Archiv der Kategorie: Verschiedenes

Beobachtungen aus meinem Garten

Hungerblümchen (Draba verna, syn. Erophila verna)

Die Pflasterfugen in unserem Gartenweg, die im Winter vor allem vom Purpur-Hornzahnmoos begrünt sind, zeigen jetzt im Frühjahr einen ganz besonderen Blütenflor. Tausende winziger Hungerblümchen machen sie zu richtigen Blumenrabatten. Sehr schnell bilden die Zwerge Aus der Familie der Kreuzblütler Früchte und Samen und nach wenigen Wochen sind sie verschwunden. Aber ihre Samen bleiben in den Pflasterfugen und im nächsten Frühjahr, oft schon Ende Februar, treiben sie neue Blütenstände.

Hungerblümchen in Pflasterfugen sind kaum zu sehen, aber wenn man in die Kniee geht, kann man erkennen,dass es sich um richtige kleine Blütenpflanzen handelt.
Fotos und Scan W. Probst

In Städten und Siedlungen gibt es viele Ritzen und Fugen. Oft kann man beobachten, wie sie von Anwohnern mühsam ausgekratzt werden. Teilweise kommt es auch zum Einsatz von Herbiziden. Hier könnte man in vielen Fällen Begrünung zulassen und dadurch nicht nur die Biodiversität sondern auch – wie Botaniker der Universität von Santiago de Compostela auch wissenschaftlich bewiesen haben – das Mikroklima verbessern.

LINK-NAME LINK-NAME

Breitfüßige Erlenblattwespe (Nematus septentrionalis, syn. Craesus septendrionalis)

An unserem Gartenteich wächst schon seit einigen Jahren eine Schwarz-Erle, die wir regelmäßig sehr stark zurückschneiden, sodass sie nicht höher wird als die krautige Vegetation.

Schwarz-Erle an unserem Gartenteich (11.8.2023, Foto W.Probst)

Heute Morgen (11.9.2023) entdeckte ich an den Blättern eines Zweiges sehr viele Raupen. Die oberen Blätter hatten sie schon ganz kahl gefressen. Sie fraßen die Blätter vor allem vom Rand aus an und bei Störung nahmen sie plötzlich eine auffällige Schrägstellung ein: Sie krümmten ihren Körper bis auf das Hinterende s-förmig nach hinten.

Mithilfe des Internets ließen sich die Raupen eindeutig der Breitfüßigen Erlenblattwespe (Nematus septentrionalis, syn. Craesus septendrionalis) zuordnen, die in ganz Europa vorkommt, aber vor allem in Mittel- und Nordeuropa weit verbreitet ist.

Fressende Raupen der Breitfüßigen Erlenblattwespe (Nematus septentrionalis, syn.Craesus septendrionalis) (16.9.2023, Foto W. Probst)

Raupen der Breitfüßigen Erlenblattwespe (Nematus septentrionalis, syn.Craesus septendrionalis) in Schreckstellung (16.9.2023, Foto W. Probst)

Die Weibchen der Blattwespe legen ihre Eier in die Mittelrippen von Blättern, vor allem von Birken, Schwarz-Erlen, Eschen, Ahorn, Weiden und Pappeln. Die die Larven fressen gemeinsam am Blattrand und zwar systematisch bis das Blatt bis zur Mittelrippe und wenigen Seitenrippen abgefressen ist. Laut Wikipedia sollen meist drei Generationen vorkommen, die erste fliegt von Mai bis Juni, die zweite von Juli bis September. Die Puppen der dritten Generation überwintern.

Ein sicheres Unterscheidungsmerkmal zwischen Schmetterlingsraupen und Blattwespenraupen ist die Anzahl der Beinpaare. Schmetterlingsraupen haben maximal acht Beinpaare. Nach den Brustsegmenten folgen bei Schmetterlingsraupen mindestens zwei Segmente ohne Beine. Bei den Raupen der Blattwespen folgt  hinter den drei Beinpaaren der Brustsegmente nur ein beinfreies Segment. Alle übrigen Segmente tragen Beinpaare.

Nektarraub

Schon seit Jahrzehnten gedeiht bei mir die afrikanische Aloe aristata. Ich überwintere sie im Zimmer, in der frostfreien Zeit stehen die Pflanzen im Garten.

Aloe aristata im August (Foto W.Probst)

Ich habe auch schon versucht, sie im Freien zu überwintern und einige Male ist es geglückt. Den Freilandaufenthalt danken die Pflanzen mit besonders reichlichen Blüten. Die traubigen Blütenstände können bis zu einem halben Meter lang werden. Oft bilden sie ein bis drei Seitentrauben.

In diesem Topf hat die Aloe an geschützter Stelle zwei Winter überstanden und in den folgenden Sommern besonders reichlich geblüht (Foto W. Probst)

Die mehrere Zentimeter langen, schmalen, orangeroten Blütenkronen sind verwachsen und für heimische Insekten ist der Nektar an der Blütenröhrenbasis kaum zugänglich. In ihrer Heimat werden sie vermutlich von langrüsseligen Nachtfaltern oder sogar von Nektarvögeln bestäubt. In unserem Garten kommt es nur sehr selten vor, dass sich aus einer Blüte eine Frucht entwickelt. Aber der Nektar der Blüten wandert trotzdem in einen Insektenmagen: Wespen, vor allem Feldwespen, knabbern regelmäßig an der Blütenbasis Löcher in die Kronröhre und saugen den Nektar aus.

Eine Feldwespe – vermutlich Polistes dominula – beißt ein Loch in die Kronröhre, um an den Nektar zu gelangen (Foto W. Probst, 9.8.2020)
Aus dem Loch tritt Nektar aus (Foto W. Probst, 16.9.2023)

Nektarraub kann man auch an einheimischen Blütenpfflanzen beobachten, besonders häufig am Akelei, bei dem der Nektar in den Spornern der Blütenblätter gespeichert wird.

Akeleiblüte mit angeknabherten Blütenspornen (Foto W. Pro

Kompaß-Lattich (Lactuca serriola) – Fam. Asteraceae

Der Stachel-Lattich (Lactuca serriola) trägt wechselständige, stachelige Blätter, die mit ihrer Spreite meist senkrecht stehen und häufig nach Norden bzw. Süden zeigen. Deshalb wird die Pflanze auch „Kompass-Lattich“ genannt. Diese Blattstellung wird als Strahlenschutz gedeutet, da die Pflanze häufig an sehr sonnigen Standorten zu finden ist. Ihr Verbreitungsgebiet reicht von Nordafrika bis in die gemäßigten Zonen.

Die kleinen Fallschirmfrüchte sorgen für eine effektive Windverbreitung. Es handelt sich um eine ausgesprochene Pionierpflanze, die häufig an sonnigen Wegrändern und in lückigen Unkrautfluren zu finden ist.

Der Stachel- oder Kompass-Lattich, eine typische Pionier- und Ruderalpflanze. Foto aus unserem Garten im ersten Sommer nach dem Einzug, 10.7.2008 (Foto W. Probst)

In unserem Garten war sie zu Anfang sehr häufig, vor allem auf einem großen Erdhaufen vom Bauaushub. Später verschwand sie fast vollständig. Zur Zeit keimen ihre Samen vor allem zwischen den Kieseln, die den Plattenweg von der Hauswand trennen.

Nach Ellenberg handelt es sich um eine Volllichtpflanze (L 9) mit geringem Feuchtigkeitsanspruch (F 4) und mäßigem Stickstoffbedarf (N 4)

Junger Kompass-Lattich im Kies zweischen Hausmauer und Terrassenplatten, 18.5.2022 (Foto W. Probst)

Der Grüne Salat (Lactuca sativa) mit den Züchtungen „Kopfsalat“ und „Römischer Salat“ stammt vermutlich vom Stachel-Lattich ab.

Wilde Möhre (Daucus carota) – Fam. Apiaceae

Wilde Möhre (Daucus carota) aus unserem Garten (10.7.2021, Foto W. Probst)

Nach dem Kompass-Lattich möchte ich noch eine einheimische Wildpflanze vorstellen, die Ursprungsart für eine wichtige Kulturpflanze ist: die Wilde Möhre (Daucus carota). Die Pflanze blüht bei uns von Mai bis Anfang August. Dieses Jahr mit seinen vielen warmen Sonnentagen ließ die Möhrenbestände sehr gut gedeihen. Die charakteristischen weißen Doppeldolden, meist mit einer schwarzen „Mohrenblüte“ in der Mitte, bilden an vielen Wegrändern – wie im Bild am Bodensee bei Manzell – große Bestände.

Bestand der Wilden Möhre am Bodenseeufer bei Manzell, 18. Juli 2018(Foto W. Probst)

Dadurch, dass in den letzten Jahren die Wegränder und Straßenränder weniger häufig gemäht werden, haben sich die Bestände dieser Pflanze erheblich vermehrt.

Blütenstand der Wilden Möhre mit „Mohrenblüte“ (29.7.2022, Foto W. Probst)

Innerhalb der Doldenblütengewächse sind weiße Doppeldolden als Blütenstände weit verbreitet. Sie sehen bei den verschiedenen Arten sehr ähnlich aus, aber die Mohrenblüte ist ein Alleinstellungsmerkmal der Wilden Möhre. Über die biologische Bedeutung dieser durch Anthocyane sehr dunkel gefärbten Blüte findet man in der Literatur die Vermutung, dass es sich dabei um eine Fliegenattrappe handelt, die andere Fliegen anlockt.

Man könnte vermuten, dass der Name „Möhre“ oder „Mohrrübe“ mit der dunklen Mittelblüte zu tun hat. Aber das stimmt nicht . Der Name kommt vom mittelhochdeutschen „morche“, „morhe“ oder „more“ für „Rübe“ oder „dicke Pfahlwurzel“. Bis heute werden Möhren in Norddeutschland ja auch „Wurzeln“ genannt. Andere Namen sind Karotte oder Gelbe Rübe. Sie beziehen sich auf die von Carotin verurachte orangegelbe Farbe der Kultur-Möhre. Die Wurzeln der Wilden Möhre sind weißlich oder schwach crremefarben, aber sie schmecken und riechen nach Karotte.

Möhren sind zweijährig. Im ersten Jahr bildet sich eine Blattrosette mit einer dicken Pfahlwurzel. Kultur-Möhren werden in diesem Zustand geerntet. Im zweiten Jahr werden die in der Pfahlwurzel gespeicherten Reservestoffe zum Aufbau der Blütenstände genutzt, die bis über 1 m hoch werden können. Im Gegensatz zu vielen anderen Doldenblütlern sind die Dolden der Möhre vor dem Aufblühen kugelig geschlossen und nach dem Verblühen neigen sich die Doldenäste ebenfalls wieder zu einer Kugel zusammen (an ein Vogelnest erinnernd). Auf den Früchten entwickeln sich hakenförmige Härchen, die der Tierverbreitung dienen.

Kugeliger Fruchtstand der Wilden Möhre, der an ein Vogelnest erinnert (Foto W. Probst)

Gewöhnlicher Wasserdost (Eupatorium cannabinum) – Fam. Asteraceae

Blütenstand des Gewöhnlichen Wasserdost (Eupatorium cannabinum) mit Distelfalter (Cynthia cardui), August 1995,(Foto W. Probst)

Der Wasserdost ist eine ausgesprochene Schmetterlingspflanze. In unserem Garten in Flensburg wurde die Staude regelmäßig von vielen Faltern besucht. In unserem Garten in Oberteuringen hat sich der Wasserdost von selbst am Teichufer eingefunden. Die leichten Flugfrüchte werden weit verbreitet. Allerdings ist die Schmetterlingsfauna in den letzten zwei Jahrzehnten sehr viel ärmer geworden, meistens konnten wir deshalb nur einzelne Falterbesuche beobachten.

Gartenteich mit fruchtenden Wasserdost-Pflanzen im September (Foto W. Probst)

Wasserdost-Arten stammen aus Afrika, Asien, Nord- und Südamerika, nur wenige sind in Europa heimisch. Für die Gartenkultur werden aber mehrere Arten angeboten, zum Beispiel die Hochstaude Eupatorium fistulosum (Purpur-Wasserdost, Röhriger Wasserdost) aus Nordamerika, von dem es eine Reihe von Zuchtformen gibt.

„Dost“ bedeutet im Mittelhochdeutschen „etwas buschiges, etwas, das in Büschen wächst“. Ohne Zusatz „Wasser“ bezeichnet Dost die Pflanzengattung Origanum aus der Familie der Lippenblütler. Dazu gehören Majoran (Origanum majoranum) und Echter oder Gewöhnlicher Dost, italienisch Oregano (Origanum vulgare), der mit dem Wasserdost nur die violette Blütenfarbe gemeinsam hat. Dies gilt auch für den Lippenblütler Wirbeldost (Clinopodium vulgare).

Die Blätter des Gewöhnlichen Wasserdosts sind drei geteilt und erinnern entfernt an Hanfblätter (Cannabis), daher das Art-Epitheton „cannabinum“.

Seerosen-Honig

Auf den Seerosenblättern in meinem Teich kann man ziemlich regelmäßig jedes Jahr zwei Insektenarten beobachten.

Seerosenblätter mit Spuren des Seerosen-Blattkäfers (Galerucella nymphaeae) (Foto W. Probst)

Zum einen ist das der Seerosen-Blattkäfer (Galerucella nymphaeae). Alle Lebensstadien, Eier, Larven, Puppen und Imagines des Käfers leben auf den Blättern von Seerosen. Außerdem kommen die Käfer auf Gelber Teichrose, Wasser-Knöterich und Pfeilkraut, eigenartigerweise auch auf Erdbeerpflanzen vor. Die unregelmäßigen Rillen, die Larven und Käfer in die obere Blattschicht fressen, können bei Massenbefall sehr auffällig sein und die Blätter auch zu frühem Absterben bringen, untergehen tun sie allerdings nicht so schnell, da die untere Epidermis nicht angefressen wird.

Seerosenblatt mit Seerosen-Blattlaus (Rhopalosiphum nymphaea) und Honigbiene (Foto W. Probst)

Die zweite Insektenart, die auf den Seerosenblättern zum Teil massenhaft auftreten kann, ist die Seerosen-Blattlaus (Rhopalosiphum nymphaea). Ihr Honigtau kann die Spaltöffnungen auf der Seerosenblattoberseite verstopfen und deshalb die Blätter zum vorzeitigen Absterben bringen. Außerdem lockt der süße Saft auch Insekten, Fliegen und vor allem Bienen, an. Sie verwandeln die süßen Ausscheidungen in Honig, Seerosen-Honig.

Färber-Waid (Isatis tinctoria – Fam. Brassicaceae)

Im Mai 2023 hat sich eine großeStaude des Färber-Waid (Isatis tinctoria) zwischen Mülleimerplatz und Komo´post entwickelt (Foto W. Probst)

Auch 2023 gibt es wieder einen Spontanzugang an unserem Kompost- und Mülleimer-Stellplatz: Es hat sich eine prächtige fast 2 m hohe Staude des Färber-Waids (Isatis tinctoria) entwickelt. Mir fiel schon letztes Jahr die große, grundständige Blattrosette auf, aber ich konnte sie nicht zuordnen.

Diese schon seit vorgeschichtlichen Zeiten genutzte Kulturpflanze aus der Familie der Kreuzblütler (Brassicaceae) war bis ins 16. Jahrhundert wichtiger Lieferant für den blauen Farbstoff Indigo, der vor allem für das Färben von Leinenstoffen aber auch für Holzanstriche verwendet wurde. Erst nachdem der Echte Indigo (Indigofera tinctoria) aus Indien, China und Afrika eingeführt wurde, verlor Färber-Waid schnell an Bedeutung.

Nun findet man die Pflanze in Mitteleuropa immer noch, vor allem an kalkreichen, relativ trockenen Standorten. Aber wie er in unseren Garten gekommen ist, bleibt eine offene Frage, denn in der näheren Nachbarschaft kenne ich keine Standorte.

Färber-Waid (Isatis tinctoria),Maintal, Juni 1987 (Foto W. Probst)

Allerdings werden Färber-Waid-Samen auch vom Gartenversandhandel angeboten. Die Pflanze gilt als gutes Bienenfutter: Die Samen entwickeln sich in einsamigen „Schötchen“, die sich aber – im Gegensatz zu den für die übrige Kreuzblütler typischen Schoten und Schötchen – nicht öffnen, botanisch gesehen also eigentlich Nüsse sind.

Der Himmel über Oberteuringen

5.November 2022 (Foto W. Probst)

Am 5. November 2022, während in Sharm-EL-Sheikh die 27. UN-Klimakonferenz tagte, hatten wir in Oberteuringen einen wunderschönen Sonnentag mit strahlendblauem Himmel. So sah dieser Himmel aus, als ich morgens um neun auf unserer Terrasse rollte: Alle erkennbaren Wolkenbildungen auf diesem Foto gehen auf Kondensstreifen von Flugzeugen zurück. Für jedes Wassermoleküle, dass diese Kondensstreifen verursacht, wird auch ein Kohlenstoffdioxidmolekül ausgestoßen. Die Treibhausgasemissionen des Luftverkehrs werden dadurch indirekt sichtbar.

Schildblatt (Darmera peltata) – Fam. Saxifragaceae

Schildblatt (Darmera peltata) im Frühjahr, 2.5.2013 (Foto W. Probst)

Das Schildblatt (Darmera peltata) stammt aus dem Westen der Vereinigten Staaten von Amerika. Es gedeiht an Bach- und Flussufern in den Staaten Kalifornien und Oregon. Nach unserem Einzug in Oberteuringen erhielten wir einige Pflanzen von unserer Nachbarin. Sie wuchsen zunächst an einigen Stellen in unserem Garten aber dauerhaft hielten sie sich nur am Rand unseres Gartenteiches.

Natürlich, es handelt sich um einen Exoten und strenge Verfechter der Naturgartenidee plädieren dafür, nur Einheimische im Garten wachsen zu lassen. Ich gehöre nicht dazu. Exotische Pflanzen, die mich faszinieren und die im Garten gut gedeihen dürfen dort auch gerne wachsen. In unserem Garten gehört das Schilfblatt dazu.

Schon im April, vor den Blättern, erscheinen die kugeligen rosa Blütenstände an einem Stiel, der bis 30 cm hoch werden kann. Erst im Mai entfalten sich dann die großen Schildblätter. Die Blütenstände strecken sich bis zur Fruchtreife noch einmal auf doppelte Länge, insbesondere die Achsen zwischen den einzelnen Blüten verlängern sich und in jeder Blüte entwickeln sich 2-3 der für Steinbrechergewächse typischen Bälgchen.

Blick in den Blütenstand des Schildblatts, 2.5.2013 (Foto W. Probst)
Blütenstand des Schildblatts auf dem Weg zur Fruchtreife, 9.5.2019 (Foto W. Probst)
Sich entfaltendes Blatt, Mai 2019 (Foto W. Probst)

Vom Lebensformentyp ähnelt das Schildblatt unserer Gewöhnlichen Pestwurz (Petasites hybridus), die ebenfalls bevorzugt an Bach- und Flussufern und auf teilweise überfluteten Kiesbänken gedeiht und die im zeitigen Frühjahr ihre violetten Blütenstände treibt,  bevor sich die riesigen rhabarberartigen Blätter entwickeln. Allerdings würde sich die Pestwurz an unserem nur mit Regenwasser gespeisten und deshalb sehr nährmineralarmen Teich vermutlich nicht gut entwickeln. Auch das Schildblatt erreicht hier keine maximalen Größen – ich sehe das im Vergleich zu den Exemplaren bei unserer Nachbarin, die einen sehr eutrophen Teich mit sehr vielen Fischen pflegt. Trotzdem spenden auch bei uns die Schildblätter den Sommer über sehr viel Schatten. Darunter gedeihen fast nur noch Moose.

Im Herbst erhöht das Schildblatt noch einmal seine Attraktivität durch eine ausgezeichnete Herbstfärbung. Im Winter zieht sich die Pflanze ganz in das kräftige unterirdische Rhizom zurück.

Herbstfärbung des Schildblatts, 25.10.2023 (Foto W. Probst)

Minen, die nicht explodieren

Akeleipflanze mit vielen Minen (Foto W.Probst 26.10.2023)

Ich beobachte eigenartige Linien und Muster, mäandererartig verschlungene Pfade, auf Akeleiblättern. Wenn ich die Blätter gegen das Licht halte, wird deutlich, dass die Blätter an diesen Pfaden sehr durchscheinend sind. Sie bestehen nur aus den chlorophyllfreien Epidermen, den einzellschichtigen Häutchen, die das Blatt nach außen abschließen. Das Blattinnere, das grüne Mesophyll, fehlt. Es wurde von kleinen Insektenlarven aufgefressen, die sich durch das Blattinnere bohren.

Man nennt diese durch Fraß entstandenen Gänge „Minen“ oder „Hyponomien“. Es gibt eine sehr große Anzahl unterschiedlicher Blattminen, die von Mücken-, Fliegen-, Kleinschmetterlings-, Käfer- und Blattwespenlaven erzeugt werden können.

Scan eines Akleiblattes mit Gangminen von Phytomyza aquilegivora (30.10.2023, W. Probst,)

Bei den abgebildeten Akeleiblättern ist der Verursacher die Akelei-Minierfliege Phytomyza aquilegivora. Den Minentyp, bei dem sich die Insektenlarven einen Gang entlang fressen, dessen Durchmesser mit dem Wachstum der Larve immer breiter wird, nennt man „Gangminen“. Eine nahe verwandte Minierfliegen-Art, Phytomyza aquilegiae, frisst sich flächig durch das Blatt und bildet „Platzminen“.

Platzminen voon Phytomyza aqulegiae (7.10.2015, Foto W. Probst)

Als Pionier der Pflanzenminen-Forschung gilt Erich Martin Hering und sein Werk „Die Blattminen Mittel- und Nordeuropas einschließlich Englands“. Die Bestimmung ist mit dieser umfassenden Monographie sehr gut möglich, da die Minen nach ihren Wirtspflanzen sortiert sind.

Die Minen an Akeleiblättern sind verhältnismäßig häufig, andere Pflanzen, die oft von Minierern befallen werden, sind zum Beispiel Geißblatt bzw. Heckenkirsche, Springkraut, Gänsedistel und Klette.

Gangminen von Larven der Geißblatt-Minierfliege (Phytomyza xylostei) auf dem Blatt der Roten Heckenkirsche (Lonicera xylosteum) (8.1996, Foto W. Probst)

Orchideen am Gartenteich

An unserem Gartenteich haben sich „freiwillig“ zwei Orchideenarten eingefunden. 2016 konnte ich am Teichufer zum ersten Mal eine blühende Fleischfarbene Fingerwurz (Dactylorhiza incarnata) entdecken. Die Art kommt in einem etwa 1 km entfernten Naturschutzgebiet (Altweiherwiese) vor. In den Folgejahren hat sich die Anzahl der Orchideenpflanzen langsam aber kontinuierlich erhöht.

Dactylorhiza incarnata Mit der Kleinlibelle Coenagrion puella (20.5.16; Foto W. Probst)

Zu Dactylorhiza incarnata kam noch die Breitblättrige Fingerwurz (Dactyloriza majalis), die ebenfalls im NSG Altweiherwiese zu finden ist. 2022 konnte ich 14 PflanzenDieser beiden Arten zählen, dieses Jahr (2023) ging die Anzahl auf 11 zurück. Dabei hat eventuell Schneckenfraß eine Rolle gespielt.

Dactylorhiza majalis (1.5.2020, Foto W. Probst)

Unser Teich wird immer wieder mit Regenwasser aus einer Zisterne aufgefüllt und ist sehr mineralstoffarm. Die Pflanzen am Teichufer – zum Beispiel Blutweiderich und Wasserdost – bleiben ziemlich klein. Dazwischen gedeihen Moose sehr gut, insbesondere das Spießmoos (Calliergonella cuspidata). Aus diesen Moosrasen sprießen die Orchideen.

Binsen-Schmuckzikade (Cicadella viridis)

Binsen-Schmuckzikade (Cicadella viridis) -(14.10.22; Foto W. Probst)

Im Oktober 2022 beobachtete ich an den schon fast abgestorbenen Stängeln einer Wald-Engelwurz (Angelica silvestris) am Rand meines Gartenteiches etwa 0.7cm lange, hell türkisgrünliche Zikaden. Mithilfe des Internets konnte ich sie als Binsen-Schmuckzikade (Cicadella viridis) identifizieren. Bei den von mir beobachteten Tieren handelte es sich um Weibchen, die Männchen haben laut Wikipedia blaue Flügeldecken. Charakteristisch sind zwei ziemlich große schwarze Flecken zwischen den Komplexaugen.

