogenannte Grana).

Wichtigstes Fotosynthese-Pigment in den Plastiden aller drei Gruppen ist Chlorophyll a. Bei den Chlorophyta kommt außerdem Chlorophyll b vor.

Aufgrund von Fossilfunden und molekulargenetischen Daten vermutet man, dass die endosymbiotische Aufnahme von Cyanobakterien durch eukaryotische, mitochondrienhaltige Einzeller vor etwa 1,5 Milliarden Jahren stattfand (Parfrey, L. W. et al. 2011). Man nimmt an, dass die Cyanobakterien durch Phagocytose als Nahrungspartikel aufgenommen wurden. Dabei werden die aufzunehmenden Nahrungspartikel von einer Phagocytose-Membran umhüllt, in welche Verdauungsenzyme abgegeben werden (Endosomen). Die heutigen Plastiden haben nur die zwei auf die Cyanobakterien zurückgehenden Außenmembranen. Von der „Verdauungsmembran“ der eukaryotischen Zelle ist nichts übrig geblieben.

1 eukaryotische Zelle und Cyanobakterium; 2 beginnende Phagocytose; 3 Cyanobakterium in Endosom; 4 auf dem Weg zum Organell: Endosomenmembran verschwunden, Cyanobakterien-DNA durch EGT reduziert (Grafik W. Probst)

Auch bei den Plastiden ist vom ursprünglichen Genom des Cyanobakteriums nur ein Bruchteil im Organell zurückgeblieben. Von 2000-12.000 Genen bei Cyanobakterien sind in Plastiden noch 60-200 nachzuweisen (Archibald 2014 nach Dragan et al. 2013). Umgekehrt findet sich aber eine beachtliche Anzahl von Cyanobakterien-Genen in den Zellkernen der Plastiden-haltigen Eukaryoten. Bei einer Untersuchung der Modell-Landpflanze Acker-Schmalwand konnten Martin et al. (2002) etwa 4500 der 25.000 Gene der Pflanze auf einen cyanobakteriellen Ursprung zurückführen. Dabei muss natürlich berücksichtigt werden, dass bei den Genomen der Pflanzen Verdopplungen von Teilen oder ganzen Genomen eine wichtige Rolle gespielt haben. Dabei wurden auch die von Cyanobakterien stammenden Gene verdoppelt. Überraschend war, dass nur etwa 50 % dieser Gene für Proteine zu codieren scheinen, die mit Funktionen im Chloroplasten zu tun haben. Ähnliche Verhältnisse konnten später auch für andere Plastiden-haltige Eukaryoten festgestellt werden. Daraus lässt sich erkennen dass der Vorgang der Endocytosymbiose und der damit verbundene endosymbiontische Gentransfer (EGT) weit über die Photosynthesefunktion hinausgehende Folgen hatte. Das Ergebnis waren völlig neue Organismen!

Aufgrund der deutlichen Unterschiede der Plastiden von Glaucophyta, Rhodophyta und Chlorophyta liegt die Vermutung nahe, dass ihrer Entstehung drei getrennte Endosymbiosen zugrunde liegen. Durch molekulargenetische Untersuchungen konnte diese ursprüngliche Annahme jedoch nicht bestätigt werden. Die Restgenome aller drei Plastiden-Typen zeigen große Übereinstimmung. Außerdem treten bestimmte für die Chloroplastenmembran-Durchlässigkeit wichtige Proteine, die von den Kernen der Algenzellen gebildet werden, bei allen drei Gruppen auf. Man nimmt deshalb an, dass es einen gemeinsamen Vorfahr gab und dass die Endosymbiose zur Bildung der Chloroplasten nur einmal stattgefunden hat (Archibald 2014 nach Martin et al. 1998, Turner et al. 1999, McFadden,van Dooren 2004). Glaucophyta, Rhodophyta und Chlorophyta werden deshalb in der phylogenetischen Systematik als Monophylum angesehen und als Archaeplastida bezeichnet.

Sekundäre Plastiden

Schönaugengeißler (Euglena viridis) und einer seiner Chloroplasten (W. Probst nach versch. Vorlagen)

„Augentierchen“ (besser Augengeißler, Euglena viridis), einzellige, schnell schwimmende grüne Algen, die man in Tümpeln und Pfützen finden kann, faszinierten schon die ersten Mikroskopiker. Da ihre Chloroplasten Chlorophyll a und b enthalten, wurde lange Zeit angenommen, dass sie zu den Grünalgen (Chlorophyta) gehören. Erst eine gründliche Untersuchung durch die Algenforscherin Sarah Gibbs führte zu der erstaunlichen Erkenntnis, dass die Chloroplasten von Euglena aus einer endosymbiontischen Grünalge hervorgegangen sind (Gibbs 1978), die Augentierchen selbst aber in eine völlig andere Verwandtschaftsgruppe gehören. Anlass für die genaue Untersuchung war, dass die Chloroplasten – wie schon länger bekannt – nicht von zwei sondern von drei Membranen umgeben waren.