Wie der Name schon sagt, soll die kleine Zikate vorwiegend an Binsen saugen, aber sie nimmt auch den Xylemsaft von vielen anderen Pflanzenarten auf. Um genügend Nährstoffe zu erhalten, müssen die kleinen Zikaden ziemlich große Mengen des sehr wässrigen sie Xylemsaftes einsaugen, die überflüssige Flüssigkeit wird dann – wie im Foto zu sehen – in  großen Tropfen abgeschieden.

In Mitteleuropa sollen die Binsen-Schmuckzikaden pro Jahr ein bis zwei in Südeuropa drei und mehr Generationen bilden. Imagines der hemimetabolen Zikaden kann man bei uns von Mai bis Oktober beobachten.

Schmuckzikaden (Cicadellinae) sind eine Unterfamilie der Zwergzikaden (Familie Cicadellidae). Die wegen ihrem auffällig schaumigen Larvenschutz („Kuckucksspeichel“) bekannten Schaumzikaden (Familie Cercopidae) sind eine Schwestergruppe der Schmuckzikaden.

Verwilderung fördern

LINK-NAME LINK-NAME

Vom Menschen unberührte Natur macht derzeit weniger als ein Viertel der Erdoberfläche aus. Den Forderungen, solche Flächen zur Stabilisierung des Bioplaneten zu vergrößern, steht die wachsende Weltbevölkerung und die auf Wachstum begründete Weltwirtschaft entgegen. Gibt es trotzdem Möglichkeiten, natürliche Funktionsabläufe zu vermehren?

Wildnis und Naturschutz

Die vom Menschen noch kaum veränderten Gebiet der Erdoberfläche machen gegenwärtig weniger als ein Viertel aus. 77% der Landfläche (ohne Antarktika) und 87% der Meere sind bis heute durch menschliche Aktivitäten verändert worden, der größte Teil davon in den letzten 50 Jahren (Watson, Allen u.a. 2018). Dies wird von vielen Ökologen als ein großes Problem angesehen, denn vom Menschen bisher kaum beeinflussten Wildnis-Gebiete gelten als wichtigster Puffer gegen den Verlust der biologischen Vielfalt und die Klimaveränderungen. Wildnisgebiete regulieren Wasserkreisläufe und Klimazyklen und schützen damit vor extremen Wetterereignissen. Außerdem stellen sie wichtige Referenzflächen für die Regeneration und Renaturierung degradierter Landflächen und Meeresgebiete dar. Die Degradation und Fragmentaktion naturnaher Restflächen verstärken die nachteiligen Auswirkungen der Klimaerwärmung auf die Biodiversität (Mantyka-Pringle u. a. 2012).

Den Erhalt von Wildnis ist deshalb ein wichtiges Naturschutzziel.

Aber was ist Wildnis? Ist es im Sinne Aldo Leopolds von Menschen unberührte Natur? Oder sind mit domestizierten Rindern und Pferden beweidete „halboffene Weidelandschaften“ ebenso Wildnis, wie dies Jan Haft in seinem Buch „Wildnis“ darstellt? Welche Rolle spielt Wildnis für die Biodiversität, für den Klimaschutz und für den Erhalt natürlicher Ressourcen? Haben Aufforstungsprogramme etwas mit Wildnis zu tun? Inwiefern ist der Naturschutz mit Wildnis-Vorstellungen verknüpft?

Viele Fragen. Ein Versuch, sie zu beantworten, lässt schnell erkennen, dass es recht unterschiedliche menschliche Vorstellungen von „wilder Natur“ und den Beziehungen der Menschen zu solcher Wildnis gibt.

Europäische Wildnis?

Die in Mitteleuropa seit der letzten Kaltzeit in etwa 12 000 Jahren – also einer erdgeschichtlich sehr kurzen Zeitspanne – entstandenen Landschaften waren von Anfang an vom Menschen beeinflusst. Die menschliche Nutzung hat ein kleinräumiges Mosaik von Lebensräumen geschaffen und zu einer Artenvielfalt geführt, die sich vermutlich ohne den Menschen und seine Nutztiere nicht oder zumindest nicht so schnell entwickelt hätte.

Eine kleinräumig strukturierte Kulturlandschaft hat sich in Mitteleuropa bis heute in einigen Gebieten erhalten (Foto W. Probst 14.9.2012)

Ein flächendeckender Urwald, wie er über die Jahrhunderte heute vermutlich ohne menschlichen Einfluss in Mitteleuropa entstehen würde, hätte sicher eine geringere Artenvielfalt aufzuweisen als die ursprüngliche, vorindustrielle Kulturlandschaft. Der Biologe und Naturfilmer Jan Haft belegt dies in seinem Buch „Wildnis“ mit gut recherchierten Zahlen und Aussagen von Experten (Haft 2023). Es ist deshalb verständlich, dass Naturschutz in Mitteleuropa in vielen Fällen mit Managementmaßnahmen verbunden ist, bei denen es darum geht, traditionelle Landbewirtschaftungsmaßnahmen nachzuahmen. Schilfbestände in Feuchtgebieten werden abgemäht und das Mähgut gut wird entfernt um einen Zustand magerer Feuchtwiesen zu erreichen, der alten Streuwiesen entspricht. Heiden und Moore werden maschinell oder von Hand von Gehölzen befreit (entkusselt), um einen Zustand herzustellen, der einer extensiven Beweidung entspricht. Feldhecken, die früher auch der Nutzholzgewinnung dienten, werden als Naturschutzmaßnahme weiterhin regelmäßig „auf den Stock gesetzt“, um das Durchwachsen zu Baumreihen zu verhindern und den für Kleinsäuger, Vögel, Reptilien und viele Wirbellosen wertvollen Heckencharakter zu erhalten. Alle diese Maßnahmen zielen auf den Erhalt von Landschaften ab, die man nicht als „unberührte Natur“ bezeichnen kann.

In den zwischeneiszeitlichen Warmzeiten allerdings war die Biodiversität ebenfalls deutlich höher. Ursache waren vermutlich die zahlreichen großen Herbivoren, deren Weidetätigkeit die Bildung geschlossener Urwälder verhinderte. Vielmehr herrschten offene, savannenähnliche Landschaften , wie sie heute zum Beispiel noch in Afrika zu finden sind. Dass es solche großen Pflanzenfresser seit dem Ende der letzten Kaltzeit in Europa nicht mehr gibt, ist vermutlich auf die Tätigkeit menschlicher Jäger zurückzuführen ( Sandom et al. 2014). Streng genommen könnte man deshalb diese voreiszeitliche Landschaft als die eigentliche mitteleuropäische Wildnis ansehen.

Nordamerikanische Wilderness

In Nordamerika ist der Naturschutz deutlich stärker mit dem Wildnisbegriff im Sinne von unberührter Natur verbunden als in Europa. Der Naturalist und Dichter Henry David Thoureau forderte schon 1862, dass jede amerikanische Stadt zur Bildung und Erholung ihrer Bevölkerung 200-400 ha Wildnis so bewahren sollte, dass darin nicht einmal die Spur eines geschnittenen Stockes zu erkennen wäre (nach Trommer 2023). Auch für den großen amerikanischen Naturschützer John Muir war die wilde, von Menschen unberührte Natur der zu schützende Idealzustand. Ebenso setzte sich der Wildtierbiologe Aldo Leopold (1887-1948) für die Bewahrung von Wildnis als einem von Menschen weitestgehend unbeeinflusstem Naturraum ein. Seine Schriften hatten großen Einfluss auf den 1964 beschlossenen Wilderness Act, mit dem ein System von vollständig geschützten Wilderness Areas geschaffen wurde (Henderson o.J.).

Diese unterschiedlichen Vorstellungen von Naturschutz in Nordamerika und Europa hängen sicherlich auch damit zusammen, dass die Landschaftsveränderungen in Nordamerika im 18. und vor allem im 19. Jahrhundert in atemberaubender Geschwindigkeit verliefen und deshalb im Laufe eines Menschenlebens sehr gut zu beobachten waren. Die europäischen Siedler bewirkten eine sehr rasche und drastische Veränderung und verhinderten von vorneherein die Entwicklung einer europäischen Verhältnissen vergleichbaren kleinräumig strukturierten Kulturlandschaft.

Agrarlandschaft in Illinois (Foto W.Probst 1989)

Außerdem war der Ausgangszustand nach der Eiszeit in Nordamerika biodiverser als in Europa. In Nordamerika konnten sich die Biodiversität nach der letzten Eiszeit  schneller regenerieren als in Europa, da die Biozönosen während der Kaltzeiten wegen der vorwiegend von Norden nach Süden streichenden Gebirge nicht so stark dezimiert wurden.  In Mitteleuropas war eine Rückzugsmöglichkeit nach Süden durch die Alpen weitgehend versperrt.

Allerdings sind auch in Nordamerika viele der vor den Kaltzeiten oder in Zwischenwarmzeiten noch existenten großen Pflanzenfesser einschließlich ihrer Prädatoren verschwunden. Es ist naheliegend, zu vermuten, dass auch hier menschlicher Einfluss, die Jagd, für das Aussterben entscheidend war. Ähnliche Entwicklungen kann man auch für Australien und Teile Asiens nachweisen. Lediglich in Afrika haben bis heute eine Vielzahl großer Herbivoren und Carnivoren überlebt. Dies wird damit in Verbindung gebracht, dass sich in Afrika Menschen und Großsäuger über lange Zeiträume parallel entwickelt haben.

Welche Wildnis wollen wir?

Aus diesen Überlegungen wird deutlich, dass nicht so ganz eindeutig ist, was jeweils unter „Wildnis“ , also einem ursprünglichen Naturzustand, gemeint ist und welche günstigen Wirkungen auf eine nachhaltige Entwicklung des Bioplaneten Erde sich daraus ergeben. Geht es um einen Zustand ohne jeglichen menschlichen Einfluss, also um Ökosysteme ohne Homo sapiens oder gehören auch sogenannte Naturvölker dazu? Welche Rolle spielen reich strukturierte Kulturlandschaften, wie sie bis zu Beginn der Industrialisierung in Europa vorherrschend waren? Wie sind die Veränderungen – man kann auch sagen Ausrottungen – zu bewerten, die schon durch Jäger und Sammler bei der Besiedelung Australiens  und Amerikas bewirkt wurden? Wo zieht man die Grenzen? Ist es wirklich notwendig, völlig unberührte (menschenfreie) Natur zu erhalten, oder können menschliche Aktivitäten teilweise dazu führen, dass Funktionen im Naturgeschehen wieder ablaufen, die vormenschlichen Bedingungen entsprechen? Geht es also mehr um „wilde“ Funktionsabläufe als den Erhalt eines menschenfreien Zustandes?

Wilde Weiden

Heckrinder-Bulle im Leimbach-Hepbacher Ried bei Markdorf, Baden-Württemberg (Foto Probst 2011)

Jan Haft zielt in seinem Buch „Wildnis“ genau auf dieses Funktionsverständnis von Wildnis ab, das im Naturschutz auch als „Prozessschutz“ bezeichnet wird. Dabei geht es ihm vor allem um die Ökosysteme mit großen Pflanzenfressern, die in vielen Gebieten der Erde vor dem Erscheinen des Menschen große Räume einnahmen. Diese vorzeitliche Wildnis könnte funktional wiederhergestellt werden durch domestiziert Weidetiere, deren Populationen nicht durch Carnivoren sondern durch den Menschen reguliert werden. Die mittlerweile an vielen Orten etablierten „halboffenen Weidelandschaften“ sind ein gutes Beispiel dafür, dass solche wilde Weiden der Biodiversität wirklich sehr förderlich sind und dass in solchen Gebieten viele bedrohte Arten sich wieder ausbreiten und regenerieren konnten. Zwei sehr gut dokumentiertes Beispieleaus meiner früheren Heimat sind die auf einem ehemaligen Truppenübungsplatz der Bundeswehr entstandene Weidelandschaft „Stiftungsland Schäferhaus“ bei Flensburg und das Stiftungsland Winderatter See – Kielstau (Janßen 2011-2020)

Das Prinzip dieser Art von Verwilderung lässt sich auf andere Bereiche ausweiten. Einige Beispiele:

Aufforstung

Bäume pflanzen und durch Trockenheit und Schädlingsbefall – vor allem Windbruch und Borkenkäfer –  geschädigte oder zusammengebrochenen Wälder durch Aufforstung zu regenerieren gilt nicht nur als eine wichtige Maßnahme des Klimaschutzes sondern auch des Naturschutzes und der Förderung der Biodiversität. Dem widerspricht zum Beispiel der Förster und Erfolgsautor Peter Wohlleben: „Wald kommt von ganz alleine zurück, das macht er seit 300 Millionen Jahren.“ Global gäbe es kein Beispiel dafür, dass gepflanzter Wald besser funktioniert, als ein Wald, der von selbst zurück wächst. Besonders widerspricht Wohlleben der Annahme, Bäumepflanzen sei eine unumstrittene Klimaschutzmaßnahme. Eine frisch gepflanzte Aufforstung stoße in den ersten Jahren bis Jahrzehnten mehr CO2 aus, als die neu gepflanzten Bäume aufnehmen könnten (Wohlleben in“Hart aber fair“ , 01.11.21).

Erfahrungen im Nationalpark Bayerischer Wald geben Wohllebens Auffassung recht. Nachdem in den 1990 er Jahren durch Borkenkäferbefall rund 60.000 ha Wald zugrunde gegangen waren, hielt die Nationalparkverwaltung trotz großer Proteste der Öffentlichkeit an ihrer Nichteingriffsstrategie fest. Die sich hervorragend regenerierenden Bergwaldflächen sind mittlerweile ein international bekanntes Beispiel für natürliche Waldregeneration (Bibelriether 2017).

Ackerbau

Die hohe Biodiversität einer kleinräumig strukturierten Kulturlandschaft, wie sie in früheren Jahrhunderten für Mitteleuropa typisch war, ist unbestritten. Viele hiesige Naturschutzmaßnahmen zielen deshalb darauf ab, alte bäuerliche Bewirtschaftungsformen zu simulieren. Dies geht aber nur auf verhältnismäßig kleinen, abgeschlossenen Naturschutzflächen. Großflächig dominieren weiterhin große, unstrukturierte Ackerflächen, da nur solche mit Großmaschinen rationell bearbeitet werden können. Wäre es nicht denkbar, dass eine zunehmende Digitalisierung der Landwirtschaft auch eine rationelle maschinelle Bearbeitung kleinräumig strukturierte Anbauflächen ermöglichen würde? Statt dinosaurierartiger Riesenmaschinen könnten kleine Agrarroboter Bearbeitung und Ernte übernehmen, die von Satelliten oder Drohnen gesteuert ganz gezielt eingesetzt werden könnten. Sie würden sich an einem verhältnismäßig engmaschigen Netz von Feldhecken und Feldgehölzen, Randstreifen und Saumbiotopen nicht stören. So könnte eine kostengünstige Produktion ermöglicht werden, ohne natürliche Funktionsabläufe vollkommen zu unterbinden.

Auch die arbeitsintensiven Methoden der Permamakulturen und der Agroforestry, die versuchen, natürliche Prozesse nicht zu unterdrücken sondern auszunutzen, könnten durch KI-Einsatz rentabler werden.

Landwirtschaft, die natürliche Funktionsabläufe zulässt (Grafik W. Probst)

KI in der Landwirtschaft

Der nächste Schritt in der technologischen Entwicklung intelligenter landwirtschaftlicher Maschinen könnte eine Art Schweizer Armeemesser sein: ein Roboter, der jede Pflanze individuell behandelt, nicht nur mit Herbiziden sondern auch mit angepassten Düngemitteln, Insektiziden und Fungiziden und gezielter Bewässerung, alles in einem Arbeitsgang und jeweils nur in der benötigten Menge. Die Folgen einer solchen. Behandlung von Einzelpflanzen statt von ganzen Feldern bedeutet nicht nur eine deutliche Reduktion benötigter Chemikalien und anderer Ressourcen. Es könnte schließlich auch zu einem Ende der Monokulturen führen, einem Ende von Kornfeldern oder Sojafeldern soweit das Auge reicht, die heute der Normalfall sind. Monokulturen laugen Böden aus und sind riskant, da solche nur von einer Pflanzenart bewachsene Felder für Schädlingsbefall und andere Katastrophen besonders anfällig sind.“ (Übersetzt aus Little, A. (2019): The fate of food. What we’ll eat in a bigger,hotter,smarter World. London: Oneworld Publications, p.106)

Paludikultur

Bis vor 200 Jahren waren Torfmoore die letzten unberührten Naturlandschaften Mitteleuropas. Durch Entwässerung und Bodenbearbeitung, Torfstich zur Brennmaterialgewinnung und später für Blumenerde und Gärtnereibedarf führten zum weitgehenden Verschwinden ursprünglicher Moore mit aktiver Torfbildung. Im Zuge der Klimaerhitzung hat man festgestellt, dass die Torfbildung unter Mooren eine sehr effektive Form der Kohlenstoffspeicherung darstellt. Deshalb werden seit einiger Zeit große Anstrengungen unternommen, um aktive Moore zu regenerieren. Dies muss aber nicht unbedingt zur Herstellung des ursprünglichen Zustandes führen. Eine Alternative sind die sogenannten Paludikulturen, bei denen auf wieder vernässten Torfböden nutzbare Pflanzenproduktion betrieben wird. Geerntet werden können nicht nur Schilf und Sauergräser sondern auch Torfmoose, aus denen ein für Gärtnereizwecke besonders wertvolles, dem Hochmoortorf entsprechendes Grundsubstrat gewonnen werden kann. Die Kohlenstoff-speichernden Torfschichten bleiben erhalten. Auch weitere ökologische Funktionen wie Regulierung des Wasserhaushaltes und Erhalt von Lebensräumen für moortypische Tiere und Pflanzen blieben – zumindest teilweise – erhalten (Tanneberger, Schroeder 2023)

Migration

Arten, die sich in einem Gebiet ausgebreitet und etabliert haben, in dem sie zuvor nicht heimisch waren, nennt man Neobiota (auch Neobionten, Sing. der Neobiont). Enger gefasst versteht man darunter nur solche Arten, für deren Einbürgerung indirekt oder direkt menschliche Aktivitäten verantwortlich waren. Arten, die sich ohne menschlichen Einfluss ausgebreitet haben, werden dann als Neueinheimische (Neonative) bezeichnet. Besonders wichtig für Neobiota im engeren Sinne ist der weltweite Güterverkehr.

Nach einer Recherche von Kleunen et al. 2015 wurden bs dahin weltweit 13.168 Pflanzenarten durch menschliche Aktivitäten in neuen Gebieten eingebürgert. Besonders neobiontenreich ist Nordamerika, die größte Anzahl der weltweit neu eingebürgerten Arten stammt aus Europa. Beides hängt vermutlich direkt mit der Kolonisation zusammen, die von Europa ausging.

Vom Naturschutz wird diese menschenbedingte Migration zumeist als großes Problem angesehen, da neu eingewanderte Arten etablierte, heimische Arten verdrängen und Ökosysteme verändern können. Der Naturschutz versucht deshalb, diese Migration zu verhindern und die Migranten wenn möglich wieder aus den neu eroberten Gebieten zu verdrängen. Tatsächlich haben Neobiota teilweise zu drastischen Veränderungen der ursprünglichen Ökosysteme beigetragen. Dies gilt besonders für pazifische Inseln, die von europäischen Kolonisatoren nicht nur mit landwirtschaftlichen Nutzpflanzen und Nutztieren (Schweine, Ziegen) sondern auch mit Ratten und europäischen Wildpflanzen von Äckern und Weiden „geimpft“ wurden. Die sehr speziellen Ökosysteme hatten solchen im wahrsten Sinne des Wortes invasiven Arten nichts oder wenig entgegenzusetzen und viele auf den Inseln endemisch Arten wurden ausgerottet.

Andererseits ist Migration ein sehr natürlicher Vorgang, der für die Geschichte des Lebens auf der Erde eine entscheidende Rolle gespielt hat. Mancuso (2021) bezeichnet Migration nicht ganz zu Unrecht sogar als „Essenz des Lebens“. Allen Lebewesen, so Mancuso, sei ein „Wandertrieb“ eigen, das Bestreben, sich möglichst effektiv auszubreiten, das Verbreitungsareal zu vergrößern. Durch solche Wanderungen bedingte Veränderungen wären für die Entwicklung des Lebens auf unserem Planeten – nicht zuletzt auch für die Evolution des Menschen – von großer Bedeutung. Vom Menschen geförderte oder verursachte Migration ist nicht etwas grundsätzlich anderes als natürliche Migration, allerdings kann vom Menschen geförderte Ausbreitung natürliche Ausbreitungsschranken schneller überwinden und auch große Entfernungen können durch moderne Verkehrsmittel schnell überbrückt werden.

Um den Artenbestand von Inseln zu erklären, haben  MacArthur und Edward O. Wilson 1967 die mittlerweile breit akzeptierte Gleichgewichtstheorie der Inselbesiedelung entwickelt. Danach stellt sich – qualitativ leicht zu beschreiben – auf jeder Insel ein Gleichgewicht zwischen Einwanderungsrate und Aussterberate der Arten ein. Je mehr Arten auf einer Insel vorhanden sind, desto geringer ist die Einwanderungsrate. Entweder, da keine Arten zur Einwanderung mehr zur Verfügung stehen, oder, da es keinen Platz mehr für die neu zugekommenen Arten gibt, da also keine „Nischenbildung“ mehr für sie möglich ist. Umgekehrt ist die Aussterberate umso größer, je mehr Arten auf der Insel sind. Steht  genügend Zeit zur Verfügung, stellt sich ein Gleichgewicht ein, eine bestimmte Artenanzahl. Die Zusammensetzung der Arten, das Artenspektrum, kann sich oder muss sich allerdings weiter ändern, da ja immer Arten aussterben und Arten einwandern, jeweils in einer Rate, die dem Gleichgewicht entspricht. Ohne Migration würde die Artenanzahl auf Inseln danach kontinuierlich abnehmen. Dies gilt aber natürlich auch für andere mehr oder weniger abgeschlossene Gebiete und vermutlich sogar für ganze Kontinente.

Die meisten Neobiota haben sich gut in die Ökosysteme integriert, ohne dass nachteilige ökologische Auswirkungen erkennbar wären. Eine gezielte Bekämpfung ist deshalb in den meisten Fällen nicht notwendig und – wenn sich die Arten schon weit verbreitet haben – auch wenig erfolgversprechend. Die Ausbreitung und Etablierung von Neobiota kann bei sich veränderndem Klima sogar eine Stabilisierung von Ökosystemen bedeuten. Auch das Bundesamt für Naturschutz empfiehlt deshalb eine weitgehende Akzeptanz der Neubürger und eine Bekämpfung nur in begründeten Einzelfällen.

Verkehr

Die Hauptprobleme, die sich durch privaten und öffentlichen Verkehr ergeben, sind die Zerschneidung der Landschaft und die Produktion schädlicher Abgase. Das zweitgenannte Problem versucht man durch „grüne Energie“ und Abschaffung von Verbrennungsmotoren zu beheben. Das erste Problem ist für die natürliche Funktionsabläufe in einer Landschaft besonders gravierend. Es könnte zum Teil dadurch behoben werden, dass die Zerschneidungseffekte von Verkehrswegen durch grüne Brücken vermindert werden, noch effektiver durch großzügigen Brücken- und Tunnelbau. Dabei spielt die fachgerechte Ausführung und Unterhaltung der Grünverbindungen eine entscheidende Rolle (Peters-Ostenberg, Henneberg 2023).

Auch durch Alleen kann der schädliche Zerschneidungseffekt von Verkehrswegen gemindert werden. Außer ihrer Bedeutung als vernetzendes Element stellen sie selbst vielseitige Lebensräume dar.

Städte und Siedlungen

Zwischen 1985 und 2015 hat die die Ausdehnung von Städten und Siedlungen jährlich um 9687 km² zugenommen, mit steigender Tendenz (Liu et al. 2020). Damit ist der Flächenverbrauch der Städte schneller gewachsen als die Bevölkerung. Für eine nachhaltige Entwicklung müssen Städte deshalb „ökologischer“ werden. Damit ist gemeint, dass Funktionsabläufe in dem Ökosystem Stadt stärker den Funktionsabläufen in einem natürlichen Ökosystem entsprechen sollen. Eine Stadt mit großen Grünanlagen wie Parks und Gärten bietet zwar eine hohe Lebensqualität und eine bessere Ökobilanz. Dies geht aber insofern auf Kosten der Umgebung, als sie mehr Fläche für denselben umbauten Raum benötigt. Eine Erfolg versprechende Möglichkeit für dicht bebaute Großstädte ist die Integration von Bauwerken und Grünanlagen.

Neben Minderung des Klimawandels durch eine Verbesserung der CO2-Bilanz können dadurch auch die Auswirkungen einer Klimaerwärmung verringert werden (Lass u. a. 2022). Schließlich wirken mit Sachverstand begrünte Städte auch dem Verlust der Biodiversität entgegen.

Dächer

Schon lange zählt es zu Attributen ökologischer Bauweise, Dächer zu begrünen. Die Etablierung und Ausgestaltung solcher Dachgärten und Wiesen ist aber noch sehr stark ausbaufähig, wie man auf Luftbildern von Städten leicht erkennen kann. Begrünte Dächer können durch Brücken vernetzt werden. Durch treppenartige Anordnung von Gebäudeteilen können Verbindungen zur Grundfläche hergestellt werden. Beim Bewuchs selbst könnte dem Prinzip „Wachsen lassen“ mehr Raum gegeben werden.

Vernetzung von begrünten Dächern (Grafik W.Probst)

Fassaden

Auch begrünte Fassaden gibt es schon lange, aber eher an alten Bauernhäuser auf dem Land als an mehrgeschossigen Stadthäusern, Bankhochhäusern und Industrieanlagen. Außerdem sind die bisher architektonisch verwirklichten Grünfassaden gärtnerisch aufwändige Konstruktion, die eine hohe Wartung benötigen. Ziel müsste es sein, möglichst wartungsarme sich selbsterhaltende Systeme zu erzeugen.

Eine Möglichkeit für eine schnelle flächenhafte Begrünung wären Module, die mit einfachen Mitteln an Fassaden angebracht werden können und die durch Anschluss an eine Bewässerungsanlage wartungsarm sind. Die Elemente könnten aus einem Gerüst bestehen, an dem mehrere auswechselbare Pflanzgefäße aufgehängt werden. Fensterfassaden könnten  durch berankte Schnurgerüste – Hopfenfeldern vergleichbar – begrünt und beschattet werden.

Fassadenbegrünung mit vorgefertigten Modulen (Grafik W. Probst)

Ein interessanter Vorschlag sind vorbegrünte Pflanzennetze. Solche „Urban Pergolas“ sollen als Verschattungssystem der Aufheizung von Fassaden entgegenwirken und die Städte in einen „diversen Großstadtdschungel“ verwandeln. Die Pflanzennetze können an einem oder zwischen mehreren Gebäuden angebracht werden und dadurch Grünflächen schaffen, ohne andere Nutzungen den Platz wegzunehmen (Urban Pergola 2021).

Balkone

Eine weitere Möglichkeit der vertikalen Begrünung, die in wenigen Beispielen schon verwirklicht ist, wäre die Ausgestaltung von Pflanzbalkonen mit Sträuchern und Bäumen (Boeri 2015).

Hochhäuser als Gewächshäuser, „Vertical Farming“

Diese platzsparende Form der Landwirtschaft setzt einen preisgünstigen Zugang zu alternativen Energien voraus, wird aber heute schon als eine wichtige, nachhaltige und zukunftsfähige Ergänzung zur Flächen gebundenen Landwirtschaft gesehen:

Die Fluggesellschaft Emirates Airline plant deshalb die größte Vertical Farm der Welt neben dem Flughafen von Dubai. Singapur plant schwimmende Vertical Farms.

Wenn es in der Zukunft gelingt, den Kraftfahrzeugverkehr weitgehend aus den Stadtzentren herauszuhalten, werden dort auch keine Parkhäuser mehr benötigt und diese könnten zu „Plantscrapern“ werden (Despommier 2011).

Ritzen und Fugen

Der portugiesische Stadtplaner und Architekt Ángel Panero Pardo stellte auf dem großen Platz vor der Wallfahrtskathedrale von Santiago de Compostela während der Corona Pandemie fest, dass sich dieser Platz nach dem Ausbleiben der Pilger in ein Biotop für Wildkräuter verwandelt hatte. Die Fugen zwischen den Pflastersteinen waren grün. Der Stadtplaner überlegte, dass dieser zusätzliche Pflanzenwuchs sich eventuell positiv auf das Stadtklima auswirken könnte. Die Botaniker der Universität von Santiago de Compostela wurde mit einer Untersuchung beauftragt und sie stellten mit einer Wärmebildkamera fest, dass die bewachsenen Ritzen eine bis zu 28 °C niedrigere Oberflächen-temperatur aus aufwiesen als die Steine (Prinz 2023).

Dieses Ergebnis fand in den Medien einen breiten Widerhall, obwohl es eigentlich nicht so verwunderlich ist. Wenn man Fugen und Ritzen in Pflastern und Mauern nicht länger von jedem Bewuchs frei hält, sondern Bewuchs zulässt, hat dies einen messbar positiven Einfluss auf das Stadtklima.

Gehsteigkante mit Acker-Winde, Oberteuringen, 27.7.2016 (Foto W. Probst)

Gärten

Ein besonders großes Potenzial stellen Privatgärten dar, die vor allem in den Randbereichen der Städte in  Vierteln mit Einfamilien- und Reihenhäusern konzentriert sind. Hier gilt meist das Prinzip, dass nur wachsen darf, was gepflanzt wurde. Der Garten darf nicht „verwildern“. „Un“kraut jäten ist deshalb  neben Rasen mähen und Hecken schneiden die häufigste Beschäftigung des Hobbygärtners. Um das Unkraut ohne zu viel manuelle Tätigkeit fern zu halten, hat sich schon vor einigen Jahrzehnten verbreitet, die Beete mit einer Schicht aus keimungs- und wachstumshemmendem Rindenmulch zu bedecken.Seit einigen Jahren wird eine noch pflanzenfeindlichere Methode, das Auskiesen von Gartenflächen, immer beliebter.

Dabei gibt es viele Möglichkeiten, natürliche Funktionsabläufe im Garten zuzulassen oder sogar zu fördern und so eine „Verwilderung“ zu ermöglichen, die durchaus ästhetischen Ansprüchen gerecht werden kann:

  • Zierpflanzen, die gut gedeihen, fördern, auf solche, die schlecht wachsen oder sehr viel Pflege benötigen, verzichten,
  • auf Pestizide verzichten oder sie nur sehr gezielt bei einzelnen befallenen Pflanzen einsetzen,
  • Wildpflanzen nur entfernen, wenn sie gewünschte Zier- oder Nutzpflanzen schädigen oder verdrängen,
  • Wildpfanzen unter Hecken oder Sträuchern wachsen lassen,
  • Rasenflächen, die rein ornamentale Funktion haben, zu mageren (nicht gedüngten), höchstens zweimal im Jahr gemähten Wiesen umwandeln,
  • Abstellflächen (z.B. Autostellplätze) nicht pflastern oder asphaltieren, sondern als Schotterrasen gestalten,
  • Einfahrten mit unterbrochenen Pflastersteinen befestigen, die Bewuchs und Wasserversickerung ermöglichen,
  • abgeblühte Blütenstände und abgestorbene  Fruchtstände wenigstens teilweise stehen lassen, auch über Herbst und Winter (Vogelfutter, Überwinterungsplätze für Insekten)
  • Gartenabfälle vor Ort kompostieren,
  • aus Strauch- und Baumschnitt Reisighaufen anlegen,
  • Gartenmauern als Trockenmauern anlegen, Mauerritzen können zur schnelleren Begrünung mit passenden Pflanzen geimpft werden (Zimbelkraut, Mauerraute, Schöllkraut, Polster von Mauermoosen wie Drehzahnmoos, Kissenmoos)
  • Abwechslungsreiche Besiedelungsflächen schaffen (Sandflächen, Lehmböden, humusreiche Böden, Stein- bzw. Bauschutthaufen),
  • Regenwasser vom Dach (und versiegelten Flächen) in Zisterne sammeln und als Gießwasser (ggf. auch für Teich /Bachlauf) nutzen.

Städte mit grünem Pelz

Ergänzend zu den genannten Maßnahmen können Verkehrswege, insbesondere Straßen und Schienenverkehr, wie U-Bahnen unter die Oberfläche verlegt werden, wodurch Platz für bodenständige Grünanlagen aber auch Rad- und Fußwege gewonnen würde.

So könnten schließlich Städte entstehen, die ganz in einem grünen Pelz eingehüllt sind und die sich fast übergangslos in die umgebende Landschaft einfügen (vgl. Jean Nouvel 2014, Boeri 2015).

Verwilderung zulassen                               

Ein Garten, in dem verhältnismäßig wenig pflegerische Eingriffe vorgenommen werden, „verwildert“. Diese Art von Verwilderung ergibt sich aus natürlichen Funktionsabläufe, die nicht durch menschliche Eingriffe unterbrochen werden. Wenn man sich bei allen Eingriffen und Pflegemaßnahmen – Manipulationen der Natur – überlegt,  welche Ziele mit Ihnen verfolgt werden sollen und ob diese Ziele notwendig und sinnvoll sind, wird man schnell erkennen, dass man auf viele Eingriffe verzichten könnte. Ein solcher Verzicht ist ein Schritt in Richtung Wildnis, wenn man unter Wildnis Vewilderung, das Zulassen natürlicher Prozesse, versteht.

Quellen

Bibelriether, H. (2017): Natur Natur sein lassen. Die Entstehung des ersten Nationalparks Deutschlands: Der Nationalpark Bayerischer Wald. Freyung: Lichtland

Blanc.P. (2009): Vertikale Gärten, Die Natur in der Stadt. Stuttgart: Ulmer

Boeri, S. (2015): A vertical Forest. Milano: Editione Mantova

Bundesamt für Naturschutz: Neobiota – Gebietsfremde und  invasive Arten in Deutschland. https://neobiota.bfn.de/

Crutzen, P. J. (2002): Geology of mankind. Nature 415, p.23

Daily, G. C. (2001): Ecological forecast. Nature 411, p.245

Despommier, D. (2011): The vertical  farm: Feeding the world in the 21th century. Picador (Nachdruck der Ausgabe von 2010)

Fløjgaard, C. et al. (2021): Exploring a natural baseline for large-herbivore biomass in ecological restoration

Haft, Jan. Wildnis: Unser Traum von unberührter Natur (German Edition) (S.141). Penguin Verlag. Kindle-Version.

Hendersen, D. : American Wilderness Philosophy. In: Internet Encyclopedia of Philosophy (IEP)  http://www.iep.utm.edu/am-wild/ 

http://eh-da-flaechen.de/

Hupke, K.-D. (2015):: Naturschutz. Ein kritischer Ansatz. Heidelberg: Springer Spektrum

Janßen,W. (2011-2020): Jahresberichte des Fördervereins für Natur und Umwelt Winderatter See – Kielstau. https://winderattersee-kielstau.de/?page_id=236

Kleunen, M. van et al. (2015): Global exchange and accumulation of non nativ plants. Nature 525, pp. 100–103

Lass, W., Reusswig, F, Walther, C.; Niebuhr, D.; Schürheck, T. Grewe, H. A. (2022): Hitzeaktionsplan für das Land Brandenburg (HAP BB). Gutachten, 20.9.22, Potsdam.

Liu, Xiaoping et al. (2020): High spatiotemporal resolution mapping of global urban change from 1985 to 2015: Nature Sustainability 3, pp.564-570.

Mantyka-Pringle, C. S., Martin, T. G., Rhodes, J. R. (2012): Interactions between climate and habitat loss effects on biodiversity: a systematic review and meta-analysis. Global Change Biology 18, pp. 1239-1252

MacArthur, R. H., Wilson, E. O (1967): The Theory of Island Biogeography. Princeton: University Press

Mancuso, S. (2021): Die Pflanzen und ihre Rechte. Eine Charta zur Erhaltung unserer Natur. Stuttgart: Klett-Cotta

Mrasek, V. (2019): Kann Aufforstung das Klima retten? Deutschlandfunk 5.11.2019 https://www.deutschlandfunk.de/waldwunschdenken-kann-aufforstung-das-klima-retten-100.html

Nickel et al. (2016): Außerordentliche Erfolge des zoologischen Artenschutzes durch extensive Ganzjahresbeweidung mit Rindern und Pferden: Ergebnisse zweier Pilotstudien an Zikaden in Thüringen, mit weiteren Ergebnissen zu Vögeln, Reptilien und Amphibien. Landschaftspflege und Naturschutz in Thüringen, 53, S. 5 – 20

Peters-Ostenberg, E., Henneberg, M. (2023): Zerschneidug – Entschneidung – Brücken bauen. In: : Riedel, W. (Hrsg., 2023): Zwischen Wildnis und Energielandschaft. Husum, S. 87-96

Perino, A. et al. (2019): Rewilding complex ecosystems. Science 364 https://science.sciencemag.org/content/sci/364/6438/eaav5570.full.pdf

Prinz, U. (2023): Mit Superkräutern gegen den Hitzestress.  https://www.spektrum.de/news/bewachsene-fugen-superunkraeuter-gegen-hitzestress/2142636#

Probst, W. (2020): Der grüne Pelz. https://www.wilfried-probst.de//der-gruene-pelz/

Probst, W. (2021): Naturschutz auf neuen Wegen. Unterricht Biologie 465 (Jg.45). Hannover: Friedrich

Probst, W., Hrsg. (2017): Saumbiotope – Grenzen und Übergänge. UB 425. Seelze: Friedrich

Probst, W. (2017): Wachsen lassen – Naturschutz an Rändern, Säumen und Kanten. https://www.wilfried-probst.de//wachsen-lassen-naturschutz-an-raendern-saeumen-und-kanten/

Prominski, M., Maaß, M., Funke, L. (2014): Urbane Natur gestalten. Basel: Birkhäuser

Randers, J. (2012).: 2052 – eine globale Prognose für die nächsten 40 Jahre. München: Oekom , Ausblick 7-4

Redford, K. H. (2017):  The role of Synthetic Biology in conserving the new nature https://reefresilience.org/de/assisted-evolution-a-novel-tool-to-overcome-the-conservation-crisis-2/

Sandom, C. J. et al. (2014): High herbivore density associated with vegetation diversity in interglacial ecosystems. In: Proceedings of the National Academy of Sciences of the United States of America, 111, 11, S. 4162 – 4167

Schilk,, D. (2019): Die Wiederbegrünung der Welt. Klein Jasedow: Drachen-Verlag

Tanneberger, F., Schroeder, V. (2023): Das Moor. München: dtv

Trommer, G. (2023): Der wilde Rest. In: Riedel, W. (Hrsg., 2023): Zwischen Wildnis und Energielandschaft. Husum, S. 195-218

Van Kolfschoten, T. (2000): The Eemian mammal fauna of central Europe. Netherlands Journal of Geosciences 79, 2,3, S. 269 – 281

Watson, J. E. M., Allen, J. A. u. a.: (2018): Protect the last of the wild. Nature 563, pp. 27-30

Weinzierl, H. (2007): Einführung zum Fachsymposium „Mehr Wildnis, die Zeit ist reif“. S. 6-8 in: Deutscher Naturschutzring (Hrsg.): Mehr Wildnis, die Zeit ist reif. Fachsymposium. Bonn

Wohlleben, P. (2013): Der Wald –ein Nachruf. München: Ludwig

Miteinander

LINK-NAME LINK-NAME

Vorbemerkung

Individuelle Fitness und natürliche Selektion sind zentrale Begriffe der Darwinschen Evolutionstheorie. In diesem Zusammenhang spielte der Begriff des „struggle for life“, des „Kampfes ums Dasein“, eine wichtige Rolle. Daraus wurde im Sozialdarwinismus nicht nur der „Sieg des Stärkeren“ sondern auch das „Recht des Stärkeren“ auf diesen Sieg als natürliches Recht abgeleitet. Dies wurde auch – nicht im Sinne Darwins, aber doch mit Bezug auf seine Theorie – auf die menschliche Gesellschaft übertragen und hatte starke Auswirkungen auf das Erziehungssystem, das lange Zeit auf die Förderung der Einzelleistung und die Qualifikation des Individuums abgestellt wurde.

Schon früh wurde diesen Folgerungen widersprochen, zum Beispiel von dem im englischen Exil lebenden russischen Anarchisten Pjotr Alexejewitsch Kropotkin (1842-1921) in seiner leider in Vergessenheit geratenen Schrift „Mutual Aid“. Auch die Erkenntnisse anderer Naturwissenschaftler zur großen Bedeutung der Kooperation bzw. des Mutualismus für die Evolution der Lebewesen gerieten in der ersten Hälfte des 20. Jahrhunderts in Vergessenheit. Eine Wiederbelebung erfuhren mutualistische Theorien erst wieder durch die bahnbrechenden Arbeiten Lynn Margulis` .

In der Wirtschaft hat Teamwork schon länger eine große Bedeutung. Gefördert durch die Digitalisierung und die elektronischen Medien hat sich in den letzten Jahrzehnten die Forderung nach gemeinschaftlichem Lernen in den Erziehungswissenschaften neu formiert unter den Begriffen „Kooperatives Lernen“ und „Kollaboratives Lernen“. Auch hier beruft man sich nicht nur auf Erkenntnisse der Pädagogik und der Sozielwissenschaften sondern auch auf die Biologie. Aus den Erkenntnissen über die Rolle der Kooperation bei der Evolution der Lebewesen leitet man ab, dass es eine genetische Disposition der Menschen für Kooperation und gemeinschaftliches Lernen geben muss (vgl. z. B. E.O. Wilson 2012).

Vor 20 Jahren, im Dezember 2010, erschien das von mir herausgegebene Unterricht Biologie Heft 280 „Miteinander“. Ich finde, angesichts dieser Entwicklungen ist es immer noch aktuell. Deshalb soll hier  der Basisartikel im ungekürzten Entwurf mit einigen kleinen Korrekturen veröffentlicht werden:

Leben heißt Zusammenleben

„Don’t compete,combine!“  Kropotkin 1902

„Du sollst das Stroh zu Gold mir spinnen, ich brauche davon große Mengen“, fordert der Prinz die Müllerstochter auf und im Märchen bedient sich das arme Mädchen der besonderen Kenntnisse von Rumpelstilzchen. Auch wenn es wohl nie gelingen wird aus Gras Gold zu produzieren, so sind andere Transsubstantiationen doch fast genau so wunderbar: z.B. die Umwandlung von Gras in Milch, die von den Kühen in großem Maßstab für uns Menschen geleistet wird. Allerdings nicht von den Kühen alleine. Nur die Mikroben, in erster Linie die Bakterien, die in ihrem Pansen leben, schaffen es, den Hauptbestandteil des Grases, die Zellulose, aufzuschließen und damit der Verdauung und letzten Endes der Umwandlung in Milch zugänglich zu machen,

Herbivoren, Konsumenten erster Ordnung, sind wichtige Bestandteile von Ökosy­stemen, sie haben entscheidenden Anteil an der Regulation von Stoff- und Ener­giefluss, und sie alle sind dabei auf Verdauungshelfer in ihrem Darm angewiesen. Außerdem sind viele Herbivoren, wie die Vorfahren unserer Hausrinder, die Auer­ochsen, soziale Tiere, die in großen Herdenverbänden zusammenleben, in denen es Rangordnung und Kommunikation, gemeinschaftliche Aufzucht der Jungtiere und gegenseitige Hilfe gibt. Kein Wunder, dass gerade solche sozial lebenden Tiere vom Menschen domestiziert und genutzt wurden, eine neue Form der Wechselbeziehun­gen zweier Arten- durchaus nicht nur zum Vorteil des Menschen, mindestens, wenn man den genetischen Erfolg und die heutige Verbreitung der Haustierarten betrachtet. Bei der Verarbeitung der Milch schließlich bedient sich der Mensch wiederum mikro­bieller Lebewesen, die man schon beinahe als „Hausmikroben“ bezeichnen könnte.

Schließlich gibt es einen  weiteren Aspekt des neuen Miteinander von Menschen und Haustieren: Durch die Domestikation kamen neue infektiöse Keime in die menschlichen Populationen wie Pocken, Masern oder Influenza. Die Viehzüchter wurden dagegen allmählich immun, menschliche Populationen ohne Haustiere blieben sehr anfällig . Dies ist mit ein Grund für den raschen Niedergang indigener Kulturen nach der Kolonisation durch Europäer bzw. Asiaten (vgl. Diamond 1997)..

So gibt dieses Beispiel „Milch“ einen Eindruck von der Vielschichtigkeit des Miteinander des Lebens und der Lebewesen auf unserem Planeten.

Einmal zeichnet sich Leben durch Individualität und damit durch Grenzen und Grenzziehungen aus, zum anderen sind alle diese Grenzen – angefangen von den intrazellulären Membranen – „semipermeabel“. Wechselwirkungen über Barrieren hinweg sind ein Charakteristikum aller Lebensvorgänge und auch aller Lebewesen, insbesondere auch Wechselwirkungen mit anderen Lebewesen.

Bei der weiteren Darstellung dieser Wechselbe­ziehungen wollen wir sie zunächst in intraspezifische und interspezifische Beziehun­gen unterteilen, auch wenn dies ge­rade bei den Gruppen schwierig ist, bei denen sich – wie bei den Prokaryoten – Arten nicht eindeutig definieren lassen. Ein weiterer Ab­schnitt wird sich mit den Wechsel­beziehungen innerhalb von Ökosystemen beschäf­tigen und schließlich soll die Rolle des Menschen als „hypersoziales Wesen“ in den Blick genommen werden.

Interspezifische Wechselbeziehungen

Forschungsarbeiten zum Thema „Symbiose“ bzw. „Kooperation“ haben lange Zeit eine relativ unterge­ordnete Rolle in der Biologie gespielt. Gerade im Hinblick auf die biologische Evolu­tion wurde dieses wichtige Prinzip bis heute nicht ins rechte Licht gerückt – mögli­cherweise als Folge des unglücklichen Begriffs vom „Kampf ums Da­sein“ und den mit diesem Schlagwort verbundenen populärwissenschaftlichen und biologistischen Interpretation der Evolutionstheorie (Sozialdarwinismus). Dabei gab es in der zweiten Hälfte des 19. Jahr­hunderts durchaus wichtige Ansätze und die Zukunft weisende Erkenntnisse (vgl. Sapp 1994). Anton de Bary, ursprünglich Pflanzenpathaloge und Mykologe, defi­nierte Symbiose als das Zusammenleben verschiedener Arten, wobei über den Nut­zen für die einzelnen Ar­ten noch nichts ausgesagt war. Er legte 1866 den Grundstein für die Erkenntnis, das Flechten einen Doppelorganismus aus Pilz und Alge darstellen. Der Begriff des Mutualismus wurde von dem Belgier Pierre-Joseph van Beneden 1873 geprägt (Vorlesung: Ein Wort zum Sozialleben Niederer Tiere). Albert Bernhard Frank – nach ihm sind die N2-assimilierenden Actinobakterien in den Erlenknöllchen „Frankia“ benannt – prägte 1877 den Begriff  „Symbiotismus“ für alle Formen des engen Zusammenlebens verschiedener Arten ohne Berücksichtigung , wem dieses Zusammmenleben Vorteile oder Nachteile bringt. 1885 entdeckte er die Mykorrhiza. Der Berliner Karl Brandt und der Edinburgher Pattrick Geddes  beschäftigten sich besonders mit „grünen“ niederen Tieren wie Hydra, Spongilla und Stentor. Geddes veröffentlichte 1881 einen Aufsatz über „Symbiosis of Algae and Animals“. Auch die Endosymbionten-Theorie der Eucyten wurde schon im letzten Jahrhundert geboren. A. F. W. Schimper äußerte 1883 als Erster die Vermutung, dass Plastiden Algen-Endosymbionten in Zellen sein könnten. Zu Beginn des 20. Jahrhunderts wurden diese Idee von den russischen Biologen Konstatine Sergejewitsch Mereschkowskii und Andrei Sergejewitsch Famintsyn aufgegriffen. Der von Famintsyn versuchte experimentelle Beweis – die isolierte in vitro Kultur von Plastiden und Mitochondrien – misslang allerdings. Die Theorie geriet zunächst in Vergessenheit. Erst in den letzten zwei Jahr­zehnten des 20. Jahrhunderts wurde sie vollständig anerkannt (vgl. z.B. Margulis 1981, Schwemmler/ Schenk 1980). Es gilt heute als gesichert, dass es bei verschiedenen Algen zu mehrfachen Endosymbiosen (sekundären und tertiären Endosymbiosen) gekommen ist. Diese kamen dadurch zustande, dass eukaryotische fotosynthetisch aktive Algen durch Phagocytose aufgenommen und dann nicht vollständig verdaut wurden. Heute noch kann man diese Mehrfachendosymbiosen an der Zahl der die Chloroplasten umgebenden Membranen erkennen. Teilweise finden sich auch noch Kernreste in den Chromatophoren.