Bei verschiedenen anderen Algen kommen sogar Plastiden mit 4 Membranhüllen vor. In solchen von vier Membranen umgebenen Plastiden von Schlundgeißlern (Cryptophyta) wurden zwischen den zwei äußeren und den zwei inneren Membranen Nukleinsäure- haltige Körper entdeckt, die man als Reste von ehemaligen Zellkernen der endosymbiontischen Eukaryoten identifizieren konnte und die man deshalb als „Nucleomorphe“ bezeichnet. Bei der zweiten Endosymbiose kam es – genauso wie bei der ersten – zu einem endosymbiontischen Gentransfer. Bei vielen Algen wie Euglena, Kieselalgen und großen Braunalgen (Tangen) ist der Kernrest der aufgenommenen eukaryotischen Alge vollständig verschwunden, d. h. die Gene wurden vollständig in den Wirtskern integriert, aber an den drei oder vier Hüllmembranen der Plastiden kann man erkennen, dass diese das Ergebnis von zwei Endosymbiosen sind.

Schlundgeißler (Cryptophyceae) mit 4 Hüllmembranen um seine Plastiden und einem Kernrest (Nucleomorph) zwischen den beiden äußeren und den beiden inneren Membranen (W. Probst nach versch. Vorlagen)

Die Chomatophoren der Schlundgeißler haben sich aus endosymbiontischen Rotalgen entwickelt. Dies gilt auch für andere Algen mit bräunlichen oder gelblichen Chromatophoren aus der Verwandtschaftsgrupp der Heterokontophyta, zum Beispiel für die Kieselalgen, die Goldalgen und die Braunalgen.

Eine  weitere Algengruppe mit sekundären Chloroplasten, die auf Grünalgen zurückgehen, sind die Chlorarachniophyta, amöboide Eukaryoten aus der Gruppe der Rhizaria. Ihre Chloroplasten sind ebnfalls von vier Hüllen umgeben und sie enthalten Nukleomorphe. Auch sie wurden früher zu den Grünalgen gerechnet. Sie sind zwar zur Photosynthese fähig, aber wie chlorophyllfreie Amöben ernähren sie sich auch durch Phagocytose von Bakterien und kleinen Einzellern.

Bei Dinoflagellaten kennt man auch tertiäre Endocytobiosen, bei denen eine einzellige Alge aus der Gruppe der Cryptophyta als Endosymbiont aufgenommen wurde.

Auf dem Weg zur Chloroplastenbildung

Die Schalenamöbe Paulinella chromatophora  hat eine ellipsoide oder birnenförmige aus spiralig angeordneten Silikatplatten zusammengesetzte Schale. Sie lebt zwischen Wasserpflanzen oder im oberflächlichen Sediment von Süßgewässern. In ihrem Inneren enthält sie zwei wurstförmige blaugrüne Körper, die man zunächst als Chromatophoren bezeichnete. Durch molekulargenetische Analysen konnten sie als Abkömmlinge Blaugrüner Bakterien der Gattungen Synechococcus  bzw. Prochlorococcus identifiziert werden. Die Aufnahme dieser Endosymbionten, die mit den Vorfahren der Plastiden nicht näher verwandt sind, liegt bei weitem nicht so lange zurück wie bei den Plastiden. Die Endosymbiose ist zwar schon weit fortgeschritten, sodass weder Paulinella noch ihre Chromatophoren für sich alleine lebensfähig sind. Sie enthalten noch 867 Proteine codierende Gene, was etwa einem Viertel des Genoms von frei lebenden Synechococcus-Arten entspricht. Die Genanalyse des Wirtsgenoms zeigte, dass hier schon  Endosymbionten-Gene enthalten sind. Es konnte auch eindeutig nachgewiesen werden, dass vom Kern codierte Proteine in die Chromatophoren transportiert wurden. Man kann sagen, dass diese Endosymbionten bereits auf dem Weg zum Organell sind. Sie werden deshalb von manchen Forschern auch schon als Chloroplasten oder Plastiden bezeichnet. Aufgrund der genetischen Untersuchungen vermutet man, dass die Endosymbiose von Paulinella etwa 100 Millionen Jahre alt ist (Archibald 2014).

Der zu den Glomeromyceten zählende Pilz Geosiphon pyriforme ist anders als die übrigen Vertreter dieser Pilzklasse kein Mykorrhizapilz, aber er enthält endocytosymbiontische Blaugrüne Bakterien der Gattung Nostoc. Bisher kennt man keine andere Pilzart mit endosymbiontischen Cyanobakterien. Der photosynthetisch aktive Symbiosepartner wächst in blasenförmigen Erweiterungen der Pilzhyphen, die etwa 1 x 1,5 mm groß sind. Geosiphon ist ohne seine Endosymbionten nicht lebensfähig, der Endocytosymbiont Nostoc punctiforme kann dagegen auch frei lebend gedeihen. Frei lebende Nostoc-Fäden aus wenigen Zellen werden von den Pilzhyphen in einem bestimmten Entwicklungsstadium des Pilzes über Endocytose aufgenommen. Nach der Aufnahme wachsen die Pilzhyphen zu den makroskopisch erkennbaren Blasen aus, in denen sich die aufgenommenen Nostoczellen vermehren. Außer normalen Zellen bildet Nostoc auch Heterocysten aus, die zur N2-Fixierung in der Lage sind – also eine „Stickstoffsymbiose“ wie bei Hüllsenfrüchtlern und anderen Pflanzen. Der Pilz erhält von den Blaugrünen Bakterien einen Teil des gebildeten Zuckers und des gebundenen Stickstoffs, dafür liefert der Pilz seinem Endosymbionten Wasser, Phosphat und Kohlenstoffdioxid und alle weiteren benötigten anorganischen Stoffe. Außerdem  schützt er Nostoc vor Stress durch giftige Schwermetalle. Geosiphon bildet – wie viele Glomeromyceten – auch noch eine Symbiose mit einem Bakterium, über die aber bisher nur wenig bekannt ist. Zum anderen bildet der Pilz enge Gemeinschaften mit Hornmoosen und mit dem Lebermoos Blasia pusilla, die beide ihrerseits mit Nostoc in einer extrazellulären Symbiose leben. Glomeromyceten waren vermutlich als Symbiosepartne für die Besiedelung terrestrischer Lebensräume durch die ersten Pflanzen sehr wichtig, möglichrweise sogar Voraussetzung (Wang et al. 2010). Schüßler (2011) vermutet, dass es sich bei der Endosymbiose von Geosiphon und der Arbusculären Mykorrhiza von den meisten heute bekannten Glomeromyceten um eine parallele Entwicklung mit ähnlichen Austauschvorgäng handelt. Bei Gloeosiphon ist der Photosynthese betreibende Partner (Cyanobakterium) innen, im anderen Fall (Pflanze) außen.