Die Beziehungen verschiedener Arten kann man – entsprechend der Einteilung in Kasten 1 – in Konkurrenz, Karpose (= Parabiose), Symbiose und Antibiose einteilen. Der Nutzen oder Schaden, den die Wechselbeziehung den Partnern gibt, kann durch Plus- und Minuszeichen bzw. durch eine Null bei Indifferenz ausgedrückt werden. Konkurrenz erhält dann zwei Minuszeichen, Karpose ein Plus und eine Null, Symbiose zwei Pluszeichen und Antibiose ein Plus- und ein Minuszeichen. Im Gegensatz zu dieser Einteilung fasste de Bary (1879) den Begriff der Symbiose weiter. Er verstand darunter einen Überbegriff für Parasitismus, Symbiose und Karopse, schloss allerdings Vereinigungen kurzer Dauer (z.B. das Zusammenwirken von bestäubenden Insekten und Blütenpflanzen) aus. Diese Symbiosedefinition hat sich vor allem im angelsächsischen Sprachraum bis heute erhalten. In der folgenden Darstellung halten wir uns jedoch an den hier gebräuchlicheren Einteilungsvorschlag im Kasten.

Tab. 1 Formen des Zusammenlebens zwischen verschiedenen Arten

Konkurrenzausschlussprinzip

Nach Hardin (1960) kann die Konkurrenzsituation zwischen zwei Arten kein Dauerzustand sein: Entweder wird eine Art verdrängt oder sie wandelt sich in ihren Ansprüchen und es kommt zu einem räumlichen (Allopatrie) oder ökologischen (Sympatrie) Nebeneinander. Dieses Konkurrenzausschlussprinzip ist eng gekoppelt mit der Definition der ökologischen Nische. Eine solche kann definitionsgemäß ebenfalls nur von einer Art gebildet werden. In Wirklichkeit sind die Verhältnisse allerdings etwas komplizierter. Dies hängt vor allem damit zusammen, dass es unter natürlichen Bedingungen keine Konstanz der Umweltfaktoren gibt. Im Laborversuch konnte Park 1954 und 1962 zeigen, dass zwei Mehlkäferarten mit nahezu identischen Umweltansprüchen sich unter Laborbedingungen gegenseitig verdrängen und dass es auf die Umweltbedingungen ankommt, ob die eine Art die andere oder die andere die eine verdrängt. Wenn aber unter natürlichen Bedingungen z.B. das Klima dauernd schwankt, so können auch zwei oder mehr Arten mit nahezu gleichen Ansprüchen in einem Lebensraum erhalten bleiben.

Symbiosen im engeren Sinne

Unter Symbiose in diesem Sinne versteht man sowohl langdauernde, eventuell sogar lebenslange enge Gemeinschaften, wie sie zum Beispiel zwischen den genannten Darmbakterien und den Rindern , zwischen Korallen und einzelligen Zooxanthellen oder auch zwischen Einsiedlerkrebs und Aktinie beschrieben werden als auch Gemeinschaften, die nur von kurzer Dauer sind. Hierzu gehören z.B. die Beziehungen zwischen blütenbestäubenden Insekten und Blüten (vgl. UB 236 Pflanzen und die sie bestäubenden Insekte). Andere Beziehungen – auch als „Allianz“ bezeichnet – kennzeichnen vorübergehende lockere Gemeinschaften wie die zwischen Madenhackern und Herbivoren oder zwischen großen Rifffischen und Putzerfischen.

Einige Beispiele:

Sehr charakteristisch sind Stoffwechselsymbiosen zwischen Tieren und Prokaryoten und Pilzen. Dies hängt damit zusammen, dass bei Pilzen und insbesondere auch bei Prokaryoten eine Vielzahl von Stoffwechselwegen entwickelt sind, die bei Eukaryoten fehlen. Durch die Symbiose können sich die Eukaryoten so Nahrungs- und Energiequellen erschließen, die anderenfalls verschlossen geblieben wären. Gleichzeitig profitieren die endosymbiotischen Mikroben von den Stoffwechselendprodukten ihrer Symbiosepartner und von den relativ geschützten Lebensräumen, die ihnen von diesen geboten werden.

Eine besonders enge Symbiose dieser Art besteht zwischen Blattläusen und den endocytosymbiotischen Bakterien der Gattung Buchnera, die in besonders großen Darmzellen (Bakteriocyten) leben. Die Endosymbionten werden von Generation zu Generation über die Eier weitergegeben. Buchnera ist eng verwandt mit Escherichia coli aber im Gegensatz zu diesem weit verbreiteten Darmbakterium ist ihr Genom wesentlich kleiner. Dafür sind in einer Zelle über 100 Kopien enthalten. Eine vollständige Genomanalyse von Buchnera ergab, dass keine Gene für Zellober­flächen-Lipopolysaccharide und Phospholipide vorhanden sind. Ebenso fehlen die meisten Regulatorgene und Gene, die der Verteidigung der Zellen nach außen die­nen. Das enge Zusammenleben mit den Wirten wird dadurch deutlich, dass von Buchnera alle für seinen Wirt essentiellen Aminosäuren produziert werden. Dafür sind mindestens 55 Gene verantwortlich. Umgekehrt werden von dem Bakterium keine für den Wirt nicht essentiellen Aminosäuren produziert. Diese Komplementari­tät zeigt, dass die Symbiose schon sehr lange erfolgreich arbeitet. So bilden Blatt­läuse keine stickstoffhaltigen Exkrete, vielmehr produzieren sie Glutamin und dieses wird von den Bakterien als Ausgangsstoff für die Produktion von essentiellen Ami­nosäuren verwendet. Da Buchnera sogar seine Außenmembran vom Wirt erhält, kann man sagen, dass bei dieser Symbiose ein Stadium erreicht ist, das Buchnera schon fast als ein Zellorganell erscheinen lässt.

Noch komplizierter ist die Doppelendocytobiose in Darmzellen von Motten-Schildläu­sen. Wie durch Genanalysen nachgewiesen, enthalten die Bakterien in den Darmzellen ein weiteres endosymbiontisches Bakterium (von Dohlen, 2001: 433-436).

Viele ähnliche Beziehungen kommen bei Holz bzw.  Zellulose fressenden Insekten wie Tabakskäfer, Borkenkäfer und Termiten vor. Auch blutsaugende Egel, Zecken und Läuse bessern die Inhaltsstoffe ihrer relativ einseitigen Nahrung durch symbiontische Darmbakterien auf. Sie können in besonderen Darmzellen (Bacteriocyten, auch Mycetome genannt), in Darmaussackungen oder auch frei im Darmlumen vorkommen.

Ein anderer Stoffwechsel-Symbiosetyp besteht zwischen Höheren Pflanzen und Prokaryoten, die das Luftstickstoffmolekül (N2) assimilieren können. Besonders bekannt sind diese Stickstoffendosymbionten der Gattung Rhizobium von den Hülsenfrüchtlern (Wurzelknöllchen). Bei anderen Höheren Pflanzen wie Erlen oder Sanddorn kommen stickstoffbindende endosymbiontische Aktinobakterien der Gattung Frankia vor. Schließlich können auch Blaugrüne Bakterien symbiontisch mit Höheren Pflanzen zusammenleben z.B. das Blaugrüne Bakterium Anabena azollae in besonderen Taschen des Schwimmfarns Azolla und andere Blaugrüne Bakterien in korallenartigen in den Luftraum ragenden Wurzeln von Cycadeen.

Noch nicht sehr lange bekannt sind die symbiotischen Beziehungen zwischen Sphagnen und methanotrophen Bakterien. Die Bakterien, die in den Wasserspeicherzellen der Sphagnen leben, nutzen die Oxidation des in tieferen Torfschichten gebildete Methan zur Energiegewinnung und sind gleichzeitig dazu in der Lage, Luftstickstoff zu assimilieren. Sie profitieren von der Sauerstoffproduktion und den teilweise abgegebenen Kohlenhydraten der Photosynthese betreibenden Sphagnum –Chlorocyten.

Blaugrüne Bakterien kommen auch als Symbiosepartner bei Flechten vor. Noch wichtiger sind bei dieser Symbiose aber eukaryotische Algen und zwar aus der Gruppe der Grünalgen, die mit Pilzarten eine sehr enge Gemeinschaft eingegangen sind. Hier ist durch die Symbiose eine völlig neue morphologische, ökologische und physiologische Einheit entstanden: Flechten sehen anders aus als die beiden Partner alleine, sie können völlig andere Lebensräume, auch extreme Standorte in der Arktis in Hochgebirgen oder in Wüsten, besiedeln und es gibt zahlreiche typische Flechteninhaltsstoffe wie z.B. Depside, Butenoide oder Azofarbstoffe, die jeweils vom einen der beiden Partner nicht gebildet werden können.

Außer in Flechten spielen Algen als Synbionten auch in vielen niederen Tieren eine bedeutende Rolle, so in den Polypen der Korallen, in marinen Würmern und Schnecken, in verschiedenen Muscheln und Schwämmen (vgl. UB 225 Algen, UB 254 Riffe). In al­len diesen Fällen werden die heterotrophen Tiere durch die Algensymbionten teil­weise autotroph. Bei einigen Strudelwürmern (z.B. Convoluta roskovensis) kann dies bis zum Verlust des eigenen Darmkanals gehen. Keeble (1910) hat hierfür die treffende Bezeichnung „Plant animals“ – Pflanzentiere – geprägt.

Eine weitere typische Symbiose zwischen Prokaryoten und Tieren stellen die verschiedenen Leuchtsymbiosen dar. Meerestiere wie Manteltiere, Tintenfische und Knochenfische nehmen die im Seewasser weit verbreiteten Leuchtbakterien in besonderen Organen als Symbionten auf und betreiben mit der Bakterienkolonie besondere Leuchtorgane.

Auch zwischen vielzelligen Tieren und Pflanzen gibt es zahlreiche symbiotische Gemeinschaften. Besonders bemerkenswert sind in diesem Zusammenhang die sogenannten Ameisenpflanzen oder Myrmecophyten. Sie stellen Hohlräume in Blättern, Stielen oder Wurzeln berei, die vor allem von Ameisen aber auch von anderen Kleintieren bewohnt werden. Besonders zahlreich kennt man solche Ameisenpflanzen aus Südostasien. Mehr als 150 Arten aus 27 Pflanzenfamilien wurden beschrieben.

Der baumförmige Schmetterlingsblütler Humboldtia laurifolia aus Sri Lanka hat hohle Internodien mit einem sich selbst öffnenden Eingang.  Zusätzlich zu diesen „Wohn­höhlen“ (Domatium) bietet der Baum eine Reihe von extrafloralen Nektarien, die den Bewohnern gleichzeitig Futter liefern. Die Hohlräume werden vor allem von Amei­senarten besucht und besiedelt, besonders häufig von Technomyrmex albipes. Aber die Besiedelung kann auch durch verschiedene Ameisenarten erfolgen sogar in un­mittelbarer Nachbarschaft. In einer gründlichen Untersuchung (Krombein et al. 1999) wurden weitere zehn Ameisenarten, verschiedene andere Insekten sowie Pseu­doskorpione und Ringelwürmer als regelmäßige Bewohner der „Wohnhöhlen“ nach­gewiesen. Bei einigen dieser Arten handelt es sich um eine sehr enge Gemeinschaft mit Humboldtia. Eine Vernichtung dieser Baum-Art würde auch zum Verschwinden der symbiontischen Bewohner führen.

Für die Pflanzen bringen die besiedelnden Ameisen vor allem einen Schutz gegen Fressfeinde. Die Wirksamkeit dieses Pflanzenschutzes wurde für das Symbiosepaar Crematogaster-Ameise und Ameisenpflanze Macaranga (Wolfsmilchgewächse) ge­nauer untersucht. In diesem Falle werden von der Ameisenpflanze auch noch fett- und eiweißreiche Futterkörperchen für die Ameisen bereit gestellt. Die Ameisen re­vanchieren sich dafür, indem sie ständig die Oberfläche ihres Wirtsbaumes absu­chen und diesen dabei von allem Fremdmaterial reinigen. Sie entfernen Insekteneier ebenso wie Raupen, Käfer und andere pflanzenfressende Gliedertiere. Auch pilzliche Krankheitserreger werden von den Ameisen beseitigt. Man konnte nachweisen, dass Macaranga mehr als 80 Prozent seiner Blattfläche verliert, wenn man die symbionti­schen Ameisenkolonien entfernt (Linsenmaier, Heil 2001). Es konnte nachgewiesen werden, dass das Pflanzen­hormon Jasmonsäure bei Macaranga  die Blattnektarproduktion steuert  (Boland et al.2001): Kommt es zu einer starken Schädigung durch Insektenfraß, wird die Hormonaus­schüttung erhöht und dies wiederum führt zu einer stärkeren Nektarproduktion. Da­durch lockt die Pflanze Ameisen, Wespen und andere Nektarkonsumenten an, die ihr helfen, sich gegen die Fraßfeinde zu verteidigen. Damit ist eine Form der Wechselwirkung zwischen Höheren Pflanzen angesprochen, deren Erforschung erst in jüngerer Zeit begonnen hat. Das Methyljasmonat ist einer von vielen Stoffen, der der Kommunikation zwischen Pflanzen dient. Pflanzen, die von Herbivoren z.B. Raupen befallen werden, produzieren in erhöhtem Maße Signalstoffe wie Jasmonat und diese bewirken bei anderen Pflanzen – auch bei anderen Pflanzenarten – eine verstärkte Produktion von für die Pflanzenfresser schädlichen Stoffen. Die Beziehung zwischen Blütenbestäubern und bestäubten Pflanzen ist in der Regel weniger eng. Es gibt jedoch auch hier Beispiele einer engen Gemeinschaft zweier Arten, die für beide lebensnotwendig ist. Dies gilt etwa für die komplizierten Wechselwirkung von Feige und Feigen-Gallwespe oder von Yucca und Yucca-Motte (Abb.   ). Im natürlichen Lebensraum der Yucca-Arten im westlichen Nordamerika lebt ein kleiner Nachtfalter von etwa 13 mm Körperlänge, die Yucca-Motte (Pronuba yuccasella). Die Begattungsflüge der Yucca-Motten finden in der Dunkelheit statt. Das befruchtete Weibchen beginnt noch in der Nacht, die weißen duftenden Yuccablüten aufzusuchen und dort Pollen zu sammeln. Mit besonderen Fortsätzen der Kiefertaster wird der Pollen zu einem Klumpen geformt, der oft mehrere Millimeter Durchmesser haben kann und zwischen Kopf und Ansatz der Vorderbeine eingeklemmt und mit den Tentakeln seitlich festgehalten wird. Mit diesem Pollenpaket fliegt das Weibchen zu einer anderen Blüten derselben Art. Auf den dicken wachsachtigen Staubfäden sitzend, stößt es dann seine Legescheide durch die weiche Wand des Fruchtknotens in desse Höhlung hinein und legt an den Samenanlagen ein Ei ab. Sodann wandert das Tier entlang dem Stempel bis zur Narbe, stopft etwas von dem mitgebrachten Pollen in eine der drei Narbenfurchen oder in den dort offenen Griffelkanal, legt wieder ein Ei in den Fruchtknoten und so fort, bis sich eine Anzahl von Eiern im Inneren des Fruchtknotens befindet. Bald darauf wachsen die Pollenschläche von der Narbe durch den Griffelkanal zu den Samenanlagen und die Eizellen werden befruchtet. Während die Samenanlagen zum Samen heranwachsen, schlüpfen auch die jungen Räupchen aus den Eiern und sie beginnen, die heranwachsenden Samenanlagen aufzufressen. Nach einem Monat sind die Raupen ausgewachsen und verlassen den Fruchtknoten. Sie verpuppen sich in der Nähe der Yuccapflanze im Erdboden. Da die Raupen bis zum Verlassen des Fruchtknotens nur einen Teil der zahlreichen Samenanlagen verzehren, können sich viele noch zu reifen Samen entwickeln.

Antibiosen

Im Gegensatz zur Symbiose kennzeichnet die Antibiose eine Beziehung, die für ei­nen der beiden Partner vorteilhaft, für den anderen aber schädigend ist. Ganz ein­deutig gilt dies z.B. für die Beutegreifer-Beute-Beziehung . Nicht ganz so eindeutig ist dies für die für die Bezie­hung, die zwischen Pflanzen und Pflanzenfressern besteht, da die Konkurrenzkraft bestimmter Pflanzen durch regelmäßige Beweidung gestärkt wird. Auf solche Nahrungs­ketten soll jedoch hier nicht weiter eingegangen werden.

Demgegenüber bezeichnet man als Parasitismus, wenn ein Parasit einen Wirt aus­nützt ohne dessen unmittelbaren Tod zu bewirken. De Bary definierte den Parasitis­mus folgendermaßen: „… der vollständige Parasitismus, d.h. jene Einrichtung, bei welcher ein Tier oder eine Pflanze den ganzen Vegetationsprozess durchmacht auf oder in einem anderen, ei­ner ungleichnamigen Spezies angehörenden Organismus. Letzterer dient jenem, dem Parasiten, ausschließlich als Wohnort und liefert ihm sein gesamtes Nährstoff­material. Er ist in jeglichem Sinne des Wortes sein Wirt. Und jener lebt auf Kosten des Wirtes insofern sein Nährstoffmaterial die Lebendkörpersubstanz oder die zur eigenen Ernährung aufgenommene Nahrung dieses ist.“ Dabei weist schon De Bary darauf hin, dass es natürlich möglich sein wird, Parasiten auch außerhalb des Wirts künstlich am Leben zu erhalten, indem man ihnen eine geeignete Nährlösung bietet.

Eine für Parasiten besonders typische Erscheinung ist, dass sie oft auf mehrere Wirtsarten angewiesen sind, die sie im Laufe ihres Lebenszyklus sukzessive besie­deln. Häufig ist dieser Wirtswechsel auch noch mit einem Generationswechsel des Parasiten verbunden.

So gibt es vermutlich kaum eine höhere Pflanzenart, die nicht von einem oder meh­reren Rostpilzen parasitiert wird. Eine große Zahl von Rostpilzen parasitieren auf Nutzpflanzen und sie sind deshalb für den Menschen von besonderer Bedeutung. Si­cherlich ist dies ein Grund dafür, dass der Lebenszyklus vieler Rostpilze relativ gut erforscht ist (Gäumann 1959). Stellvertretend für die komplizierten Beziehungen der Rostpilze zu ihren Wirtspflanzen sei der Getreiderost (Puccinia graminis) erwähnt. Dieser Pflanzenparasit entwickelt sich einmal auf der Berberitze, zum anderen auf Getreidearten. Auf der Berberitze wächst das haploide Stadium des Basidiomyceten, auf der Getreidepflanze das Zweikernstadium. In überwinternden zweikernigen Dauersporen kommt es zur Kernverschmelzung und anschließend zur Meiose und zur Basidienbildung.

Nachdem der Entwicklungszyklus des gefährlichen Getriederostes aufgeklärt war, hat man in den 30er und 40er Jahren versucht, durch Ausrotten der Berberitze auch dem Rostpilz die Lebensgrundlagen zu entziehen. Dies gelang aber nicht, da in milden Wintern auch ungeschlechtlich produzierte Sporen überdauern und immer wieder zu einer Infektion der Getreidepflanzen führen können. Im übrigen werden solche Pflanzenparasiten immer durch große Monokulturen besonders gefährlich. Unter natürlichen Bedingungen können sich die Pflanzen gegen Parasiten sowohl tierlicher als auch pilzlicher Art recht gut verteidigen. Dabei kommt es teilweise auch zu einer Wechselwirkung zwischen recht verschiedenen Parasitenarten. So werden vom Verticillium-Pilz befallene Baumwollpflanzen weniger von parasitären Milben aufgesucht als nicht befallene und umgekehrt kann kein (kurzfristiger) Milbenbefall die Pflanzen resistenter gegen Pilzbefall machen (Martin 2002, S. 54/55).

Besonders zahlreiche Parasiten mit komplizierten Lebenszyklen kennt man vom Stamm der Plattwürmer (Plathelmintes). Typisch für die Saugwürmer (Trematoda), einer Klasse der Plathelminthes, ist eine endoparasitische Lebensweise in Darm, Leber, Lunge, Bindegewebe und Blutgefäßsystemen von Wirbeltieren. Sie haben einen relativ komplizierten Generationswechsel, der gleichzeitig mit einem Wirts­wechsel verbunden ist: Aus den befruchteten Eiern der Tiere, die im Hauptwirt leben, schlüpfen in der Regel Wimpernlarven (Miracidien), die im ersten Zwischenwert zur Sporocyste werden. Aus der Sporocyste entstehen sogenannte Redien, die im zweiten Zwischenwirt zu Cercarien heranwachsen. Aus ihnen entwickeln sich, nach­dem sie von Wirtstieren aufgenommen wurden, die adulten Geschlechtstiere. Bekannt ist das Beispiel des Kleinen Leberegels aus den Gallengängen von Schafen mit den Zwischenwirten Heideschnecke bzw. Zebraschnecke und Ameise. Das besondere an dieser Art von Parasitismus ist, dass der Parasit in diesem Fall die Ameise veranlasst, sich an Pflanzenstängeln festzukrallen. Dadurch wird sie besonders leicht von Schafen gefressen, was der weiteren Verbreitung des Parasiten dient. So abenteuerlich diese komplizierte, angepasste Lebensweise erscheint, so hat sich in jüngerer Zeit gezeigt, dass sie doch nicht einmalig ist. Ähnliche Erschei­nungen kennt man von anderen parasitischen Trematoden: Microphallus piriformis lebt einmal in einer Strandschnecke (Littorina saxatilis), zum anderen in der He­ringsmöwe. Es wurde nachgewiesen, dass von Trematoden befallene Strandschnecken die Tendenz haben, aufwärts zu krie­chen, also in eine Position, in der sie leichter von Möwen gefressen werden können (MacCarthy 2000, 1161-1166). Befallene Schnecken verändern auch ihre Verhaltensweise bezüglich der Gezeiten. Im Gegensatz zu nichtbefallenen, kriechen sie gerade bei fallender Tide aufwärts. Nicht nur von Wirbellosen sondern sogar von Säugetieren kennt man eine solche parasitenbewirkte Verhaltensänderung: Ratten, die von dem Einzeller Toxoplasma gondii befallen sind, den sie vor allem aufsammeln, wenn sie Katzenkot fressen, werden neugieriger und weniger furchtsam. Das lässt sie zu einer leichteren Beute für Katzen werden und hilft so Toxoplasma, in seinen Hauptwirt zurückzukehren ( Berdoy 2000,1591-1594).

Karposen

Auf die große Zahl der Beziehungen, die für einen Partner mehr oder weniger vor­teilhaft, für den anderen jedoch nicht schädigend sind, sei hier nur knapp eingegan­gen. Hierher gehören die Wohngemeinschaften (z.B. Fuchs und Brandgans) oder auch der zeitweilige Aufenthalt in Körperhöhlen von anderen Tieren. Die Nadelfische aus der Familie der Carapidae kommen mit etwa 25 Arten in wärmeren und warmtemperierten Meeren vor. Sie wohnen alle in Actinien, Seesternen, Seegurken, Feuerwalzen oder in Muscheln. Genauer wurde Carapus acus, ein mediterraner Nadelfisch untersucht. Er verlässt seien Wohnort Seegurke nur nachts. Um in die Seegurke hinein zu gelangen, schwimmt er mehr oder weniger senkrecht stehend mit wedelndem Schwanz um sie herum. Immer wieder wird dann der Versuch unternommen, am Hinterende in den Wirt einzudringen. Dazu stellt sich der Nadelfisch mit seinem Kopf dicht vor die Kloakenöffnung, führt seine Schwanzspitze am Körper entlang nach vorn und wahrscheinlich in dem Augenblick, in dem das Atemwasser in die Seegurke strömt, sich schnell umwendend, stößt er sein Hinterende in die Kloake. Dann dringt der Fisch nach und nach immer tiefer ein. Der Fisch dringt zunächst in die Wasserlunge der Seegurke ein, durchbricht diese aber dann, um sich in der Leibesöhle aufzuhalten. Während viele Nadelfische die Holothurien und andere Wirte nicht weiter schädigen, konnte man für Carapus acus nachweisen, dass er sich von den Geschlechtsdrüsen der Seegurke ernährt. Andere Arten kommen im Muscheln vor. Wenn die Fische in der Muschel sterben, werden sie als Fremdkörper mit einem Perlmuttüberzug versehen (z.B. Carapus homei aus der Karibik).

Auch die actinienbewohnenden Clownfische oder die als Muschelwächter bezeichneten Kurzschwanzkrebse, die in der Mantelhöhle von Muscheln zu finden sind, wären hier zu nennen. Die Aktinien könnten allerdings auch von den Futterresten der Clownfische profitieren, weshalb diese Partnerschaft oft auch als echte Symbiose bezeichnet wird.

Eine besonders große Rolle spielt die sogenannte Epökie (Aufsitzertum) – Lebewesen siedeln auf anderen. Besonders eindrücklich wird dieses Prinzip in den üppigsten Lebensräu­men, wie Regenwäldern oder Korallenriffen, demonstriert. Aber auch bei uns gibt es viele „Epiphyten“ (Moose und Flechten auf Baumrinde) und „Epizoen“ (z.B. Seepoc­ken auf Muschelschalen oder Krebspanzern, Glockentierchenkolonien auf Wasser­flöhen und Ruderfußkrebsen.)  Eine besondere Form der Wechselwirkung ist die der Transportgemeinschaft (Phoresie). Dungmilben und Fadenwürmer heften sich an Mistkäfer an, andere Milben werden von Weberknechten transportiert. Schiffshalter lassen sich von großen Fischen mitnehmen.

Intraspezifische Kooperation

„Wo ich auch immer das Tierleben in reicher Fülle auf engem Raum beobachtete, sah ich gegenseitige Hilfe und gegenseitige Unterstützung sich in einem Maße betätigen, dass ich in ihnen einen Faktor von größter Wichtigkeit für die Erhaltung des Lebens und jeder Spezies sowie ihrer Fortentwicklung zu ahnen begann.“ (Kropotkin 1902).

Artgenossen sind evolutionsbilogisch betrachtet von Natur aus Konkurrenten. Trotzdem kann man bei den Interaktionen zwischen Individuen einer Art, im allgemeinen auch als „Sozialverhalten“ bezeichnet, eine Vielzahl von Verhaltensweisen erkennen, die eindeutig koopertiv sind. Die ultimaten Ursachen solcher Verhaltensweisen sind z.B. die Fortpflanzung, die Brutpflege, die Fürsorge für die Jungtiere, der Schutz vor dem Gefressenwerden, der gemeinsame Beutefang oder die Sicherung von Weidegründen usw. Proximate Ursachen können in Erbkoordinationen oder in Lernvorgängen liegen.

Konkurrenz und Kooperation

Zu den Interaktionen zwischen Artgenossen gehören nicht nur kooperative Verhaltensweisen sondern auch Aggression und Konkurrenz, Rangord­nung oder sogar Täuschung. Die Anpassungsselektion im Sinne Darwins ist, wenn auch nicht die einzige, so doch eine wichtige Grundlage der Evolution. Sie beruht auf dieser in­nerartlichen Konkurrenz und eventuell auf zwischenartlicher Kooperation. Die Individuen einer Art, die am meisten lebensfähige und überlebensfähige Nachkommen zeugen, geben damit ihre Gene und so auch viele ihrer Merkmale weiter. Der Kampf um einen Paarungspartner oder um eine Nah­rungsressource ist häufig ritualisiert, d.h. für die Gegner besteht keine ernsthafte Verletzungsgefahr. Dies muss allerdings nicht so sein, wie man es z.B. von Kampfhähnen und Kampffischen weiß. Aber es ist einsehbar, dass bei Arten, bei denen die kämpfenden Rivalen sich verletzen , eine frühzei­tige Beendigung des Kampfes die Fitness fördert, da sie auch den Sieger vor unnöti­gen Verletzungen schützt.

 Unterschiedliches Balzverhalten ist eng gekoppelt mit un­terschiedlichen Paarungssystemen. Während es bei vielen Tierarten keinerlei län­ger dauernde Paarbindungen gibt, kennt man andererseits monogame und polygame Beziehungen, wobei sowohl  Polygynie als auch- seltener – Polyandrie vorkommen. Für die Paarungssysteme entscheidend dürften die besonderen Bedürfnisse der Jungen sein. So müssen Vögel nicht nur ihre Eier langwierig ausbrüten, die Jungen müssen dann auch mit erheblichen Nahrungsmengen gefüttert werden. Für beides ist eine Kooperation der Eltern von großem Vorteil. Deshalb ist eine monogame Paarbindung bei Vögeln häufig vorteilhaft – mindestens während der Brutzeiten und der Aufzucht der Jungen. Andererseits muss dies nicht unbedingt mit der rein mono­gamen Weitergabe der Gene, also mit der ausschließlichen Kopulation mit einem Geschlechtspartner, gekoppelt sein (vgl. Campell S. 1303, UB 185 Soziobiologie).

Häufig kommen in Tiersozietäten bestimmte Rangordnungen vor, die durch aggres­sive Auseinandersetzungen immer wieder gefestigt oder auch neu strukturiert wer­den. Für den reibungslosen Ablauf der innerartlichen Kooperation in einem Tierver­band sind solche Rangordnungen u.U. von Vorteil, insbesondere wenn es um kom­pliziertes Zusammenarbeiten geht,  wie etwa beim gemeinsamen Jagen. Bei Wölfen und anderen Hundeverwandten konnte nachgewiesen werden, dass die Rangordnung der weiblichen Tiere eines Rudels auch der Geburtenkontrolle dient: Wenn die Nahrung knapp ist, lassen die ranghöchsten Weibchen kaum Paarungen anderer, rangniedrigerer Weibchen zu. Sie sorgen damit dafür, dass nur ihre Gene weitergegeben werden. Ist reichlich Nahrung vorhanden, so lockern sie diese Re­striktionen.

Schließlich ist das Revierverhalten ein wichtiger Bestandteil tierlichen Sozialverhal­tens. Territorien oder Reviere dienen in der Regel der Sicherung der Nahrung, der Paarung und der Jungenaufzucht. Bei Vögeln werden solche Reviere häufig von Brutpaaren während der Brutzeit besetzt. Bei vielen Singvögeln müssen die Reviere relativ groß sein, weil sie auch der Nahrungsbeschaffung dienen. Bei Meeresvögeln können sie viel kleiner sein, da die Nahrung außerhalb des Reviers gesucht wird. Territorien werden häufig besonders markiert (Kot, Urin, Drüsensekrete). Auch aku­stische Markierungen wie lautes Brüllen der Seelöwen oder Gesänge der Singvögel dienen der Reviermarkierung. Territorialverhalten kann eine Population stabilisieren, da die Verteidigung des Territoriums verhindert, dass bei üppigem Nahrungsangebot eine Überpopulation entsteht, die dann u.U. wieder einen Zusammenbruch der Ge­samtpopulation zur Folge hätte.

Altruismus

Altruismus oder uneigennützige Hilfeleistungen zwischen Individuen einer Art sind bei Tieren weit verbreitet. Besonders verbreitet sind Formen der Brutpflege, bei denen nur die Mütter, zum Teil Mütter und Väter und selten auch nur die Väter beteiligt sein können. Dabei geht es nicht nur darum, die Jungen zu füttern, zu wärmen und für ihr Wohlbefinden zu sorgen, son­dern auch um die Verteidigung gegen Beutegreifer. Dies kann bis zur Aufoperfung des eigenen Lebens gehen. Die Soziobiologie versucht solche altruistischen Verhal­tensweisen über die Fitness zu erklären. Bei der Brutpflege und bei der altruistischen Hilfe für Verwandte argumentiert die Soziobiologie mit dem Verwandtschaftskoeffizi­enten. Der Anteil der Gene, der bei zwei Individuen aufgrund gemeinsamer Abstam­mungen identisch ist. Der Verwandtschaftskoeffizient von Geschwistern beispiels­weise beträgt 0,5, da 50 % der Gene von Geschwistern übereinstimmen. Für Cou­sins ersten Grades beträgt dieser Verwandtschaftskoeffizient 0,125. Es ist nach der soziobiologischen Theorie zu erwarten, dass sich Verwandte umso eher gegenseitig helfen, je höher dieser Koeffizient ist. Dies führt dann zu der sogenannten Familien- oder Verwandtschaftsselektion. (kin selection, Smith, Hamilton). Wenn man also sein Leben für zwei Kinder oder für acht Cousins opfert, so hat man genetisch bzw. evolutionsbiologisch gesehen, nichts verloren. Bei manchen altruistischen Verhaltensweisen ist eine Erklärung über den Verwandtschaftskoeffizienten allerdings nicht so eindeutig möglich. So warnen sich Murmeltiere gegenseitig durch Pfiffe vor Beute­greifern wie etwa Steinadlern. Wenn ein Adler oder ein anderer Fressfeind sich einer Murmeltierkolonie nähert, stößt eines der Murmeltiere einen schrillen Pfiff aus. Da­durch werden auch die anderen auf den Räuber aufmerksam und fliehen in ihre Baue. Das Pfeifverhalten allerdings wird für den Warner zu einem erhöhten Risiko. Nur wenn man davon ausgeht, dass die Murmeltiere einer Kolonie mehr oder weniger nahe verwandt sind, lässt sich dies ebenfalls über den Verwandtschaftskoeffizi­enten erklären. Eine andere Erklärungsmöglichkeit: Wenn alle Murmeltiere einer Kolonie zu diesem Verhalten bereit sind und es immer wieder ein anderes Tier trifft und dadurch der Nutzen und der Schaden ausgegli­chen wird kann dieses Verhalten ebenfalls einen Fitnessgewinn bringen („Reziproker Altruismus“).

Tiergesellschaften

Die Vergesellschaftung von Individuen einer Art kann sehr unterschiedliche Organi­sationsmerkmale aufweisen. Unkoordinierte Verbände sind z.B. Schlafgemeinschaf­ten, Überwinterungsgemeinschaften, Futtergemeinschaften. Ein gemeinsamer Ort und ein gemeinsames Ziel führen die Tiere zusammen. Man kennt solche Ansamm­lungen von vielen Insekten, aber auch bei Spinnentieren, Krebsen, Mollusken und bei allen Klassen der Wirbeltiere kommen sie vor. Solche Vergesellschaftungen sind in der Regel zeitlich begrenzt, die einzelnen Individuen können sich leicht wieder von der Gruppe lösen, und die Koordination zwischen den einzelnen Individuen ist ge­ring. Schon etwas anders sieht es bei koordinierten Verbänden aus, wie sie etwa bei ziehenden Vogelschwärmen, wandernden Libellen, Heuschrecken und Schmetterlin­gen oder Fischschwärmen vorliegen. Hier findet oft eine erstaunliche Koordination der Flug- oder Schwimmbewegungen statt. Der soziale Gesichtspunkt ist deutlich, gemeinsamer Aufbruch zur Wanderung, gemeinsame Bestimmung des Zieles oder Lösung des Orientierungsproblemes. Gefahr von außen, etwa ein herabstürzender Raubvogel auf einen Starenschwarm, führt zu koordinierten Reaktionen. Der Schwarm kondensiert sich, bildet einen Stoßpulk, der gemeinsam zum Angriff über­gehen kann. Anders reagiert ein Elritzenschwarm, bei dem ein Mitglied vom Hecht ergriffen wurde. Der ganze ergreift panikartig die Flucht, was damit zusammenhängt, dass von der Bißwunde der verletzten Elritze ein hochwirksamer Schreckstoff freigesetzt wird. Die so gewarnten Elritzen meiden den Ort, an dem ihr Genosse gefressen wurde, wochenlang. Hier handelt es sich also um ein soziales Warnsignal, das in Haut­zellen gespeichert wird und dass ohne jeden biologischen Nutzen für das individuelle Leben ist, das aber für den Gesamtverband große Vorteile bringt.

Andere Schutzgemeinschaften finden sich z.B. bei verschiedenen Insekten. So kön­nen sich Feuerwanzen zu größeren Verteidigungsgemeinschaften zusammenschlie­ßen. Sie besitzen Verteidigungsdrüsen und damit verbunden eine Warnfärbung. Die Warnwirkung wird durch die Gruppierung erhöht.

Soziale Verbände höherer Organisation sind charakteristisch für die Insektenstaaten. Hier ist die soziale Bindung obligatorisch. Der Verband bildet eine geschlossene Gemeinschaft und es kommt zu einer Differenzierung der Individuen. Sämtliche Ent­wicklungsstadien von Eiern, Larven über Puppen bis zu den geschlechtsreifen Ima­gines sind Bestandteil dieses Verbandes. Alle Tätigkeiten, die für den Fortbestand für die Gemeinschaft wesentlich sind, werden im Kollektiv und arbeitsteilig ausgeführt.  Häufig kommt es zu einer Kastenbildung, d.h. die ausgewachsenen  Tiere haben – entsprechend ihren unterschiedlichen Aufgaben  einen unterschiedlichen Körperbau. Typisch für das Funktionieren solcher Tierstaaten ist eine meist angeborene, sehr differenzierte Fähigkeit zur Kommunikation. Teilweise werden solche Staten als „Überorganismen“ bezeichnet.

Termiten z.B. sind besonders hoch organisierte staatenbildende Insekten mit mindestens drei Kasten: Königin und König als Geschlechtstiere leben immer zusammen, außerdem werden Arbeiter und Soldaten oft noch in verschiedenen Ausprägungen ausgebildet. Soldaten und Geschlechtstiere können sich nicht selbständig ernähren und sind auf die Fütterung durch die Arbeiter angewiesen. Insgesamt beruht das Zusammenspiel innerhalb des Termitenstaates auf komplizierter Kommunikation, teilweise auf der Basis von Pheromonen. Außerdem leben Termiten auch noch mit anderen Lebewesen in Symbiose. Als Pflanzenfresser können sie mit Hilfe von endosymbiontischen Bakterien und Einzellern Zellulose zersetzen. Andere Arten können sogar den Ligninstoff mit Hilfe von Pilzendosymbionten aufschließen. Außerdem werden von Termiten Pilzgärten angelegt, und zwar auf einem Gemisch aus Kot und zerkauter Nahrung und Holz. Die Pilzgeflechte dienen vor allem den Larven als Nahrung.

Die Zusammenarbeit im Termitenstaat sorgt für gleichbleibende Innentemperaturen, günstige Feuchtigkeitsbedingungen und sichere Aufzucht der Nachkommen (vgl. UB 169, S. 45).

Im Prinzip ähnlich, aber meist nicht ganz so kompliziert, sind die Verhältnisse bei Ameisen und bei anderen Hautflüglern. Bemerkenswert ist die besonders kompli­zierte Form der Kommunikation der Honigbienen (vgl. Hedewig 2000 in UB 260).

Symbiose in Ökosystemen

Für das Wirkungsgefüge eines Ökosystems bilden symbiotische Beziehungen eine entscheidende Rolle, obwohl sie bisher in der ökologischen Literatur noch relativ we­nig berücksichtigt wurden. Ganz allgemein kann man sagen, dass Ökosysteme dazu tendieren, im Laufe ihrer Entwicklung an Komplexität zuzunehmen. So sind die älte­sten Ökosysteme gleichzeitig die komplexesten und die Wechselbeziehungen sol­cher Systeme sind besonders kompliziert. Hier soll etwas ausführlicher auf die Be­deutung der Symbiosen für den Stoffkreislauf in Ökosystemen eingegangen werden. Da die Chloroplasten aller Höheren Pflanzen und Algen aus endosymbiontischen Prokaryoten hervorgegangen sind, wird der größte Teil der Primärproduktion in der Biosphäre durch eine Symbiose geleistet. Abgesehen davon spielen Flechten als Primärproduzenten auf etwa einem Achtel der Landfläche (1,2 x 107 km2) eine ent­scheidende Rolle. Bedeutend ist weiterhin der Beitrag der Korallenriffe zur Primär­produktion.

Die enge Partnerschaft von Pilzen und Landpflanzen besteht vermutlich seit der Eroberung des Landes im ausgehenden Silur. Für Primärproduktion und Stoffkreislauf in der Biosphäre ist diese Symbiose von Höhe­ren Pflanzen und Pilzen (Mykorrhiza) besonders wichtig. Man nimmt an, dass My­korrhizapilze 10 bis 20% der fotosynthetischen Primärproduktion von Pflanzen aufnehmen, das sind bis zu 2 x1013 kg pro Jahr. Besondere Bedeutung haben Mykorrhiza-Pilze für de Phosphor- und Stickstoff-Kreislauf in Ökosystemen . (vgl. Agerer, UB         ), Sie stellen eine Kurzschluss artige Verbindung zwischen orga­nischen Abfallstoffen und Primärproduzenten her. Dadurch kann der Export dieser Ele­mente aus Ökosystemen deutlich verringert werden. Wie Perakis und Hedin (2002, S. 416-418) nachweisen konnten, ist der Austrag an anorganischem Stickstoff in na­turnahen, vom Menschen wenig beeinflussten Regenwäldern des gemäßigten Süd­amerika viel geringer als in entsprechenden, stark vom Menschen beeinflussten Wäldern Nordamerikas (Abb.     ) . Dies könnte darauf hindeuten, dass es in diesen Wäldern kaum zu einer totalen Remineralisierung von Stickstoffverbindungen kommt. Ähnli­ches dürfte für Phosphorverbindungen gelten.

 Die Verbreitung von Mykorrhizapilzen ist viel größer, als man dies ursprünglich angenommen hatte. So gilt als sicher, dass in tropischen Wäldern etwa 90 % aller Gehölze Mykorrhizen ausbilden. Da viele Pilze mit mehreren Baumarten Partnerschaften eingehen, ist nicht nur ein Stofftransport von einem Baum zum anderen sondern auch von einer Baumart zur anderen möglich. Besonders spektakulär ist in diesem Zusammenhang, dass durch Pilzwurzeln vermittelt auch Pflanzen existieren können, die kein Chlorophyll mehr bilden und dann als reine Parasiten auf den Pilzen leben. So findet man das bleiche Wintergrüngewächs Fichtenspargel unter Fichten und Buchen. Vermittelt durch einen Mykorrhizapilz lebt der Fichtenspargel von der Primärproduktion der Buchen bzw. Fichten.

Schließlich können Pilze auch tierische Eiweißquellen für Höhere Pflanzen erschlie­ßen, die sonst nur den Extremspezialisten – den sogenannten Carnivoren oder In­sektivoren – vorbehalten bleiben. So konnte nachgewiesen werden, dass Laccaria bicolor (Zweifarbiger Lacktrichterling) Springschwänze (z.B. der Art Folsomia can­dida) „fressen“ kann. Der Pilz immobilisiert die Springschwänze zunächst. Dann dringt das Mycel in deren Körper ein und fängt an, sie zu „verdauen“. Da Laccaria gleichzeitig mit Waldbäumen eine Mykorrhiza eingeht, werden tierliche Stickstoffver­bindungen über den Pilz an die Bäume weitergegeben. Durch 15N-Isotopenmarkie­rung konnte nachgewiesen werden, dass bis zu 25 Prozent des pflanzlichen Stick­stoffs aus Springschwänzen stammen, die von Laccaria gefressen wurden. Als Ge­genleistung versorgt der Baum den Pilzpartner mit Kohlenhydraten, auch mit sol­chen, die dann zu proteolytischen Enzymen umgebaut werden können (Klironomos, Hart 2001,p.651,652).

Untersuchungen an isolierten Rasenstücken ergaben, dass durch den von Mykorrhi­zapilzen vermittelten Stoffaustausch die Konkurrenz zwischen den Pflanzenarten vermindert wird. Dies führt dazu, dass die Zugangsmöglichkeiten zu Mineralstoffen ausgeglichen werden und dass die Koexistenz verschiedener Arten leichter ist. Eine Zunahme der Artenvielfalt ist die Folge (A.E. Douglas Symbiotic interactions 1994).

Auch im Zusammenhang mit Primärsukzessionen (Neubesiedelung von vorher ve­getations- bzw. organismenfreien Substraten etwa nach Vulkanausbrüchen oder beim Gletscherrückzug) können Symbiosen eine wichtige Rolle spielen. Dies gilt etwa für die Neubesiedelung von Gletschern freigegebener Felsflächen durch Flechten und anschließend durch Pflanzen, die in Symbiose mit Luftsticksoff – fixie­renden Bakterien leben. Genauere Untersuchungen in Glacer Bay/ Alaska, wo ein Gletscher sich in überlieferten Zeiträumen um etwa 100 km zurückgezogen hat, zeigt eine ständige Zunahme von Stickstoff in den Böden. Als Erstbesiedler an Höheren Pflanzen spielt die Silberwurz (Dryas) eine entscheidende Rolle. Sie enthält stick­stofffixierende Bakterien der Gattung Frankia. In der Folgezeit besiedeln Erlen, Wei­den und Pappeln die Gletscherrückzugsgebiete. Die endosymbiontischen Actinomy­ceten der Gattung Frankia können in Erlenbeständen bis zu 180 kg Stickstoff/ ha und Jahr fixieren (Abb. Grafik zur Stickstoffzunahme in Gletscherböden von Glacer Bay). In bestimmten limnischen Lebensräumen, z.B. in ostasiatischen Reisfeldern, dürfte die Stickstofffixierung durch mit dem Schwimmfarn Azolla zusammenlebenden Blau­grünen Bakterien der Gattung Anabena eine wichtige Rolle spielen (50 bis 150 kg Stickstoff/ ha und Jahr). In tropisch-subtropischen marinen Lebensräumen des pazi­fischen Raumes spielt die Diatomee Rhizosolenia mit endosymbiontischen Blaugrü­nen Bakterien eine ähnlich bedeutende Rolle beim Zugang des Ökosystems zur Luftstickstoffquelle.

Erst in jüngster Zeit beginnt man, die komplizierten Wechselwirkungen zu studieren, die zwischen den Mikroorganismen und dem höheren Leben der Ozeane bestehen. Die Bedeutung der Prokaryoten und insbesondere der ursprünglichen „Domäne“ der Archaea ist mengen- und massenmäßig in den Ozeanen viel bedeutender als lange Zeit angenommen. So ist reiches Archaea-Vorkommenie keineswegs auf die Umgebung der schwefelspucken­den Tiefseeschlote begrenzt. Vielmehr dürften sie 40 % der Tiefseeorganismen ins­gesamt ausmachen und die Tiefsee ist bei weitem der größte Lebensraum der Erde. Aber auch in oberflächennahen Wasserschichten der Ozeane spielen Archaebakte­rien eine große Rolle. Die zur Fotosynthese fähigen a-Proteobacteria machen vemutlich wenigstens 10 % aller Bakterien in den Ozeanen aus (Copley 2002)  und sie sind damit für  ca. 5 % der Fotosynthese bedingten Primärproduktion verantwortlich. Dabei läuft ihre Fotosynthese allerdings etwas anders ab. Sie produzieren nämlich keinen Sauer­stoff, sondern verwerten den bei der Fotosynthese freigesetzten Sauerstoff sofort wieder für eigene Synthesen. Außerdem nutzen sie Lichtenergie, um organische Verbindungen abzubauen (Fotoheterotrophie). Diese Fähigkeit, von der man bis vor kurzem nichts wusste, hat bedeutende Auswirkungen für den Kohlenstoffkreislauf und die mögliche Bedeutung der Ozeane als Kohlenstoffsenke. Ein großer Teil des Kohlen­stoffdioxids, das in den Ozeanen durch die Fotosynthese fixiert wird, bleibt – wenn die Planktonorganismen absterben – in gelöstem oder suspendiertem organischem Ma­terial zurück. Dieses organische Material dürfte in größerer Menge als bisher ange­nommen von Proteobakterien genutzt werden. So tragen diese Prokaryoten dazu bei, dass der Kohlenstoff stärker als bisher angenommen in den oberen Wasser­schichten bleibt – eine schlechte Nachricht für diejenigen, die bisher hofften, dass übermäßiger Anstieg des Kohlenstoffdioxidgehaltes der Atmosphäre durch die Ozeane ausgeglichen werden kann. Wie neue Arbeiten zeigen, gibt es noch eine große Zahl anderer Prokaryoten mit außergewöhnlichen Stoffwechsel- und Fotosyn­thesewegen, die bisher noch nicht erforscht sind und die eine Vielzahl neuer Bezie­hungen und Stoffflussschleifen erwarten lassen, die das Zusammenspiel in dem von Planktonorganismen bestimmten Ökosystem der freien Ozeane viel komplizierter erscheinen lassen wird, als dies bisher angenommen wurde. So dürfte die von Halobakterien als Fotergie bekannte Erscheinung, bei der Sonnenlicht über Rhodopsin und verwandte Pigmente als Energiequelle für eine Membran-Protonenpumpe genutzt wird, in oberflächennahen marinen Habitaten weit verbreitet sein. Auch die Bedeutung Stickstoff-(N2)-fixierender Prokaryoten in marinen Ökosystemen ist vermutlich unterschätzt worden. So dürfte insbesondere die Zahl der entocytosymbiotischen Stickstofffixierer in den einzelligen Planktonalgen eine viel größere Rolle spielen als bisher angenommen (Zehr 1998). Auch Viren sind häufig in marinen Ökosystemen. Sie können bei Algenblüten regulierend wir­ken. Wenn die virusbefallenen Zellen solcher großen Algenblütengebiete plötzlich sterben, setzen sie eine große Menge organischer Materie frei. Auf diese Art und Weise können Viren möglicherweise zur plötzlichen massenhaften Freisetzung von Dimethylsulfid (DMS) beitragen. Wie zum ersten Mal von Lovelock nachgewiesen, fördert DMS in der Atmosphäre die Wolkenbildung und erhöht damit die Menge der an der Atmosphäre reflektierten Sonnenstrahlen. Dies kann eine deutliche Abkühlung des Erdklimas bedeuten. Es ist durchaus naheliegend, anzunehmen, dass die große Stabilität der Biosphäre solchen mikrobiellen Wechselwirkungen zu verdanken ist. Im Kleinen kennt man solche eng  kooperierende Mikrobensysteme, in denen sich die einzelnen Bestandteile gegenseitig stabilisieren, z.B. von denen von Kefir oder Kombucha.