Die Kieselalge Rhopalodia gibba besitzt – wie alle Kieselalgen – sekundäre Plastiden, die auf Rotalgen-Endosymbionten zurückgehen. Außerdem enthalten die Zellen dieses Einzeller aber einen weiteren Endosymbionten, der zunächst als „Sphaeroid“ beschrieben wurde. Man konnte nachweisen, dass es sich dabei um ein endosymbiontisches Cyanobakterium aus der Gattung Cyanothece handelt. Dieser Endosymbiont führt allerdings keine Photosynthese mehr durch, aber er kann molekularen Stickstoff assimilieren. Sein Genom enthält mit 2,6 Millionen Basenpaaren noch etwa die Hälfte einer frei lebenden Cyanobakterienart der Gattung Cyanothece (Archibald 2014). Die genetischen Verhältnisse dieser Kieselalge sind dementsprechend recht kompliziert. Im Zellkern findet man

  • Gene der Rotalge, von der der Chloroplast abstammt,
  • von dem Cyanobaktium, das zum primaren Chloroplasten der Rotalge wurde und
  • von dem Genom des weiteren stickstoffbindenden Cyanobakteriums.

Außerdem enthalten Chloroplast und Cyanobakterienendosymbiont noch eigene Genomreste. Diese verschiedenen Gene und ihre Produkte  wirken bei dem effektiven Ablauf des Zellstoffwechsels zusammen.

Pflanzentiere und Kleptoplasten

Alle Photosynthese betreibende Algen und alle grünen Pflanzen verdanken ihre Fähigkeit zur Kohlenstoffassimilation ursprünglich endosymbiontischen Cyanobakterien. Aber darüber hinaus ist es im Laufe der Evolution immer wieder zu einer Kooperation zwischen Kohlenstoff-heterophen und Kohlenstoff-autotrophen Lebewesen gekommen. Die Autotrophie durch Endosymbiose ist eine Fortsetzungsgeschichte.

Schon im 19. Jahrhundert wurden ver­schiedene Symbiosen von Algen mit Nie­deren Tieren und Pilzen entdeckt. Karl Brandt (1881 nach Sapp 1994) be­schrieb die endosymbiontischen Mikroalgen in Einzellern, Hohltieren, Mollusken und Würmern. Er nannte die grünen Vertreter „Zoochlorellen“ und die gelbbräunlich ge­färbten „Zooxanthellen“. Keeble untersuchte und beschrieb 1910 als erster die grünen, darmlosen wurmähnlichen Tiere (Gattung Symsagittifera früher Convoluta) der bretonischen Atlantikküste und nannte sie „plant animals“. Sie werden heute der an der Basis des Tierreiches stehenden Gruppe der Acoelomorpha zugeordnet.

Titel von Frederik Keebles Monografie über die „Pflanzentiere“

Keebles Zeicchnung der beiden Acoelomorpha Symsagittifera roscoffensis und Convoluta convoluta,  früher zuden Strudewürmern gerechnet

Während es sich bei den „Zoochlorellen“ tatsächlich um Grünalgen handelt, allerdings wohl um eine polyphyletische Gruppe, stammen die  „Zooxanthellen“ aus ganz unterschied­lichen Verwandtschaftsgruppen der „Protisten“. Sie ähneln sich, weil sie ihre Gestalt als Endosymbionten erheblich vereinfacht haben. Eine be­sonders verbreitete endosymbiontische Alge gehört zu den Dinoflagellaten (Gattung Symbiodinium), andere werden den Kieselalgen, den Goldalgen und den Haftfaden­geißlern zugeordnet. Bei tropischen Foraminiferen und bei Schwämmen konnte man sogar Rotalgen als Endocytobionten nachweisen (Reisser 1992).