Eine besondere Form der Wechselwirkung ist der durch Viren vermittelte horizontale Gentransfer. Auch diese Form der Wechselwirkung wurde vermutlich in der Vergangenheit eher unterschätzt.

Menschliche Macht, Mitgefühl und Zukunftsfähigkeit

Je höher entwickelt das Nervensystem und das Lern- und Erinnerungsvermögen ei­ner Tierart, desto flexibler und anpassungsfähig kann auch das Sozialverhalten wer­den. Junge werden „geprägt“, Kinder lernen von ihren Eltern, schließlich können sich sogar Traditionen herausbilden. An der Spitze dieser Entwicklung stehen zweifellos die Primaten und schließlich die Menschen.

Sicherlich wirkt sich dies auch auf das Kooperationsverhalten aus. So konnte durch Computersimulationen nachgewiesen werden, dass kooperatives Verhalten den kooperierenden Individuen Selektionsvorteile bringt, wenn die Individuen innerhalb einer Population erkennen können, ob andere Individuen kooperationsbereit sind oder nicht. Dies setzt ein hochdifferenziertes Wahrnehmungsvermögen voraus.  (Sigmund, Nowak 2001, 403,404).

Auch die sogenannte Altruistische Bestrafung (Altruistic punishment, Fehr, Gächter, 2002, 137-140) stellt eine Verhaltensweise dar, die Altruismus fördert: Sie beschreibt ein typisch menschliches Verhalten gegenüber Individuen, die agressiv ihre eigenen Interessen verfolgen. Solche Individuen werden bestraft, auch wenn der Strafende davon keinen direkten eigenen Vorteil hat.  Diese Verhaltensweise setzt voraus, dass man sich relativ gut in andere Individuen hineinversetzen kann – eine Fähigkeit  die Menschen in höherem Maße haben als andere Arten.

Wahrnehmungsfähigkeit und Gehirn gestatten es den Menschen, sich ein Bild ihrer Umwelt zu machen, das planvolles und gezieltes Handeln erlaubt. Die abstrakte Sprache macht es möglich, sich intensiv und detailliert mit anderen Menschen auszutauschen, Erkenntnisse, Einsichten, Erfahrungen und Ideen weiterzugeben. Die Schrift und seit Kurzem die elektronischen Medien erlau­ben eine Konservierung von Information und in Zukunft vielleicht auch eine enge Ko­operation von Gehirnen und Systemen der elektronischen Datenverarbeitung. So wird von manchen Informatikern eine Symbiose zwischen menschlichem Gehirn und Maschine angedacht: „Schließlich werden wir darangehen die externen Hilfsmodule mit dem Gehirn zu verbinden – beispielsweise durch Millionen mikroskopischer Elek­troden; man könnte sie in das große Faserbündel namens Corpus callosum implan­tieren, das als gewaltiger Datenbus die beiden Gehirnhälften miteinander verbindet.“ (Minsky 1994).

Mit Hilfe seines Gehirns kann der Mensch Szenarien in Gedanken durchspielen, die Folgen bestimmter Handlungen vorhersehen. Dadurch, dass Beziehungen und Wechselwirkungen in die Zukunft projiziert werden, kann man ihre Folgen abschät­zen. Diese Modellbildungsfähigkeiten sind ein enormer Machtfaktor. Menschen nei­gen allerdings dazu, diese Macht zu überschätzen und damit gleichzeitig die Verant­wortung zu unterschätzen, die aus der Erkenntnisfähigkeit erwächst. Denn die Mo­delle, die eben doch nur Modelle und damit unvollkommene Bilder der Wirklichkeit sind, werden oft als ganz real genommen und man verlässt sich voll auf ihre Aussagen. So werden mit der Zunahme menschlicher Macht und Manipulationsmöglichkeiten die als Folgen menschlicher Eingriffe auftretenden Katastrophen immer größer und gefährlicher.

Vielleicht hilft ein Nebeneffekt unseres Weltbildapparates dabei, das richtige Maß zu finden: Er gestattet es den Menschen nämlich auch, sich in andere Indivi­duen hineinzuversetzen, die Welt „mit ihren Augen“ zu sehen. Diese Fähigkeit ist Voraussetzung für Mitgefühl, Mitleid und die Möglichkeit, sich mit Anderen zusammen zu freuen und damit die Voraussetzung für Wertempfin­den, Ethik und Moral.

Dabei betrifft Mitfühlen und Mitleiden  nicht nur Mitglieder der eigenen Art, sondern auch andere  Mitgeschöpfe. In ihrem Versuch „Leben“ zu beschreiben und verständlich zu machen weisen Lynn Margulis und Dorian Sagan  besonders auf dieses menschliche Bewusstsein hin, das im Grunde ein Bewusstsein der Biosphäre oder des gesamten Lebens der Erde dar­stellt, da es allmählich mit der Evolution gewachsen ist. „In diesem Sinne ist das in­tuitive Wissen und Werden, nach dem jedes Einzelbewusstsein eine Illusion ist und wir alle einem einzigen Urgrund, nämlich Brahman angehören, vielleicht völlig richtig: Nicht nur unsere chemische Zusammensetzung ist ein gemeinsames Erbe, sondern auch unser Bewusstsein und die Notwendigkeit in einem Kosmos zu überleben, der aus der gleichen Materie besteht wie wir, der aber unserem Leben und unseren Be­langen gleichgültig gegenübersteht.“ (Margulis, Sagan 1997).

Literatur

Agerer, R.: Mykorrhiza. UB 183/17:49-51, 1993

Ahmadjian, V., Paracer, S.: Symbiosis: An introduction to biological associations. Univ.Press New England, Hanover (USA) 1986

Barlow, C. (Hrsg.): Evolution extended. Biological debates on the meening of life. MIT Cambridge (USA), London, 1994

Berdoy,M, Webster, J.P., Macdonald, D.W.: Fatal attraction in rats infected with Toxoplasma gondii: Proceedings of the Royal Society of London B267:1591-1594, 2000

De Bary, A.: Die Erscheinung der Symbiose. Vortrag gehalten auf der Versammlung Deutscher Naturforscher und Ärzte zu Cassel. Trübner, Strasburg 1879

Copley, J: All at sea. Nature 415, 7.2.2002: 572-574

Diamond, J.: Guns, Germs and Steel. Norton, London, New York 1997

Douglas, A.E.: Symbiotic interactions. Oxford Univ. Press, Oxford, New York… 1994

Campbell, N.A.: Biologie, Spektrum, Heidelberg, Berlin, Oxford 1997

Fehr, E., Gächter, S.: Alturistik punishment in humans. Nature 415, 10.1.2002: 137-140

Keeble, F.: Plant animals. A study in symbiosis. Cambridge Univ.Press, Cambridge 1910

Keeling, P.J.: Parasits go to the free monty. Nature 414, 22.11.2001: 401/ 402

Klironomus, J.N., Hart, M.M.: Animal nitrogene sweap für plant carbon. Nature 410. 5.4.2001: 651/ 652

Krombein, K. V. et al.:Biodiversity of domatia occupants (ants, wasps, bees and others) of the Sri Lankan myrmecophyte Humboldtia laurifolia VAHL (Fabaceae).Smithonian Contributions to Zoology 603, Washington (USA) 1999

Kropotkin, P.: Gegenseitige Hilfe in der Tier- und Menschenwelt. Trotzdem-Verlag, Glasenau 19932 (Übersetzung der englischen Originalausgabe von 1902: Mutual aid)

Margaris, N.S., Arianoustou-Faraggitaki, M., Oechel, W.C. (Hrsg.): Beeing alive on land. Junk Publishers, The Hague, Boston, Lancaster 1984

Margulis, L. (Hrsg.): Symbiosis in cell evolution 1981; 2nd ed.: Endosymbiosis in cell evolution. Freeman, San Fransisco (USA) 1993

Margulis, L., Fester, R. (Hrsg.): Symbiosis as a source of evolutionary innovation: Speciation and morphogenisis. MIT Cambridge(USA) 1989

Margulis, L., Sagan, D.: Leben. Vom Ursprung zur Vielfalt. Spektrum, Heidelberg, Berlin 1999

Masuch, G.: Biologie der Flechten. Quelle & Meyer, Heidelberg, Wiesbaden 1993

Martin, K.: Ökologie der Biozönosen. Springer, Berlin, Heidelberg, New York 2002

Max-Planck-Gesellschaft, Presseinformation: Blattnektar – pflanzliche „Heuer“ für Schutzinsekten, 2001  http://www.mpg.de/pri01/pri0108.htm

McCarthy, H.O., Fitzpatrick, S., Irwin, S. W. B.: A transmissible trematode affects the direction and rhythm of movement in a marine gastropode. Animal Behavior, London 59: 1161-1166, 2000

Minsky, M.: Werden Roboter die Erde beherrschen? In: Spektrum der Wissenschaften, Spezial 3: Leben und Kosmos, S.80-87, Heidelberg 1994

Perakis, S.S., Hedin, L.O.: Fluxes and ftes of nitrogen in soil of an unpolluted old-growth temperate forest, southern Chile. Ecology 82(8):2245-2260, 2001

Probst, W. (Hrsg.) :Algen. UB 225/21, 1997

Probst, W. (Hrsg.) Pflanzen und Insekten. UB 236/22, 1998

Probst, W. (Hrsg.): Riffe. UB 254/24, 2000

Puff, C.: Flora der Pläotropen: Schwerpunkt SEA: (Südostasiatische) Ameisen- und Kannenpflanzen, 2002  http://mailbox.univie.ac.at/Cristian.Puff/AS_ Ameisen&Kann.htm

Queller, D.C.: Pax argentinica. Nature 405, 1.6.2000: 519/520

Reisser, W.: Algae in symbiosis: Plants, animals, fungi, viruses. Interactions  explored. Inter Press, Bristol 1992

Sapp, J.: Evolution by association. The history of symbiosis. Oxford University Press, Oxford 1994

Sauer-Sachtleben, M.: Kooperation mit der Evolution. Das kreative Zusammenspiel von Mensch und Kosmos. Dietrichs, München 1999

Schwemmler, W., Schenk, H. E. A. (Hrsg.):Endocytobiology, Vol 1: Endosymbiosis and cell biology. Walter de Gruyter, Berlin 1980

Shigenobu, S. et al.: Genome sequence of the endocellular bacterial symbiont of aphids Buchnera sp. APS. Nature 407, 7.9.2000: 81-86

Sigmund, K., Nowak, M.A.: Tides of tolerance. Nature 414, 22.11.2001: 403/404

Sommer, U.: Competition and coexistens. Nature 402, 25.11.1999: 366/367

Von Dohlen et al.: Mealybug ß-proteobacterial endosymbionts contain Y-proteobacterial symbionts .Nature 412, 26.6.2001: 433-436

Von Lüpke, G.: Kooperation als Motor des Lebens. Natur und Kosmos, Dez.1999: 11-14

Whitfield, J.: Eat me! Nature 406, 24.8.2000: 840

Wilson, E. O.: The social conquest of earth. Liveright, New York 2012

„Europäische Werte“

LINK-NAME LINK-NAME

Die Werte, auf die sich die Union gründet, sind die Achtung der Menschenwürde, Freiheit, Demokratie, Gleichheit, Rechtsstaatlichkeit und die Wahrung der Menschenrechte einschließlich der Rechte der Personen, die Minderheiten angehören. Diese Werte sind allen Mitgliedstaaten in einer Gesellschaft gemeinsam, die sich durch Pluralismus, Nichtdiskriminierung, Toleranz, Gerechtigkeit, Solidarität und die Gleichheit von Frauen und Männern auszeichnet. (Artikel 2 EUV in der Fassung des Vertrags von Lissabon 2009)

Im Zusammenhang mit dem Ukraine-Krieg wird häufig betont, dass es hier um die Verteidigung „europäischer Werte“ gehe. Diese allgemeine Formulierung ist höchst missverständlich, denn die Werte, die in den Gesellschaften der europäischen Staaten über Jahrhunderte galten, stimmen nicht mit den Grundwerten der Europäischen Union überein, die diese sich zuletzt in dem Vertrag von Lissabon 2009 gegeben hat. Ganz im Gegenteil! Es wäre deshalb wesentlich zielführender und treffender, von „humanistischen Werten“ zu sprechen, deren Quellen keineswegs auf Europa beschränkt sind und die von den meisten europäischen Staaten seit Jahrhunderten mit Füßen getreten werden.

Besonders deutlich wird dies am von Europa ausgegangenen Kolonialismus und der eng damit in Verbindung stehenden Sklaverei. Auch die vielen kriegerischen Auseinandersetzungen europäischer Mächte in den vergangenen Jahrhunderten waren begleitet von Kriegsverbrechen. Schließlich verstößt die vom Neoliberalismus geprägte Ausbeutung ehemaliger Kolonialgebiete bis heute an vielen Stellen gegen diese Werte.

Kolonialismus

Naturwissenschaftliche und technische Fortschritte ermöglichten es den Europäern ab dem 15. Jahrhundert, mit ihren Schiffen überseeische Gebiete zu erreichen und mit ihren Feuerwaffen zu erobern.

Die charakteristische Vorgehensweise, denen die Eroberer immer wieder folgten, war:

  1. militärische Unterwerfung und Vernichtung der Infrastruktur
  2. Kolonisierung mit Europäern
  3. Unterwerfung, Umerziehung, Ausbeutung und teilweise sogar Vernichtung der indigenen Bevölkerungen
  4. maximale Ausbeutung der Ressourcen mithilfe der zur Zwangsarbeit verpflichteten Einheimischen und importierten Sklaven
  5. Vernichtung ursprünglicher Wirtschaftssysteme
  6. Vernichtung ursprünglich vorhandener Ökosysteme
  7. Aufbau einer supressiven Kolonialverwaltung
  8. nach der „Freilassung“: Verhinderung einer wirklichen Unabhängigkeit durch die ehemaligen Kolonialherren in Zusammenarbeit mit korrupten „Ortskräften“.

Dabei wurde (und wird) gegen alle von der EU formulierten Grundwerte in eklatanter und grober Weise verstoßen. Diese Verstöße sind zahlreich belegt, dokumentiert und teilweise auch literarisch verarbeitet. Eine sehr gute Übersicht bietet das von Jean Ziegler 2008 verfasste Buch „Der Hass auf den Westen“.

Da die europäische Hauptstadt Brüssel in Belgien liegt, seien die Verbrechen in „Belgisch-Kongo“ als ein Beispiel heausgegriffen. In der von Otto von Bismarck geleiteten Kongokonferenz 1884/85 wurde der Kongo dem belgischen König Leopold II von den europäischen Nationen praktisch als Privatvermögen zugesprochen und euphemistisch als „Kongo-Freistaat“ bezeichnet. „Frei“ stand hier für großzügige Freihandelsbestimmungen, nach denen der Kongo für die europäische Wirtschaft geöffnet werden sollte. Dadurch konnte sich in den nächsten Jahren ein System unreglementierter Raubwirtschaft etablieren. Zunächst ging es vor allem um den Rohstoff Elfenbein, später dann im Zuge des Kautschukbooms um Naturkautschuk. Die indigene Bevölkerung wurde einem brutalen Kolonialsystem unterworfen. Körperliche Züchtigung, Verstümmelungen, Geiselnahmen und Morde waren die Methoden, mit denen versucht wurde, maximale Gewinne aus dem Land zu ziehen. Je nach Schätzungen sollen dabei bis zu 10 Millionen Einwohner ums Leben gekommen sein. Erst nachdem die Weltöffentlichkeit durch den Bericht des britischen Diplomaten Roger Casement über die Kongo-Gräuel aufgeschreckt worden war, wurde der „Freistaat“ dem Privatbesitz von König Leopold entzogen und direkt dem belgischen Staat unterstellt (vgl. Joseph Conrad: Herz der Finsternis, Mario Llosa Vargas: Der Traum des Kelten, Adam Hochschild: King Leopolds Ghost).

Doch auch unter der Regie des belgischen Staates ging die Ausbeutung des Kongo weiter. Neben Kautschuk, Palmöl und Kaffee spielten nun zunehmend auch Bodenschätze wie Kupfer, Blei, Zink und Diamanten eine wichtige Rolle.

Im Zweiten Weltkrieg wurde Uran aus dem Kongo für das amerikanische Atombombenprogramm genutzt, auch die Kupfer-, Palmöl-und Gummiindustrie erlebte einen Aufschwung. Nach wie vor wurde die afrikanische Bevölkerung nicht an einer Verwaltung beteiligt, was zu Unruhen führte. Zur Jahreswende 1941/42 wurden auf einem Fußballplatz in Elisabeth will mindestens 60 streikende Kongolesen erschossen.

In den Nachkriegsjahren verstärkte sich der Widerstand gegen die belgischen Kolonialregierung. Der belgische Staat versuchte, durch eine Reihe von Reformen diesen Widerstand zu begegnen. Gegen Ende der 1950er Jahre waren zwar zahlreiche Afrikaner an der Verwaltung beteiligt, aber bis zur Unabhängigkeit, bei der die Kolonie in Zaire umbenannt wurde, hatten Afrikaner kein volles Wahlrecht. Die mit Unruhen verbundenen Unabhängigkeitsbestrebungen wurden 1959 vom belgischen Staat zunächst noch hart bekämpft. Aber nachdem im Januar 1960 die französische Regierung das Nachbarland Kamerun in die Unabhängigkeit entlassen hatte, kündigte auch die belgische Regierung ihren Rückzug aus dem Kongo an.

Nach dem Ende des offiziellen Kolonialstatus am 30. Juni 1960 wurde Patrice Émery Lumumba zum Staatspräsidenten gewählt. Er versuchte, den Kongo auf friedliche Weise in eine Unabhängigkeit zu führen, in der die wirtschaftliche Nutzung von Bodenschhätzen und Rohstoffen verstärkt der kongolesischen Bevölkerung zu gute käme . Unter Mithilfe belgischer Behörden und westlicher Geheimdienste wurde er zunächst festgenommen und dann zusammen mit zwei seiner Gefolgsleute in Katanga gefoltert und ermordet. Die Leichen wurden zersägt und mit Batteriesäure aufgelöst, um Spuren zu verwischen. Sein korrupter Nachfolger Mobutu, der die weitere Ausbeutung des Kongo durch die alten und neuen Kolonialmächte zuließ und sich dabei enorm bereicherte, legte den Grundstein für die vielen Probleme, mit denen dieses an sich enorm reiche Land und seine Bevölkerung bis heute zu kämpfen haben.

Im September wird Lumumba zu Hausarrest verurteilt. Er versucht zu fliehen, doch Armeechef Mobutu lässt ihn von Soldaten verfolgen. Mit zwei seiner Mitstreiter wird Lumumba gefasst und in einer Kaserne bei Thysville im Westen des Landes interniert. Bald danach bringt man ihn auf Betreiben des belgischen Ministers d’Aspremont nach Katanga; er wird mehrere Stunden verhört und gefoltert. Im Beisein von vier belgischen Polizisten, Präsident Tschombé und zwei Ministern der abtrünnigen Provinz werden Lumumba und seine Mitstreiter erschossen. Um alle Spuren zu beseitigen, gräbt ein belgischer Polizeibeamter die Leichen kurze Zeit später wieder aus, zerstückelt sie mit einer Säge und löst sie in Säure auf. (aus: Der tödliche Mut des Patrice Lumumba  von Alexander Behr, Deutschlandfunk Kultur ,13.01.2021)

Soviel zum Kongo. Dieses Land soll hier exemplarisch stehen für den „Werteexport“ aus Europa in europäische Kolonien. Auf einige weitere Beispiele sei nur kurz hingewiesen:

Die Gräueltaten der spanischen und portugiesischen Eroberer in Amerika wurden zum größten Teil mit Billigung der katholischen Kirche durchgeführt und teilweise damit entschuldigt oder begründet, dass man den einheimischen Menschen den Status des „Menschseins“ absprach (Disput von Valladolid, 1550/51). So wurden in den Silberminen des Cerro Rico bei Potosi im heutigen Bolivien in drei Jahrhunderten 40.000 t Silber abgebaut und dabei kamen fast 4 Millionen Indianer ums Leben (aus Ziegler 2008  nach Hamilton 1934). Die Arbeitsbedingungen der Mitayos, wie die Minenarbeiter genannt wurden, zu denen auch Frauen und Kinder gehörten, waren extrem grausam. Wer sich weigerte, die Leitern hinabzusteigen, wurde sofort erschossen und heraus durfte nur, wer ausreichend Mengen Silbererz mit sich brachte. Revolten und Aufstände wurden mit äußerster Brutalität niedergeschlagen.

Die Kolonisierung Nordamerikas war ebenfalls ein extrem gewalttätiger Akt, begleitet von Vertragsbrüchen, falschen Versprechungen und mörderischen Vertreibungen. In kurzer Zeit wurde ein Großteil der ursprünglich einheimischen Bevölkerung vernichtet. Der Ausrottungsprozess wurde durch eingeschleppte Krankheiten, zum Beispel der Malaria, erheblich beschleunigt (Diamond 1997). Die Zeit dieses vor allem im 18. und 19. Jahrhundert ablaufende Völkermords wird in dem bis heute recht beliebte Genre des Wildwestfilms mit seiner Schwarzweißmalerei und der durch lockere Colts durchgesetzten gerechten Sache nicht nur romantisch verzerrt und verharmlost, sondern völlig vernebelt und vertuscht

Eine besonders grausame Methode, „europäische Werte“ zu vermitteln, wurde vor allem unter englischer Kolonialherrschaft, zuerst in Australien und später auch in Kanada, betrieben. Um die Eingeborenen zu „zivilisieren“, wurden die Kinder ihren Eltern weggenommenn und in Erziehungsanstalten untergebracht. Über die grausamen Lebensbedingungen in diesen meist unter christlicher Oberhoheit stehenden Anstalten, die bis 1969 bestanden, hat man erst in jüngerer Zeit mehr erfahren (vgl. z. B. Read 1981, 2006).

Cootamundra Girls Home. Cootamundra Girls Home, established in 1911, was the first of the homes for Aboriginal children set up by the Aborigines Protection Board. The main aim of the Board was to ‚rescue‘ Aboriginal children from their families and assimilate them into the white community. Girls were the main target of the Board, especially so-called ‚half-caste‘ or ‚mixed blood‘ girls. The girls were trained as domestic servants and sent out to work for middle class white families.At Cootamundra, Aboriginal girls were instructed to ‚think white, look white, act white‘. This was part of the process to make the girls suitable wives for white men, in the hope that through interracial marriages, Aboriginal blood would be ‚bred out‘. They were taught to look down on their own people and to fear Aboriginal men.Girls in the home were not allowed to communicate with their families. They were often told that their parents were dead and even given forged death certificates. As a result, many of the girls in the home lost their families forever.Cootamundra Home was closed in 1968, the year before the Aboriginal Welfare Board (previously the Aborigines Protection Board) was abolished. https://web.archive.org/web/20081206184900/http://www.dreamtime.net.au/indigenous/family.cfm#bi

Russland errichtete zwar keine überseeischen Kolonien, kolonisierte dafür aber ganz Sibirien und den nordpazifischen Raum bis Alaska. Auch dabei wurde und wird die indigene Bevölkerung unterworfen, unterdrückt und ausgebeutet (Zeugnisse dafür finden sich zum Beispiel bei Georg Wilhelm Steller und Adelbert von Chamisso).

Sklaverei

Menschen im Besitz anderer Menschen, also Sklaven, gab es schon im alten Ägypten. In ganz großen Maßstab wurde Sklaverei und Sklavenhandel  aber zwischen Europa, Afrika und der „Neuen Welt“ im 16. Jahrhundert begonnen und erst im 19. Jahrhundert gegen große Widerstände beendet. Dabei waren auch afrikanische Herrscher und Zulieferer beteiligt, die entscheidende Triebkraft für die riesengroße Menge an Sklaven, die in die neue Welt verschifft wurden, ging aber von spanischen, französischen und englischen Sklavenhändlern aus.. Dabei spielte der Dreieckshandel – Waffen und Söldner von Europa nach Afrika, Sklaven von Afrika nach Amerika, Zucker von Amerika nach Europa – eine wichtige Rolle. Von den etwa 50 Millionen von Afrika nach Amerika gebrachten Sklaven starben 10-20 % schon bei der Überfahrt.

Wichtigster Teil der Unabhängigkeitserklärung der Vereinigten Staaten von Amerika von 1776 ist die darin enthaltene Formulierung der Menschenrechte. Der Hauptautor Thomas Jefferson besaß bei seinem Tode 1826 200 Sklaven!

Europäische Kriegsverbrechen und Genozide

Viele innereuropäischen Kriege wurden mit großer Grausamkeit geführt. Besonders hervorzuheben ist der 30-jährige Krieg, aber auch in den 100 Jahre andauernden kriegerischen Auseinandersetzungen zwischen England und Frankreich im 14. und 15. Jahrhundert kam es zu vielen Kriegsverbrechen. Den bisherigen Gipfel der Grausamkeiten stellt der während des Zweiten Weltkriegs unter den deutschen Nationalsozialisten geplante und durchgeführte Genozid an Juden und weiteren „nicht arischen“ Menschen dar.

„Die Schuld des Nordens“

Sind dies alles Ereignisse der Vergangenheit? Hat – zumindest mit dem Vertrag von Lissabon von 2009 – eine neue humanistische Ära in Europa angefangen?

Ausbeutung, Armut, Hunger und Not haben auf der Welt in den letzten Jahrzehnten nicht abgenommen. Ob man die Arbeiterinnen in den Textilfabriken Bangladeschs, die Kinderarbeit in Kakaoplantagen Afrikas und Südamerikas, die rechtswidrigen, Umwelt und Menschen zerstörenden Formen der Ölförderung im Nigerdelta oder die unmenschlichen Bedingungen des Coltan-Abbaus in der Demokratischen Republik Kongo als Beispiel nimmt, immer sind amerikanische und europäische Firmen Nutznießer und Beteiligte und widersprechen mit ihren Handlungen den formulierten EU-Grundrechten. Es gibt zwar sehr viele Bemühungen, die Situation zu verbessern – man denke etwa an das „Lieferkettengesetz“ – aber es ist ausgesprochen schwierig, humanistische Ziele und Menschenrechte gegen wirtschaftliche Interessen durchzusetzen. In dieser Beziehung hat sich seit dem 19. Jahrhundert nicht sehr viel geändert. Ein Unterschied ist vielleicht, dass heute große, multinationale Konzerne – zumindest in der westlichen Welt – mehr Einfluss haben als Regierungen.

In jedem Fall sollte man heute und in Zukunft vermeiden, die Verbreitung „europäischer Werte“ als wichtiges politisches Ziel zu verkünden. Alle Nicht-Europäer müssen diese Bezeichnung als Hohn empfinden.

Humanistische Werte und Menschenrechte, um die es gehen sollte, sind alles andere als „europäisch“. Die mildeste Verurteilung dieser Bezeichnung ist Scheinheiligkeit aber eher noch handelt es sich wohl um bewusste Irreführung.

Quellen

Behr, A. (2021): Der tödliche Mut des Patrice Lumumba. Deutschlandfunk Kultur,13.01.2021

Bitterli, U. (1976): Die „Wilden“ und die „Zivilisierten“. München: C. H. Beck

Bley, H. (2005): Künstliche Grenze, natürliches Afrika? Um die Berliner Kongokonferenz von 1884–1885 ranken sich allerhand Mythen. https://www.freiburg-postkolonial.de/Seiten/Bley-Kongokonferenz.htm

Chamisso, A. v. (2001): Reise um die Welt. Aufbau Taschenbuch

Conrad, J. (2005): Herz der Finsternis. München: dtv; Erstveröff. „Heart of Darkness“,  1899

Crosby, A. W. (1991): Die Früchte des weißen Mannes: ökologischer Imperialismus 900-1900. Frankfurt a. M. : Campus

Diamond, J. (2006): Arm und Reich.7. A., Frankfurt: Fischer; Erstveröff. „Guns, Germs and Steel“ 1996

Fanon, F. (1969): Die Verdammten dieser Erde. Rororo-Taschenbuchausgabe; Erstveröff. „Les damnés de la terre“,1961

Hochschild, A. (1999): King Leopolds Ghost. Mariner Books, Reprint Edition

Mann, C. C. (2013): Kolumbus‘ Erbe. Reinbek: Rowohlt

Probst, W. (2015): Der Palme luft’ge Krone – mit Chamisso auf Weltreise, 2. A..Ochsenhausen: Angele-Verlag

Read, P. (1981, 2006): The stolen generation. The removal of Aboriginal children in New South Wales 1863 – 1969. New South Wales Departmet of Aboriginal Affairs.
https://www.aboriginalaffairs.nsw.gov.au

Sabet, H. (1992): Die Schuld des Nordens.2. A., Frankfurt am M.: Horizonte-Verlag

Steller, G. W. (1986): Von Sibirien nach Amerika. Hrsg. V. Matthies. Stuttgart/Wien: Thienemann

Vargas Llosa, M. (2012): Der Traum des Kelten. Hamburg: Suhrkamp; Erstveröff. „El seño del celta“, 2010

Ziegler, J. (2008): Der Hass auf den Westen, 2. A.. München. Bertelsmann

https://de.wikipedia.org/wiki/Charta_der_Grundrechte_der_Europ%C3%A4ischen_Union#Ziele,_Inhalt_und_Bindungswirkung_der_Charta

https://de.wikipedia.org/wiki/Thomas_Jefferson#Haltung_zur_Sklaverei

https://de.wikipedia.org/wiki/Kongokonferenz

https://web.archive.org/web/20081206184900/http://www.dreamtime.net.au/indigenous/family.cfm#bi

https://de.wikipedia.org/wiki/Patrice_Lumumba

https://www.britannica.com/story/how-did-patrice-lumumba-die

https://de.wikipedia.org/wiki/Disput_von_Valladolid

https://de.wikipedia.org/wiki/Potos%C3%AD

https://en.wikipedia.org/wiki/Stolen_Generations

Phylogenie und Ontogenie der Wasserleitungsbahnen bei Pflanzen

LINK-NAME LINK-NAME

Zusatzinformationen zum Basisartikel von UB 475 „Wasserhaushalt der Pflanzen“

Titelbild: Sonnenblume, Netztracheide längs, gekreuzte Polfilter (Foto W. Probst)

Die ursprünglichen Wasserleitungszellen der Pflanzen waren lang gestreckt, verhältnismäßig dünn und mit sehr schräg stehenden Querwänden versehen. Die stammesgeschichtliche Entwicklung brachte vor allem eine Erweiterung des Zellvolumens, oft bei gleichzeitiger Verkürzung der Zellen. Entscheidend für die phylogenetische Entwicklung der Xylemelemente war die Differenzierung der sekundären Wandstrukturen.

Während für die Wasserleitungselemente der Moose schon ein teilweiser Abbau der Querwände aber noch keine Lignineinlagerung und keine sekundären Wandversteifungen nachgewiesen sind, sind solche Tracheiden und Tracheen typisch für die Gefäßpflanzen (Tracheophyta).

Ring-  und Schraubentracheiden

Das Xylem der ausgestorbenen Urfarne (Psilophytopsida) bestand ausschließlich aus Tracheiden mit ring- oder schraubenförmigen Wandverdickungen. Da soche Wandversteifungen auch bei den heutigen Gefäßpflanzen in der Ontogenie meist zuerst angelegt werden, gelten sie als ursprünglich.

Treppentracheiden

Werden horizontal liegende Versteifungsringe durch vertikale Stege verbunden, so entstehen großlumigen Tüpfel. Bei der Treppentülpfelung liegen seitlich benachbarte Tüpfel stets auf gleicher Höhe. Je nach Anzahl der Vertikalbrücken unterscheidet man einreihige und mehreihige Treppentüpfel.

Netztracheiden

Netztüpfel kann man sich durch Anastomosen zwischen mehreren zum Teil gegenläufigen Schraubenversteifungen entstanden denken. Seitlich benachbarte Tüpfel scheinen hier in der Höhe gegeneinander versetzt. Eine unregelmäßige Anordnung der einzelnen Tüpfel gilt als ursprünglich, eine regelmäßige Anordnung in Längsreihen als abgeleitet.

Phylogenie und Ontogenie der Wasserleitunngsbahnen der Pflanzen

Behöfung der Tüpfel

Bereits Ringtracheiden zeigen eine Tendenz zur „Behöfung“: Die Verstärkungsleiste besteht aus einem Leistenfuß, dem der breitere Leistenkörper flanschartig aufgesetzt ist. Bei Treppen- und Netztüpfeln führt die überragende Sekundärwand dazu, dass ein Binnenraum über der Primärwand (Mittellamellen, Schließhaut) gebildet wird, der nur noch über relativ enge Poren mit dem Zellvolumen in Verbindung steht.

Mögliche pylogenetische Entwicklung von Hoftüpfeln aus Teppentracheiden
(Beide Abbildungen aus Probst, W. (1987): Biologie der Moos- und Farnpflanzen. 2. A., Heidelberg/Wiesbaden: Quelle und Meyer)

Tracheen und Tracheiden

Während man lang gestreckte Wasserleitungsgefäße mit Querwänden als Tracheiden bezeichnet, werden Gefäße mit aufgelösten Querwänden Tracheen genannt. Stammesgeschichte stellt man sich eine Entwicklung über Treppentracheiden vor, bei denen zunächst die Schließhaut, dann auch die Leitersprossen aufgelöst wurden.

Moore

LINK-NAME LINK-NAME

Der Schutz und die Wiederherstellung von Mooren gilt schon seit langem als wichtige Naturschutzaufgabe. Dabei ging es zunächst in erster Linie um die schützenswerten Lebensgemeinschaften mit ganz besonderen, in der übrigen Landschaft seltenen oder fehlenden Arten. Erst durch die hohe Aktualität der Klimakrise rückte die Bedeutung der Moore als Kohlenstoffspeicher in den Vordergrund. Aber auch ihre Bedeutung für den Wasserhaushalt und den Stickstoffkreislauf befördert aktuelle Moorschutzmaßnahmen.

Feuchtbiotope

Unter Feuchtbiotopen versteht man Lebensraumtypen, die über einen längeren Zeitraum des Jahres bis zur Landoberfläche mit Wasser gesättigt sind. Weiter gefasst werden auch Seen und Fließgewässer und von Salzwasser bestimmte Lebensräume wie das Wattenmeer mit einbezogen. Obwohl solche Feuchtgebiete nur etwa 6 % der Erdoberfläche einnehmen, erbringen sie rund ein Viertel der Nettoprimärproduktion. Sie haben eine besondere Bedeutung als Grundwasserfilter, für Überschwemmungsschutz, in vielen Fällen als Kohlenstoffsenke und als Rast- und Überwindungsplätze für Wasser- und Watvögel.

Man unterscheidet zum Beispiel Moore, Brüche, Auwälder, Riede und Sümpfe. Für die Einteilung ist wichtig, ob Torfbildung stattfindet oder nicht und wie die Wasserversorgung des Gebietes erfolgt. Auch das Vorhandensein oder Fehlen von Bäumen und anderen Gehölzen spielt für die Unterscheidung eine wichtige Rolle.

Abb. 1 Überblick über die verschiedenen Feuchtbiotope in Mitteleuropa

Moore als Kohlenstoffspeicher

Für die Kohlenstoffspeicherung von besonderer Bedeutung sind Moore. Sie entstehen auf wasserdurchtränkten Böden, in denen wegen des Sauerstoffmangels die anfallenden Pflanzenreste nur sehr langsam zersetzt werden. Da die Produktion von organischer Substanz rascher erfolgt als ihr Abbau, kommt es zur Ablagerung von Torf. Dabei ist „Moor“ ein geografischer bzw. botanischer, „Torf“ ein mineralogisch-petrografischer Begriff. Bodenkundlich ist Torf definiert durch seinen hohen Glühverlust (bei 550 °C):Torf: 100-75 %, anmooriger Boden: 74-15 %, Mineralboden: unter 15 %.

Wenn Torfschichten eine Mächtigkeit von über 30 cm haben werden diese Gebiete als Moore bezeichnet, unabhängig davon, ob dort noch eine neue Torfbildung stattfindet oder nicht. Bei einer geringeren Torfschicht oder einem geringeren Torfanteil im Boden spricht man von „Anmoor“. Der Überbegriff für beide ist „organische Böden“. Im Gegensatz dazu haben mineralische Böden einen geringeren organischen (Humus-)Anteil und einen höheren Anteil aus verwittertem Gestein.

Beim Abbau der organischen Substanz unterscheidet man:

Verwesung durch aerobe Mikroorganismen: Völliger Abbau zu Kohlenstoffdioxid und Wasser sowie anorganischen Mineralstoffen (Nitrate, Phosphate….).

Vermoderung: Unvollkommene Verwesung bei unzureichendem Sauerstoffzutritt.

Fäulnis: Vollzieht sich unter Sauerstoffabschluss; es bilden sich durch anaerobe Bakterien vor allem Methan und Schwefelwasserstoff, aber auch Ammoniak und Lachgas; Bildung von Faulschlamm, Mudde (Seesediment mit relativ hohem organischem Anteil).

Vertorfung beginnt bei behindertem Sauerstoffzutritt mit Vermoderung, später folgt unter Luftabschluss eine sehr langsame Fäulnis. Schnell zersetzen sich die Zellinhalte aus Proteinen, Zuckern und Stärke. Langsamer werden die Stoffe der Zellwände abgebaut, zuerst Pektine und Hemizellulosen, dann die Zellulose zuletzt der Holzstoff Lignin. Sehr schwer zersetzen sich außerdem Fette, Harze,Wachse, Kutin und Sporopollenin. Pollenkörner und Sporen bleiben in Torf deshalb sehr gut erhalten. Durch ihre Funde in gut datierbaren Torfschichten kann man deshalb auf die Vegetation früherer Zeiten schließen (Pollendiagramme).

Abb. 2 Torfbildung

Für die Eigenschaften des Torfes (Struktur, Anteil an Mineralstoffen, Huminstoffen, pH-Wert, Wassergehalt) ist die Pflanzengemeinschaft wichtig, aus deren Ablagerungen er entstanden ist. Immer handelt es sich dabei um Pflanzengemeinschaften feuchter Standorte.

Abb. 3 Torfbildung von unterschiedlichen Pflazengemeinschaften (verändert nach Overbeck 1975)

Die Anhäufung von organischem Material in aktiven Mooren ist standortabhängig. Aus Messungen ergibt sich ein Torfwachstum von 1± 0,8mm im Jahr. Die großen Unterschiede kommen durch die unterschiedliche torfbildende Vegetation und die klimatischen Bedingungen zustande.

In jedem Fall wird der Atmosphäre solange Kohlenstoff entzogen, solange mehr Torf gebildet als abgebaut wird. Moore gelten daher als Kohlenstoffsenken. Für die langfristige Kohlenstoffakkumulation unterschiedlicher Torfarten hat man Werte zwischen 0,15 und 1,3  t C ha-1 a-1 ermittelt (Tepel 2007/08). Das unterscheidet Moore von Wäldern, deren Senkenwirkung mit dem Erreichen des Klimaxstadiums beendet ist, da sich dann Einlagerung und Abgabe die Waage halten. Aber auch  trockengelegte, kultivierte oder anderweitig genutzte Moore können von Kohlenstoffsenken zu Kohlenstoffquellen werden, da ihr Kohlenstoffspeicher durch aerobe oder anaerobe Zersetzungsvorgänge abgebaut wird. Bei aerobem Abbau wird Kohlenstoffdioxid, bei anaerobem Methan freigesetzt. In ausgetrockneten Mooren wird dies in den oberen Schichten jedoch schnell zu CO2 oxidiert (Abb. 4). Durch Vernässung kann die Torfbildung wieder in Gang gebracht und damit die Wirkung als Kohlenstoffsenke wiederhergestellt werden.

Abb.4  Moore als Kohlenstoffsenken und -quellen

Etwa 3 % der Landfläche der Erde sind von Mooren oder Anmooren bedeckt. Das entspricht einer Fläche von 4 Millionen km². Die größten Moorflächen finden sich in Kanada, Alaska, Nordeuropa und Sibirien, aber auch in tropischen Waldgebieten von Südostasien, im Amazonasbecken und im Kongo-Regenwald wurden große Torfflächen nachgewiesen (Page/Rieley/Wüst 2006, Dargie et al. 2017). In Mitteleuropa sind ursprünglich etwa 5 % der Landfläche von Mooren bedeckt. Sie sind alle nach der Eiszeit beginnend vor etwa 15.000 Jahren entstanden und zwar in den von Gletschern überformten Gebieten Norddeutschlands und am Alpenrand. Einige Moore gibt es auch in den Mittelgebirgsräumen, beispielsweise im Hohen Venn und im Schwarzwald.

Tab.1 Aufteilung der Landfläche auf der Erde (2019) (nach Jäger 2020)

 Fläche in106 km2Anteil an der Landfläche in %
gesamte Landfläche149 
landwirtschaftlich genutzte Fläche5134
Wälder3926
Gletscher, Wüsten u.Ä.4329
Busch128
Siedlungen1,51
Seen, Flüsse1,51
  in den genannten Flächen enthalten:  
Moore und Anmoore (organische Böden).ca.43
Tab.1 Aufteilung der Landfläche auf der Erde (2019) (nach Jäger 2020)

Global ist die Menge an organisch gebundenen Kohlenstoff in den Böden ungefähr dreimal so groß wie die Kohlenstoffmenge in allen Lebewesen zusammen und doppelt so groß wie der Kohlenstoffgehalt der Atmosphäre.

SystemKohlenstoffvorrat (in Gt)
Böden insgesamt1500
Moorbödenca.500
Landpflanzen560
Atmosphäre750
Ozeane38.000
Marines Plankton3
Tab. 2 Kohlenstoffvorräte in Gigatonnen für unterschiedliche Systemkompartimente des Kohlenstoffkreislaufs (nach Trepel 2007/08). Dank des mittlerweile (2022) auf 416 Vol ppm angestiegenen CO2-Gehalts der Atmosphär beträgt der Kohlenstoffvorrat derzeit ca. 850 Gt.

Nach einer Datenauswertung von Yu et al. von 2010 zeigt sich, dass die Kohlenstoffspeicherung nach der letzten Kaltzeit in den Mooren der Nordhemisphäre am höchsten war, wobei höchste Akkumulation im frühen Holozän lag. Deutlich weniger Kohlenstoff wurde in tropischen Moorgebieten vor allem vor 4000-8000 Jahren akkumuliert, während die Moore der Südhemisphäre – vor allem in Patagonien gelegen – vor allem während einer  Wärmeperiode vor 15-20.000 Jahren Torfschichten aufgebaut haben

RegionFläche (km2)C-Speicher(Gt)durchschnittliche C-Speicherung
(gCm-2a-1) seit der letzten Vereisung
Nordhemisphäre4 000 000547 (473-621)18,6
Tropen368 00050(44-55).12,8
Südhemisphäre45 00015 (13-18)22,0
Tab. 3 Überblick über die Moorflächen der Erde und ihre Kohlenstoffspeicherung (nach Yu et al. 2010)
 Fläche in haGespeicherte Kohlenstoff in G t
Organische Böden in der EU31 000 00017
Organische Böden in Deutschland1 823 922mindestens 1,3
Tab. 4 Organische Böden in Europa und ihre Kohlenstoffspeicherung (nach Jäger 2020)

Für die Klimaerwärmung spielt vor allem die Vernichtung von Kohlenstoffvorräten in den Moorböden weltweit eine wichtige Rolle. Torfbrände in Südostasien haben zum Beispiel in den letzten Jahrzehnten den stärksten Anstieg der CO2-Emissionen in der Atmosphäre bewirkt (Page et al 2002, Rieley et al. 2006). In Deutschland spielt vor allem die landwirtschaftliche Nutzung von Moorböden eine entscheidende Rolle für die Freisetzung von Kohlenstoffdioxid.

Bereiche in Mt CO2– Äquivalente pro Jahr
aus allen Bereichen in Deutschlandca. 900
aus Landwirtschaft (ohne die Herstellung synthetischer Düngemittel)103,5
aus organischen Böden, die als Acker und Grünland genutzt werden38
Tab. 5 Treibhausgasemissionen in Deutschland (nach Jäger 2020)

Moortypen und ihre Entstehung

Je nach Umweltbedingungen entstehen unterschiedliche Moortypen. Sie unterscheiden sich vor allem darin, woher das Wasser kommt, welche Salze im Wasser gelöst sind und welche Pflanzenarten deshalb dort gedeihen können. So werden die regenwasserabhängigen Hochmoore oder Regenmoore den Niedermooren gegenübergestellt, die ihren Wasservorrat aus dem Grundwasser oder aus Oberflächengewässern erhalten. Regenwasser ist sehr mineralstoffarm. Der Mineralstoffgehalt der Gewässer, die Niedermoore speisen, kann sehr unterschiedlich sein. Nach der Herkunft des Wassers kann man sehr verschiedene Niedermoortypen unterscheiden.

Niedermoore (Wasserversorgung durch Oberflächenabfluss und Grundwasser)

  • Verlandungsmoore
  • Versumpfungsmoore
  • Überrieselungsmoore, Durchströmungsmoore
  • Quellmoore
  • Flussüberflutungsmoore

Niedermoore können je nach Nährmineralien und Kalkgehalt zahlreiche seltene Pflanzenarten beherbergen, zum Beispiel Seggen-Arten und Orchideen.

Hochmoore (Wasserversorgung nur durch die Niederschläge)

  • allmählich aus mineralstoffarmem Niedermoor (über Verlandung oder Versumpfung)
  • direkt (Wurzelechtes Hochmoor) auf feuchtem, nährmineralarmen Böden
Abb. 5 Moortypen

Hochmoore

Aufbau und Hochmoortypen

Abb. 6 Aufbau eines mitteleuropäischen Hochmoors

Das Aussehen und der Aufbau der Regenmoore verändert sich von dem sehr atlantischen Klima des äußersten Westeuropas zum kontinentalen Klima Osteuropas. Die Deckenmoore Schottlands und Irlands haben sich aus ursprünglich bewaldeten Gebieten durch menschlichen Einfluss, insbesondere durch Beweidung, an waldfreien Standorten entwickeln können.

Abb. 7 Aussehen der Regenmoore in unterschiedlichen Klimabereichen Europas

Nach Norden schließt an die Zone der echten Hochmoore die Zone der Aapamoore an. Sie sind im kalt gemäßigten Klima zirkumpolar verbreitet und bestehen aus hangparallel verlaufenden Wällen und Senken. Die Wälle haben Hochmoorcharakter (ombrotroph), die Senken Niedermoorcharakter (minerotroph). Noch weiter nach Norden, nördlich der Baumgrenze, folgt die Zone der Palsenmoore, deren hügelartige Strukturen an mehrjähriges Bodeneis gebunden sind. Noch weiter nach Norden folgen auf durchgehend gefrorenen Permafrostböden Polygonmoore, deren polygonartige Strukturen durch Frosttrockniss entstanden sind, als nach einer längeren Feuchtperiode im Atlantikum (7270-3710 v. Chr.) das Klima kälter wurde. Dieser Moortyp ist typisch für Nordostsibirien und er ist besonders vom Klimawandel bedroht (POLYGON, Uni Greifswald 2011-2014).