Nehmen die Partner nur über die äußere Oberfläche Kontakt auf, so spricht man von Exosymbiose. Ein gutes Beispiel dafür ist die Flechtensymbiose. Kolonisiert der klei­nere Part­ner den größeren, indem er in sein Körperin­neres ein­dringt, so spricht man von Endosymbiose (Acoelomorpher Symsagittifera roscoffensis und Zoochlorelle Tetraselmis convolutae), wenn er so­gar in die Zel­len des Partners eindringt, von Endocytosymbiose (Paramecium bursaria und Chlorella). Gerade dieser letzte Fall ist bei einzelligen Algen be­sonders häufig. Verbreitet sind solche Endocytosymbiosen nicht nur bei Einzellern wie Wimpertierchen, Foraminiferen und Wurzelfüßern, sondern auch bei Nesseltieren (einschließlich der Korallen), Niederen Würmern und marinen Schnecken.

Schlundsackschnecken Elysia viridis in der Flensburger Förde, 5.7.2011 (Foto J. Langmark)

Eine besondere Art der „sekundären Kohlenstoffautotrophie“ kennt man von der Schneckenordnung der Schlundsackschnecken (Ordnung Sacoglossa). Diese Gruppe mariner Hinterkiemer ernährt sich vorwiegend von  siphonalen Algen, also Fadenalgen, deren Zellfäden nicht durch Querwände unterteilt sind. Die Schnecken stechen die Algen mit einem stilettartig spe­zialisierten Zahn an. Nach dieser Punktation saugen sie den Zellsaft durch ihren muskulösen Pharynx ein. Auf diese Weise können große Zellsaftmengen durch einen Einstich aufgesaugt werden. Die grüngefärbte Meeresschnecke Elysia chlorotica saugt an der Schlauchalge Vaucheria litorea. Sie verdaut einen Großteil des Zellsaftes und integriert die Plastiden durch Phagocytose in die Epithelzellen ihres Verdauungstraktes. Durch Versuche in Aquarien konnte man feststellen, dass die Schnecken ohne Nahrung nur durch Belichtung 8-9 Monate überleben können. In diesem Zusammenhang hat man von „Chloroplastensymbiose“ gesprochen, besser wäre wohl die Bezeich­nung Kleptoplastie (altgriech. kleptein = stehlen), da diese Organelle tatsächlich von den Algen gestohlen oder ausgeborgt worden sind. Zu einem Gentransfer von den Plastiden in die Zellkerne von Schneckenzellen kommt es in diesem Falle allerdings nicht.

Stammbaum der Photobionten und ihren direkten bzw. indirekten Symbiosen mit Blaugrünen Bakterien. Die breiten farbigen Verbindungsbahnen deuten die Verwandtschaftsbeziehungen der Wirtzellen bzw. -organismen an, die Pfeile zeigen die Herkunft der Plastiden. Nur der unterste braune Pfeil markiert die Endocytosymbiose, die zu den Mitochondrien führte. Die verschiedenen Farben markieren die großen Verwandtschaftsgruppen Sar, Archaeplastida, Excavata und Opisthokonta (Grafik W. Probst).

„Verdauungsendosymbiosen“

Viele von Pflanzensäften lebende Insekten (Wanzen, Zikaden, Blattläuse) kooperieren zur besseren Nahrungsnutzung mit endosymbiontischen Bakterien. Eine besonders enge Symbiose besteht zwischen Blattläusen und den endocyto­biontischen Bakterien der Gattung Buchnera, die in speziellen, großen Darmzellen leben, die als Bakteriocyten bezeichnet werden. Die Endosymbionten werden von Generation zu Generation über die Eier weitergegeben. Buchnera ist verwandt mit Escherichia coli, aber im Gegensatz zu diesem weit verbreiteten Darmbakterium ist ihr Genom wesentlich kleiner. Dafür sind in einer Zelle über 100 Kopien enthalten. Eine vollständige Genomanalyse von Buchnera ergab, dass keine Gene für Zellober­flächen-Lipopolysaccharide und Phospholipide vorhanden sind. Ebenso fehlen die meisten Regulatorgene und Gene, die der Verteidigung der Zellen nach außen die­nen. Das enge Zusammenleben mit den Wirten wird auch dadurch deutlich, dass von Buchnera alle für seinen Wirt essentiellen Aminosäuren gebildet werden. Dafür sind mindestens 55 Gene verantwortlich. Umgekehrt werden von dem Bakterium keine für den Wirt nicht essentiellen Aminosäuren produziert. Die Blatt­läuse bilden statt des insektenüblichen stickstoffhaltigen Exkrets Ammoniak Glutamin, das von den Bakterien diekt als Ausgangsstoff für die Produktion der essentiellen Ami­nosäuren verwendet wird. Diese Komplementari­tät zeigt, dass die Symbiose schon sehr lange erfolgreich arbeitet.  Da Buchnera sogar seine Außenmembran vom Wirt erhält, kann man sagen, dass bei dieser Symbiose ein Stadium erreicht ist, das Buchnera schon fast als ein Zellorganell erscheinen lässt.

Noch komplizierter ist die Doppelendocytobiose in Darmzellen von Motten-Schildläu­sen (Aleyrodoidea). Durch Genanalysen entdeckte man, dass in den  Darmzellen-Bakterien ein weiteres endosymbiontisches Bakterium lebt (McCutcheon, von Dohlen 2011).

Viele ähnliche Beziehungen kommen bei Holz bzw Zellulose fressenden Insekten wie Tabakskäfer, Borkenkäfer und Termiten vor. Auch blutsaugende Egel, Zecken und Läuse bessern die Inhaltsstoffe ihrer relativ einseitigen Nahrung durch symbiontische Darmbakterien auf. Sie können in besonderen Darmzellen, in Darmaussackungen oder auch frei im Darmlumen vorkommen. Aber auch für Säugetiere einschließlich des Menschen ist das Darm-Mikrobiom von großer Bedeutung und erfüllt in vielen Fällen die Definition der mutualistischen Symbiose. Die für die menschliche Ernähung so wichtig Milchproduktion de Rinder ist abhänig von den endosymbiontischen Darmmikroben dieser Herbivoren.

Gibt es Monophylie?

Es wird immer deutlicher, dass Endosymbiosen und auch Endocytosymbiosen im Laufe der Stammesgeschichte der Lebewesen eine große Rolle gespielt haben. Wie erste Untersuchungsergebnisse zeigen, sind dabei viele Gene von den Endosymbionten auf ihre Wirte übertragen worden. Die von der synthetischen Theorie der Evolution verwendete Bezeichnung „Gendrift“ für einen Evolutionsfaktor gewinnt dadurch eine ganz neue Bedeutung. Allerdings handelt es sich bei der hier betrachteten „Gendrift“ nicht um ein zufälliges Ereignis, sondern um die Folge einer auf kooperativen Stoffwechselvorgängen beruhenden engen Kooperation zwischen verschiedenen Organismen. Die moderne phylogenetische Systematik (Kladistik) versucht, das System der Lebewesen aufgrund einer auf genetischen Grundlagen beruhenden Stammbaum-Rekonstruktion aufzustellen. Taxonomische Einheiten sollen eine Monophylum darstellen, d. h., sie sollen sich auf eine Ursprungsart zurückführen lassen, die außer den Vertretern des Taxons keine anderen Nachkommen hat. Diese Methode – so schwierig sie auch im Detail sein mag – ist in sich logisch, solange Gene nur vertikal weitergegeben werden. Sobald es aber häufiger zu einer horizontalen Genweitergabe kommt, entstehen Probleme. Denn nun geht es nicht nur um gemeinsame Nachfahren sondern auch um gemeinsame Vorfahren. Ich komme zurück auf unsere einleitende Betrachtung der Großeinteilung der Lebewesen. Nach neuesten Erkenntnissen sind die Eukaryoten ein Teil der Archäen, allerdings nur, soweit es um die Wirtszelle geht. Die für die Entstehung und Weiterentwicklung sehr wichtigen Mitochondrien und Plastiden kommen aus der Domäne Bakterien. Die Eukaryoten haben also mindestens einen weiteren gemeinsamen Vorfahr im Vergleich zu den übrigen Archäen, soweit es sich um Plastiden-haltige Eukaryoten handelt sogar mindestens zwei weitere. Durch die Kombination ist wirklich etwas Neues entstanden, dem man mit gewissem Recht eine eigene Domäne zuerkennen könnte. Nach kladistischen Taxonomieregeln müsste das aber bedeuten, dass man die im übrigen ziemlich gut definierten Archäen nicht mehr als eine systematische Einheit ansehen könnte, da es sich um kein Monophylum handelt. Die sogenannte Asgardgruppe müsste als eigene, den übrigen Archäen und den Bakterien gleichrangige Einheit angesehen werden. Da die Eukaryoten wahrscheinlich sogar aus der Mitte der Asgardgruppe entstanden sind, wäre unter Umständen eine weitere Aufspaltung notwendig. Ich denke, phylogenetische Taxonomen müssten hier zu Kompromissen finden. Das gilt nicht nur für dieses basale Beispiel, sondern für viele ähnliche Fälle.

Stammbau ohne und mit horizontalem Gentransfer (Grafik W. Probst)

Quellen

Archibald, J. (2014): One plus one equals one. Symbiosis and the evolution of complex life. Oxford: Oxford University Press

De Bary (1879): Die Erscheinung der Symbiose. Straßburg: Trübner

Delwiche, C. F. (1999): Tracing the Thread of Plastid Diversity Through the Tapestry of Life. The American Naturalist 154, Supplement: .Evolutionary Relationships Among Eukaryotes, pp 164-177. doi:10.1086/303291  

Delwiche, C., F., Cooper, E., D. (2015): The evolutionary origin of terrestrial flora. Current Biology 25, S. R899-R910

Eme, L., Spang, A., Lombard, J., Stairs, C. W. & Ettema, T. J. G. (2017): Archaea and the origin of eukaryotes. Nat. Rev. Microbiol. 15, pp 711–723

Gibbs, S. P. (1978): The chloroplasts of Euglena may have evolved from symbiotic green algae. Canadian Journal of Botany 56 (22), pp 2883–9. doi:10.1139/b78-345

Gould, S. B., Garg, S. G., Martin, W. F. (2016): Bacterial Vesicle Secretion and the Evolutionary Origin of the Eukaryotic Endomembrane System. Trends Microbiol., 24 (7); pp 525-534. doi: 10.1016/j.tim.201603.005. Epub 2016 Mar 31

Kadereit, J. W., Körner, C., Kost, B., Sonnewald (2014): Strasburger Lehrbuch der Botanik, 37. A., Berlin/Heidelberg: Spektrum

Katscher, F. (2004): The history of the terms Prokaryotes and Eukaryotes. Protist, Vol. 155, pp 257–263, http://www.elsevier.de/protist

Keeble, F. (1910): Plant animals. A study in symbiosis. Cambridge: Univ. Press.

Klemmstein, W. (2017): Viren – ein Perspektivenwechsel. Unterricht Biologie 429,41.Jg., S.2-11

Kremer, B.P., Hauck, A. (1996): Algen in Symbiose – ein klassischer Fall für Zwei. Praxis der Naturwissenschaften 45 (1): 19-22

La Scola, B. et al. (2003): A giant virus in amoebae. Science 299 (5615), pp 2033

Lee, R. L. (2008):  Phycology. 4th ed..Cambridge (UK): Cambridge Univ. Press

Margulis, L. (1998): Symbiotic planet. A new look at evolution. Amherst (USA, Mass.): Sciencewriters

Margulis, L. ,Sagan, D. (2002): Aquiring genomes. A theory of the origin of species. Basic Books

Martin, W. et al. (2002): Evolutionary analysis of Arabidopsis, cyanobacterial, and chloroplast genomes reveals plastid phylogeny and thousands of cyanobacterial genes in the nucleus. PNAS 99 (19), pp 12246–12251 http://www.pnas.org/content/99/19/12246.full

Mayr, E. (1998): Two empires or three? PNAS 95 (17), pp 9720-9723, http://www.pnas.org/content/95/17/9720.full

McCutcheon, J.P., von Dohlen, C. D. (2011): An Interdependent Metabolic Patchwork in the Nested Symbiosis of Mealybugs. Current Biology 21 (16), pp1366-1372 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3169327/

Probst, W. (2002): Leben heißt zusammenleben. Unterricht Biologie 280, Jg.26, S. 4-14

Reisser, W. (1992): Algae in Symbiosis: Plants, Animals, Fungi, Viru­ses, Interactions Explored. Bri­stol:  Inter Press Limited

SAPP, J. (1994): Evolution by Association. New York/Oxford: Oxford University Press

Sapp, J. (2005): The Prokaryote-Eukaryote Dichotomy: Meanings and Mythology. Microbiol. Mol. Biol. Rev. 69 (2), pp. 292-305

Schüßler, A. (2011): The Geosiphon pyriformis symbiosis – fungus „eats“ cyanobacterium. http://www.geosiphon.de/geosiphon_home.html

Spring, A. et al. (2015): Complex archaea that bridge the gap between prokaryotes and eukaryotes. Nature 521, pp 173-179

Stanier, R. Y., van Niel, C.B. (1962): The concept of a bacterium. Arch. Mikrobiol. 42, pp 17–35

Turner, S. et al. (1999): Investigating deep phylogentic relationships among cyanobacteria and plastids by Small Subunit rRNA squence analysis. Journal of Eukaryotic Microbiology 4, pp 327-338

Wang, B. et al. (2010): Presence of three mycorrhizal genes in the common ancestor of land plants suggests a key role of mycorrhizas in the colonization of land by plants. New Phytol. 186(2), pp 514-525. http://onlinelibrary.wiley.com/doi/10.1111/j.1469-8137.2009.03137.x/epdf

Wegener-Parfrey, L. u.a. (2011). Estimating the timing of early eukaryotic diversification with multigene molecular clocks. PNAS 108, S. 13224-13226, http://www.pnas.org/content/108/33/13624.full

Weiss, M. C. et al. (2016): The physiology and habitat of the last universal common ancestor. Nature Microbiol. 16116. http://www.molevol.hhu.de/fileadmin/redaktion/Fakultaeten/Mathematisch-Naturwissenschaftliche_Fakultaet/Biologie/Institute/Molekulare_Evolution/Dokumente/Weiss_et_al_Nat_Microbiol_2016.pdf

Woese, C. R., Fox, G.E. (1977):  Phylogenetic structure of the prokaryotic domain: the primary kingdoms. PNAS 74(11), pp 5088–5090. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC432104/

Woese, C.R., Kandler, O., Wheelis, M.L. (1990): Towards a natural system of organisms: proposal for the domains Archaea, Bacteria, and Eucarya. PNAS 87(12), pp 4576-4579 https://www.ncbi.nlm.nih.gov/pubmed/2112744?dopt=Abstract

Zaremba-Niedzwiedzka,K. et al. (2017): Asgard Archaea illuminate the origin of eukaryotic cellular complexity. Nature 541 (Jan.2017), pp 353-358

https://www.arcella.nl/paulinella-chromatophora

http://www.geosiphon.de/geosiphon_home.html

https://microbewiki.kenyon.edu/index.php/Aphids_and_Buchnera

Nostoc – der älteste Landbewohner

Auf der Erde vor 2,5 Milliarden Jahren - mit Blaugrünen Bakterien

Auf der Erde vor 2,5 Milliarden Jahren – mit Blaugrünen Bakterien (Fotos und Kombination W.Probst 2014)

Die Bakteriengattung Nostoc wurde von der Vereinigung für Allgemeine und Angewandte Mikrobiologie (VAAM) zur Mikrobe des Jahres 2014 gewählt.

http://mikrobe-des-jahres.de/content/nostoc/index.html

Vor zweieinhalb Milliarden Jahren

Ein ET landet vor zweieinhalb Milliarden Jahren auf der Erde. Es gibt keine Wälder und keine grünen Wiesen. Aber ganz ohne Bewuchs sind Berge und Täler nicht. Auf feuchten Sand- und Schotterflächen finden sich große Mengen von schwärzlichen Krusten. Wenn ein Regenguss diese Krusten aufweicht , quellen sie zu olivgrünem Glibber auf. Seine Messinstrumente zeigen dem Außerirdischen, dass es sich bei diesem Glibber um Lebewesen handelt. Sie gewinnen ihre Lebensenergie indirekt aus dem Sonnenlicht, indem sie Teile der Sonnenstrahlen (elektromagnetische Wellen) der Sonne nutzen, um das in der Atmosphäre reichlich vorhandene Kohlenstoffdioxid in energiereiche Kohlenhydrate zu verwandten. Die energiereichen Verbindungen, die beim Abbau dieser Kohlenhydrate in den kleinen in eine gallertige Substanz eingebetteten Zellketten dieser Lebewesen gebildet werden, dienen auch dazu, die Stickstoffmoleküle aus der Atmosphäre zum Aufbau von Aminosäuren und Proteinen zu assimilieren.

Stickstmoffassimilation und Kohlenstoffassimilation laufen parallel in verschiedenen Zellen ab. Dabei muss die Heterocystenzellwand für O2-Moleküle ziemlich dichtsein, denn die Nitrogenase ist extrem sauerstoffempindlich

Stickstmoffassimilation und Kohlenstoffassimilation laufen parallel in verschiedenen Zellen ab. Dabei muss die Heterocystenzellwand für O2-Moleküle ziemlich dicht sein, denn die Nitrogenase ist extrem sauerstoffempindlich.

Der olivfarbene Glibber ist „photolithoautotroph“:
autotroph = nicht auf organische Betriebsstoffe angewiesen
photo- = Licht dient als Energiequelle
litho- = Kohlenstoff stammt aus anorganischen Material

Die ersten Landlebewesen

Im Allgemeinen wird angenommen, dass die ersten Lebewesen, die vom Wasser- zum Landleben übergegangen sind, aus Grünalgen entstandene moosähnliche Pflanzen waren, und dass ihr Landgang vor etwa 450 Millionen Jahren begonnen hat. Man kann aber durchaus davon ausgehen, dass auch schon kernlose Lebewesen, also Bakterien und Archäen, Lebensformen entwickelten, die an das Landleben angepasst waren, wie sie dies heute noch sind. Ob dies – wie in der Einleitung angenommen – schon vor zweieinhalb Milliarden Jahren möglich war, oder wegen der zunächst noch sehr hohen UV-Strahlung erst deutlich später, ist nicht sicher.

Ein solches ursprüngliches Landlebewesen ist das Blaugrüne Bakterium Nostoc commune , dessen bis zu Handteller große Kolonien man auf offenen, mageren Böden auch heute noch finden kann.

Kolonie von Nostoc commune

Kolonie von Nostoc communem (feucht)

Kolonie von Nosatoc commune (ausgetrocknet)

Kolonie von Nostoc commune (ausgetrocknet)

Bei feuchtem Wetter bilden sie unregelmäßige, schleimige Klumpen, bei Trockenheit papierdünne schwärzliche Krusten. Es handelt sich also um ausgesprochen wechselfeuchte (poikylohydre) Lebewesen, die vollständige Austrocknung sehr gut ertragen und lange überdauern können (Anhydrobionten). Sie produzieren eine dicke äußere Hülle aus quellfähigen Polysacchariden (Mehrfachzuckern), die bei Feuchtigkeit ein glibbriges Substrat abgeben, in welchem die Zellketten dann auf dem Land unter wasserähnlichen Bedingungen leben können. Nostoc punctiforme ist ein terrestrisches Bakterium dass man frei lebend im Boden sowie in Symbiose mit verschiedenen Pflanzenarten finden kann, zum Beispiel bei Hornmoosen, Lebermoosen, Cycadeen (Wedelnacktsamer, „Palmfarne“) und dem Mammutblatt (Gunnera).
Auch andere Blaugrüne Bakterien (Cyanobacteria) sind Landbewohner. So sind sie zum Beispiel wichtige Bestandteile der mikrobiellen Krusten von Wüstenböden und der Tintenstriche an Kalkfelsen.

Für alle Cyanobakterien gilt, dass sie wie Algen und Pflanzen mithilfe von Lichtenergie zur Assimilation von Kohlenstoffdioxid in der Lage sind, wobei Wasser als Elektronendonator dient. Dabei wird Sauerstoff freigesetzt. Viele Cyanobakterien können darüber hinaus das Luftstickstoffmolekül assimilieren, das heißt, in organische Verbindungen einbauen. Diese Fähigkeit kommt nur bei kernlosen Lebewesen (Prokaryota) vor, zellkernhaltige Lebewesen (Eukaryota) zu sind hierzu grundsätzlich nicht in der Lage.

Zellifferenzierung

Nostoc-Zellkette mit Heterocyste

Nostoc-Zellkette mit Heterocyste

Wenn Zellen eines Lebewesens sich nach ihrer Teilung nicht trennen sondern zusammenbleiben größere Aggregate bilden, die einzelnen Zellen aber untereinander gleich sind, spricht man von „ZelKolonien“. Kommt es aber zu einer Differenzierung in verschiedene Zelltypen mit unterschiedlichen Funktionen, spricht man von Vielzellern. Ein Rostock und einigen anderen Blaugrünen Bakterien kann man eine solche Zelldifferenzierung beobachten, weshalb man sie als bakterielle Vielzeller auffassen kann: Die Nostoc-Zellketten bestehen aus „normalen“, Fotosynthese betreibenden Zellen, Stickstoff assimilierenden Heterocysten, der Überdauerung dienenden, sporenähnlichen Akineten und der Fortbewegung dienenden Hormogonien.

Zellkommunikation

Die einzelnen Zellen eines Nostoc-Zellfadens stehen über Nanoporen miteinander in Verbindung. Durch diese Poren stellen Multiproteinkomplexe die Brücken zwischen den Zellen her, durch die Signalstoffe und andere Stoffwechselprodukte transportiert werden können.

„Sternenrotz“

Sternenrotz am Straßenrand

Sternenrotz am Straßenrand

Die Kolonien von Nostoc commune sind schon den Menschen früherer Zeiten aufgefallen und sie haben sich Gedanken über ihre Entstehung und Herkunft gemacht. Der Name „Nostoc“ soll auf den Arzt und Alchemisten Paracelsus (1493-1541) zurückgehen, der die Gallerthüllen für einen „Sternenschnupfen“ hielt und daher angeblich das englische Wort nostril und die deutsche Übersetzung Nasenloch zu Nost-och verband. Andere Volksnamen sind zum Beispiel Erdgallerte, Zitteralge, Schleimling, Wetterglitt, Pockensnot, Sternschnupfen, Sternschnuppe, Sternschott, Sternräuspen, Sternschnäuze, Sternenrotz, Sternglugge, Hexenkaas, Hexendreck, Hexengespei, Leversee, Lebersee, Libbersee (Marzell ). Einige dieser Namen gehen auf die Vorstellung zurück, dass es ein „Lebermeer“ aus gallertigem Wasser gibt, in dem die Schiffe nicht vorankommen und die Gallertklumpen von Nostoc hielt man für Abkömmlinge dieses „geronnenen Meeres“.

Essbar

Mancherorts wurde und wird Nostoc als Nahrungsmittel genutzt. „Cushuru“ ist ein proteinhaltiges und eisenreiches Nahrungsmittel in den peruanischen Anden, das auf die Inkas zurückgeht. Auch in China ist Nostoc unter dem Namen „Ge-Xian-Mi“ als Nahrungsmittel bekannt.
Neuerdings versucht man auch, Medikamente aus Nostoc zu gewinnen. So befinden sich derzeit Substanzen gegen Krebskrankheiten oder HI-Viren in der Entwicklung. Auch für die Herstellung von Biokraftstoffen könnten Cyanobakterien künftig eine Rolle spielen.

Energiestoffwechsel der Lebewesen – Ein Wechselspiel zwischen Leben und Umwelt

Mit „Global Change“ oder Klimawandel bezeichnet man heute einen globalen Vorgang, bei dem ein Lebewesen, der Mensch, durch seine Aktivitäten die Umwelt so verändert, das sich die Umweltbedingungen auch für ihn ändern. Dieses Wechselspiel zwischen Leben und Umwelt ist allerdings so alt wie das Leben selbst. Als vor etwas weniger als 4 Milliarden Jahren auf der erstarrten Erdoberfläche die ersten Lebewesen entstanden und Stoffe aufnahmen und andere abgaben und dabei Lebensenergie gewannen (also Stoffwechsel machten), wurden die nützlichen Stoffe selten und die Abfallstoffe nahmen zu. So wäre ein schnelles Ende absehbar gewesen, wären nicht die Abfallstoffe zu Ausgangsstoffe anderer Lebensformen geworden, sodass es zu Rückkoppelungsschleifen kam.
Trotz solcher Recyclingprozesse waren die Grenzen für Leben so lange relativ eng gesteckt, bis als Abfallprodukt der Photosysthese auf Wasserbasis (Photolithoautotrophie) vor etwa 2,7 Milliarden Jahren ein Durchbruch erreicht wurde. Durch die Sauerstoffanreicherung in der Atmosphäre wurde die Versorgung mit freier Energie für die Lebewesen wesentlich einfacher. Diese Form der Photosynthese führte dazu, dass vor etwa 2,2 Milliarden Jahren die Atmosphäre einen so hohen Sauerstoffgehalt hatte, dass aerobe Atmung möglich wurde.

Litertatur/Quellen

Engelhardt, H. (2014): Nostoc – Multitalent mit bewegter Vergangenheit.
Biospektrum , S. 226-227
Flores, E./Herrero, A. (2014): The Cell Biology of Cyanobacteria. Norfolk(UK): Caister Academic Press
Maldener, I. (2014): Nostoc – ein prokaryotischer Vielzeller. Biologie in unserer Zeit 44(5), S. 304-311
Probst, W. (2004): Was Cyanos alles können – Entdeckungen an einer vergessenen Bakteriengruppe. Unterricht Biologie Heft 299 (28. Jg.), S. 40-46, Seelze: Friedrich                      Ward, P./Kirschvink, J. (2015): A new history of life.The radial new discoveries about origin and evolution of life on earth. London/New Dehli … Bloomsbury