Abb.8 Nördliche Moore

Torfmoose und Hochmoorwachstum

Voraussetzung für die Hochmoorbildung ist die Ansiedlung von Torfmoosen (Gattung Sphagnum).Torfmoose können aufgrund ihres anatomischen Baus das 20 bis 30 fache ihres Trockengewichtes an Wasser aufnehmen und speichern. Außerdem gestattet ihnen ein besonderer Ionenaustauschmechanismus selbst aus extrem nährmineralarmen Wasser die wenigen enthaltenen Kationen im Austausch gegen H+– Ionen herauszufangen. Dies bewirkt eine sehr starke Ansäuerung des Wassers (bis zu pH 3 (Dierßen u. Dierßen 2008) und damit eine weitgehende Ausschaltung von Konkurrenten. Als  Ionenaustauscher wirken dabei vor allem bestimmte Substanzen in der Zellwand. Ob die so herausgefangenen Ionen tatsächlich der Mineralstoffzufuhr der Sphagnum-Pflanze dienen, ist allerdings fraglich.. Möglicherweise ist entscheidend, dass auf diese Weise für die Sphagnumzellen giftige Calcium- und Aluminiumionen aus dem aufsteigenden Wasser entfernt werden.

Abb. 9 Morphologie der Torfmoose (Sphagum magellanicum)

Abb. 10 Räumliche Darstellung eines Sphagnum-Blättchens mit toten Hyalocyten ( Wasserspeicherzellen) und lebenden Chlorocyten

Die Torfmoospolster und – decken wachsen immer höher über den Grundwasserspiegel hinaus und in dem abgestorbenen Moostorf hält sich das Regenwasser wie in einem Schwamm. So können bis zu 5 m über das Relief emporgewölbte Torfschilde entstehen, aus denen am Rand ständig  saures, nährsalzarmes Wasser abfließt und sich über das Randgehänge in dem sogenannten Randsumpf („Lagg“) ansammelt. Dieser Randsumpf ist dadurch etwas mineralstoffreicher als die Moorhochfläche.

Dabei wächst die Torfmoosdecke nicht gleichmäßig in die Höhe. Man unterscheidet zwischen höheren Bulten und tieferen Schlenken. In den Schlenken ist der Zuwachs am stärksten, dadurch werden aus Schlenken mit der Zeit Bulte und umgekehrt.

Abb. 11 Bult-Schenken-Komplex (Abbildung aus Probst, W. 1978)

In vielen Veröffentlichungen wird angegeben, dass das Torfwachstum in Mitteleuropa etwa 10 cm pro 100 Jahre beträgt. Die größten Torfmächtigkeiten, die man erbohrt hat, liegen um 10 m. Dies würde einer Entstehung unmittelbar nach dem Ende der Eiszeit entsprechen. Allerdings sind die Wachstumsraten – wie schon oben ausgeführt – stark von den jeweiligen Umweltbedingungen abhängig. Außerdem kann man davon ausgehen, dass sich das Hochmoorwachstum mit zunehmender Höhe verlangsamt, da sich der schwerkraftbedingte Wasserabfluss verstärkt und außerdem Zersetzungsvorgänge in den tieferen Schichten und zunehmender Druck der darüberliegenden Schichten zu einem Zusammensacken führen.

In dem obersten halben Meter eines Hochmoores lässt sich ein Torfbildungshorizont (Akrotelm, von lat. telma = Moor) von einem Torfablagerungshorizont (Katotelm) unterscheiden. In einer obersten etwa 2-5 cm dicken Schicht des Akrotelms sind die Torfmoose photosynthetisch aktiv (euphotische Zone). An der Untergrenze dieser Schicht beträgt die Lichtintensität noch etwa 1 % des Oberflächenwertes. In der anschließenden aphotischen Zone, einer 10-50 cm dicken Schicht, sind die Torfmoose weitgehend abgestorben.  Sie ist noch von lebenden Wurzeln der Gefäßpflanzen durchzogen. Abgestorbene Pflanzenteile werden von Bakterien und vor allem von Pilzen aerob abgebaut. Der Stickstoffgehalt ist hier noch niedriger als in der Oberflächenschicht (C/N bis 75 gegenüber C/N  50 in der Wachstumszone der Torfmoose, Dierßen und Dierßen 2008).

Unterhalb der aphotischen, noch sauerstoffhaltigen Zone folgt das Katotelm, beginnend mit einer Verdichtungszone von  2-15 cm Mächtigkeit. Die Pflanzenreste sind hier schon stärker zersetzt und werden durch das aufliegende Gewicht verdichtet. Darunter folgt ein mehr oder weniger ausgedehntes Torflager. Wegen der starken Verdichtung ist es nur wenig wasserdurchlässig. Der im Wasser enthaltene Sauerstoff ist deshalb schnell verbraucht und die weiteren Zersetzungsvorgänge werden nun von Anaerobiern übernommen, wobei vor allem Methan gebildet wird .

Abb. 12 Hochmoorschichtung
Abb. 13 Sumpf-Torfmoos (Sphagnum palustre). Der Übergang von der euphotischen in die aphotische ist gut an der Farbänderung zu erkennen.

Aus der weiteren Schichtenfolge lässt sich die Entstehungsgeschichte des Moores ableiten. In der Abbildung ist die Schichtenfolge in einem Verlandungs-Hochmoor dargestellt.

Abb. 14 Schichtenfolge in einem Verlandungs-Hochmoor

Das Torfmoos-Mikrobiom und mögliche symbiotische Beziehungen

Die Erforschung des Mikrobioms der Sphagnumpflanzen ist noch in ihren Anfängen und erst durch neueste Möglichkeiten der Genomsequenzierung (next generation sequencing) wurden Fortschritte erzielt. Zunächst ging es um den Nachweis der verschiedenen beteiligten Mikrobionten. In den Sphagnumpflanzen befinden sie sich vor allem in den wasserspeichernden Hyalocyten, in den lebenden Chlorocyten konnten nur wenige Bakterien nachgewiesen werden. Man kann die Hyalocyten geradezu als kleine Kulturgefäße für Mikroben ansehen, von denen die Moose profitieren. Wie Untersuchungen an lebenden Sphagnumköpfchen zeigten, enthalten sie vor allem Proteobakterien und Acidobakterien. Cyanobakterien und Archäen spielen kaum eine Rolle (Kostka et al. 2016).

Untersuchungen zur Funktion des Mikrobioms ergaben eine besondere Bedeutung  methanotropher Proteobakterien, die gleichzeitig azidotroph sind, also N2 assimilieren. Dies könnte erklären, warum die Stickstoffspeicherung in Sphagnummooren in Gebieten mit sehr geringen Konzentrationen von Stickstoffverbindungen in der Luft deutlich höher ist als der daraus zu erwartende Stickstoffgehalt. Das „Futter“ für die methanotrophen Bakterien liefert das in tieferen Moorschichten von methanogenen Bakterien und Archäen produzierte Methan. Der Sauerstoff wird auch von den Photosynthese betreibenden Sphagnumköpfchen bereitgestellt. Möglicherweise könnten die Bakterien auch von den Torfmoos-Chlorocyten abgegebenen Kohlenhydraten profitieren. Durch Isotopmarkierung konnte nachgewiesen werden, dass sich der Luftstickstoff tatsächlich in Proteinverbindungen der Sphagnen wieder finden lässt (Vile et al. 2014). Dorthin könnte er durch direkte Abgabe von Stickstoffverbindungen (zum Beispiel Ammonium) durch die methanotrophen Bakterien oder über die Freisetzung von Stickstoffverbindungen aus abgestorbenen Bakterien gelangt sein. Auch Konsumenten der Bakterien könnten die Sphagnen über ihre Ausscheidungen düngen. Die Hinweise verdichten sich, dass es sich bei diesen Stoffwechselbeziehungen um eine echte Symbiose handelt, vergleichbar mit Knöllchenbakterien und Leguminosen.

Abb.15 Mögliche Stoffumsätze in der obersten Torfmoosschicht. Zwischen Sphagnen und methanotrophen Proteobakterien besteht eine symbiotische Beziehung.
Abb. 16 Beziehungen zwischen Sphagnum und methanotrophen Proteobakterien

Es wäre denkbar, dass ein erhöhter Eintrag von Stickstoffverbindungen aus der Luft zu einer Verringerung der N2 Assimilation führen würde. Dies könnte wiederum die Methanabgabe der Moore beeinflussen (erhöhen) (Vile et al. 2014).

Pflanzen und Tiere

Auf wachsenden Hochmoorflächen kommen nur wenige Gefäßpflanzenarten vor. Neben dem Scheidigen Wollgras (Eriophorum vaginatum, vgl. Titelbild) sind dies die Heidekrautgewächse Moosbeere (Vaccinium oxycoccus) und Rosmarinheide (Andromeda polyfolia) sowie der insektenfressende Rundblättrige Sonnentau (Drosera rotundifolia). An trockeneren Bereichen können sich als weitere Heidekrautgewächse Gewöhnliche Glockenheide (Erica vulgaris) und Besenheide (Calluna vulgaris) ansiedeln, im Randbereich auch Heidelbeeren (Vaccinium myrtyllus), Preiselbeeren (Vaccinium vitis-idaea) und Rauschbeeren (Vacciinium uliginosum), in von atlantischem Klima geprägten Bereichen Norddeutschlands auch der Gagelstrauch (Myrica gale) und die Krähenbeere (Empetrum nigrum), in Bereichen mit etwas kontinentalerem Klima Nordostdeutschlands der in Deutschland sehr selten gewordene Sumpf-Porst (Rhododendron tomentosum, Syn.:Ledum palustre). Weitere Hochmoorpflanzen sind In feuchteren Bereichen das Weiße Schnabelried (Rhynchospoa alba), Schmalblättriges Wollgras (Eriophorum angustifolium) und weitere Zypergrasgewächse.

Abb. 17 Beispiele für Gefäßpflanzen des Hochmoors

Auch die Fauna der Hochmoore besteht vorwiegend aus Spezialisten. Für Fische ist das Wasser zu sauer, wegen des Calciummangels fehlen Schnecken, Muscheln und Krebse. Typische Hochmoor-Insekten sind zum Beispiel die Hochmoor-Mosaikjungfer (Aeschna subarctica) und der Hochmoor-Perlmutterfalter (Boloria aquilonaris), dessen Raupe sich von Moosbeeren ernährt. Unter den Wirbeltieren sind vor allem der Moorfrosch und die Kreuzotter – oft in ihrer schwarzen Variante – zu nennen Regelmäßig in Hochmooren anzutreffende Vögel sind zum Beispiel Großer Brachvogel, Goldregenpfeifer, Kranich, Birkhuhn, Sumpfohreule, Krick – und Knäkente.

Tropische Moore

Torfbildung findet vor allem in kühleren Klimaregionen statt, wo der Abbau organischer Substanz insgesamt langsamer verläuft. Aber es gibt auch Torfgebiete unter tropischen Sumpfwäldern, zum Beispiel im Amazonasgebiet, im Kongobecken und in Indonesien. Voraussetzung sind hohe Niederschläge – deutlich über 2000mm im Jahr – welche die Evaporation übersteigen.

Die großen Torflagerstätten in der zentralen Senke des Kongobeckens, der sogenannten Cuvette Centrale, wurden erst vor wenigen Jahren entdeckt und vermessen. Die Torfschichten sind zwischen 2,4 und 5,9 m dick (Dargie et al. 2022). Die Wissenschaftler stellten fest, dass die Torflager immer unter bestimmten Waldgesellschaften auftreten, deren Ausdehnung sie mithilfe von Satellitenbildern auf 145.000 km² berechnen konnten. Das sind knapp 10 % des gesamten Kongobeckens. Nach Berechnungen der Forscher könnten in diesem Torflager 30,6 Milliarden t Kohlenstoff gespeichert sein.

Die Fläche der Moorgebiete in Südostasien wird auf 230.000 km² geschätzt (Page, Riley, Wüst 2006). Sie sind stark bedroht durch Brandrodung und Umwandlung in Agrarflächen. In unberührten Zustand haben diese Moore einen niedrigen pH-Wert (3-4) und niedrige Nährmineraliengehalte. Der Gehalt an organischem Kohlenstoff übertrifft 50 %, während der Stickstoffgehalt bei 2 % liegt. Im Gegensatz zu nördlichen Hochmooren ist der Ligningehalt des Torfes hoch und der Zellulosegehalt relativ niedrig. Dies hängt damit zusammen, dass die Vegetation dieser tropischen Moore vor allem aus Gehölzen besteht. Ihre Kohlenstoffspeicherung wird auf 50-70 Gigatonnen geschätzt, der jährliche Zuwachs ist unter günstigen Bedingungen drei bis viermal so hoch wie bei nördlichen Regenwassermooren.

Mensch und Moor

Brennstoff

. In Irland, Finnland und Schweden gibt es bis heute Stromkraftwerke, die mit Torf betrieben werden. Früher wurden die in Ziegelform gebrachten Torfbriketts an der Luft getrocknet, bevor sie als Brennmaterial genutzt werden konnten. In manchen Mooren wurden die Flächen kleinparzellig aufgeteilt, und die einzelnen Parzellen wurden von unterschiedlichen Landwirten zur Brennstoffgewinnung genutzt. Aus den kleinen Torfstichen solcher Moore ist – bei mäßiger Entwässerung – eine Regeneration möglich.

Abb. 18 Besitzverhältnisse im Jardelunder Moor bei Flensburg (Katasterplankarte 1:5000, Stand 1978)

Braunkohle und Steinkohle sind fossile Torfe.

Gartenbau

Heute dient der Torfabbau vor allem der Gewinnung von Pflanzensubstrat in der Gärtnerei, für Presstöpfe zur Sämlingsanzucht und für Wurzelballen der meisten im Handel angebotenen Pflanzen, sowie für die meisten käuflichen Blumenerden. Im Gegensatz zum Brennmaterial ist zu diesem Zweck Weißtorf besonders gut geeignet. Es handelt sich um ein sehr einheitliches Substrat mit ausgezeichneter Wasseraufnahmefähigkeit und der Fähigkeit zur Mineralstoffspeicherung. Sein niedriger pH-Wert kann durch Kalkung bis über den Neutralpunkt hinaus verändert werden. So können mit diesem Grundsubstrat sehr unterschiedliche Pflanzsubstrate hergestellt werden.

2018 wurden in Deutschland etwa 3,7 Millionen m³ Torf abgebaut – von 2002-2009 waren es nach Auskunft der Bundesregierung noch durchschnittlich 8,2 Millionen m³ pro Jahr – und rund 4,1 Millionen m³ importiert, vor allem aus dem Baltikum. Allerdings wurden in Deutschland seit den 1980er Jahren keine intakten Moore mehr für den Abbau freigegeben, sondern nur noch  Gebiete, die vorher landwirtschaftlich genutzt wurden. Die zu entnehmenden Torfmengen werden genau vorgegeben und es besteht eine Renaturierungspflicht für die Abbauer (Bundesinformationszentrum Landwirtschaft 2020). Alte Abbauverträge sind davon allerdings nicht berührt (s.u. Reichermoos) .

Ein völliger Verzicht von Torf im Erwerbsgartenbau wäre prinzipiell möglich aber sehr aufwendig, denn alle Ersatzsubstrate haben keine so guten und einheitlichen Eigenschaften wie Hochmoortorf. Infrage kommen Grünkompost, Rindenhumus Holzfasern. Kokosfasern, Blähton oder Perlit (Amberger-Ochsenbauer, Meinken 2020).

Medizin

Für Medizin und Körperpflege spielen Moorbäder und Moor-(Fango) packungen (von lat. fango = Schlamm, Schlick) eine wichtige Rolle. Der dickflüssige Brei aus Schwarztorf wird mit Temperaturen von 38-40° verwendet. Neben der Wärme sollen vor allem die im Torf enthaltenen Huminsäuren nicht nur die Haut weich machen und die Durchblutung fördern, sondern auch eine günstige Wirkung auf das endokrine System ausüben.

Abtorfung im Reichermoos bei Vogt, Kreis Ravensburg. Für die Heilbäder in Bad Wurzach, Bad Waldsee, und Bad Buchau soll dieser Torf nach der Regionalplanung von 2021bis zum Jahr 2070 sich abgebaut werden. 1970 verpachtete das Land Baden-Württemberg den Torfabbau im Reicher Moos. Die Pächter fräßen der Torf mit riesigen Maschinen ab. Dagegen wendet sich eine Bürgerinitiative. (Foto W. Probst, 5.7.1983)

Filtermaterial

In der Aquaristik und in der Teichwirtschaft wird Torf als Filtermaterial zur Herabsetzung des pH-Wertes und der Carbonathärte verwendet. Außerdem sollen die Fulvosäuren im Schwarztorf die Schleimhäute der Fische vor bakteriellen Infektionen schützen. Durch Torffilterung kann man das Aquarienwasser den Verhältnissen in tropischen Schwarzwasserflüssen annähern, aus denen viele Zierfische stammen. Als natürlicher Ionenaustauscher kommt Torf auch in der chemischen Industrie zum Einsatz. Aus Torf lässt sich auch Aktivkohle zur Filterung herstellen, die vor allem in Chemielabors zum Einsatz kommt.

Weitere Nutzungen

Torffasern eignet sich zur Herstellung von Isolationsmaterial, sie lassen sich zu leichten und warmen Textilien und Unterlagen verarbeiten. Bis heute dienen Torffasern als natürlicher Füllstoff für Matratzen, Bettdecken und Kissen.

Vor allem im Pferdeställen wurde Torf als Einstreu genutzt.

 Moorkultivierung

Die großen Moorflächen vor allem in Norddeutschland aber auch im süddeutschen Alpenvorland waren lange Zeit landwirtschaftlich nicht zu nutzen. Um die Ernährung der wachsenden Bevölkerung sicherzustellen, wurden deshalb immer wieder Versuche unternommen solche Moorflächen für die landwirtschaftliche Produktion nutzbar zu machen.

Die sogenannte Fehnkultur (von niederländisch Veen = Moor) wurde in den Niederlanden entwickelt aber schon im 17. Jahrhundert auch in Nordwestdeutschland angewandt. Dabei wurden zunächst tiefe Entwässerungskanäle angelegt, durch die der gestochene Torf mit Schiffen abtransportiert werden konnte. Auf dem Rückweg wurde von den Schiffen dann Schlick mitgebracht und vor allem mit dem Weißtorf vermischt. Beidseitig der Kanäle entstanden nach und nach typische Fehnsiedlungen.

 Vor allem Im Laufe des 18. und 19. Jahrhunderts wurden in Deutschland verschiedene weitere Arten der Moorkultivierug entwickelt. Dabei spielten Entwässerung, Abtorfen, Brennen, Tiefpflügen zur Vermischung mit dem mineralischen Untergrund und Kalkdüngung eine wichtige Rolle. Oft wurde die schwierige Bearbeitung der Torfböden durch neue Siedler geleistet, die aus ihrer Heimat durch Not oder Verfolgung vertrieben worden waren.

Alle Kultivierungsmaßnahmen führten dazu, dass die Torfneubildung und -ablagerung gestoppt wurde und dadurch aus der Kohlenstoffsenke durch anaeroben Abbau der Torfschichten eine Kohlenstoffquelle wurde.

Paludikultur

Eine neue Form der Moornutzung ist die „Paludikultur„. Kulturpflanzen sind hier die Torfmoose, die großflächig unter Hochmoorbedingungen kultiviert werden. Die Torfmoosernte soll den Torfabbau ersetzen. Dadurch wird die Kohlenstofffreisetzung der üblichen Moorkultivierung verhindert und eine ökonomisch tragbare Alternative aufgezeigt. Nasskulturen können außer auf Hochmoorstandorten auch auf Nieder- und Zwischenmooren und anderen kohlenstoffspeichernden Feuchtgebieten entwickelt werden. Die produzierte Biomasse aus Schilf, Binsen, Sauergräsern und anderen Feuchtpflanzen könnte als Material für unterschiedliche Baustoffe verwendet werden (Wichtmann, Schröder, Joosten, 2016).

Möglichkeiten des Moorschutzes

Nach Dierßen und Dierßen (2008) gibt es im Prinzip drei Möglichkeiten des Schutzes:

  1. Bewahren eines derzeitigen Zustandes bzw. zulassen einer natürlichen Sukzession ohne Eingriffe
  2. Pflegen eines aktuellen wünschenswerten Zustandes
  3. Entwickeln eines Zustandes, der den jetzigen Zustand verbessert, durch geplante Pflege und Steuerungseingriffe (Restitution)

Die erste Vorgehensweise bietet sich an, wenn der derzeitigen Zustand sehr gut ist und sich durch Eingriffe kaum verbessern lässt oder wenn man erwarten kann, dass eine natürliche Sukzession zu einem wünschenswerten Zustand führt. Ein intaktes Hochmoor mit funktionierendem Bult-Schlenken-Komplex sollte vor Eingriffen abgeschirmt werden. Aber auch ein teilweise abgetorftes Hochmoor, bei dem sich in Torfstichen gute Sukzessionen mit Torfmoosen entwickeln, kann man am besten sich selber überlassen.

In vielen Fällen kann man erkennen, dass ein derzeitiger guter Zustand dabei ist, sich zu verschlechtern. So können noch vorhandene Bult-Schlenken-Komplexe bei zunehmender Austrocknung immer stärker von Besenheide besiedelt werden und ihr Wachstum einstellen. In diesem Fall könnten Maßnahmen gegen die Entwässerung und Austrocknung den besseren Zustand erhalten. Auch das starke Aufkommen von Baumwuchs, vor allem von Birken, ebenfalls im Zusammenhang mit Austrocknung aber auch mit Nährmineraleintrag, kann durch Entfernen des Birkenaufwuchses gebremst werden. In jedem Fall ist bei allen Maßnahmen eine gründliche Analyse der Wirkungszusammenhänge Voraussetzung für einen Erfolg.

Besonders schwierig ist die Restitution, im Hinblick auf Hochmoore also die Entwicklung relativ nährmineralreicher und von menschlichen Aktivitäten stark beeinflusster Flächen zurück zu nährmineralarmen, vom Regenwasser abhängigen Torfmoosflächen. Dies liegt vor allem daran, dass sich in der von Landwirtschaft, Siedlungen und Verkehr geprägten mitteleuropäischen Kulturlandschaft Düngemitteleintrag und Entwässerung kaum vermeiden lassen.

Abb. 19 Wiedervernässte Fläche im Wurzacher Ried

Moore im Biologieunterricht

Mögliche Unterrichtsthemen

Vom Gletschersee zum Hochmoor – ein Beispiel für nacheiszeitliche Landschaftsentwicklung

Für einige mitteleuropäische Moore ist die Entwicklung vom Eisstausee am Ende der letzten Kaltzeit bis zum Hochmoor gut dokumentiert. Diese zeitliche Entwicklung lässt sich bei einer Reise in den Untergrund nachvollziehen.

Abb. 20 Mit den verschiedenen Sedimentschichten eines Moores kann man in die Vergangenheit reisen

Speicher, Senken, Quellen? – Wie Moore sich auf die Treibhausgase der Atmosphäre auswirken  

Der aus wenig zersetzen pflanzlichen Abfallstoffen bestehende Torf ist ein Kohlenstoffspeicher. Aber ob solche in Mooren gebundene Torfschichten Senken oder Quellen für Treibhausgase sind, hängt von den aktuellen Bedingungen ab. Für den Schutz und die Restitution von Mooren sind die Kenntnisse dieser Zusammenhänge eine wichtige Voraussetzung.

Vom Moos zur Landschaft – Morphologie und Physiologie der Torfmoose als Voraussetzung für die Hochmoorbildung erkennen

Die mikroskopische Untersuchung von Torfmoosen lässt erkennen, welche morphologischen Voraussetzungen ihrer ausgezeichneten Wasserspeicherfähigkeit zugrunde liegen. Wasserspeicherung, kapillare Wasserleitung und durch Torfmoose bedingte Veränderung des Elektrolytgehalts lassen sich experimentell untersuchen. Aus den Ergebnissen erklärt sich die Bedeutung der Torfmoose für die Hochmoorbildung.

Abb. 21 Mikroskopische Untersuchungen an Torfmoosen lassen die morphologischen Grundlagen ihrer Wasserspeicherfähigkeit erkennen (aus Probst 1987)
Abb. 22 Wasserspeicherfähigkeit von Torfmoosen (aus Probst 1987)

Die Ionenaustauschfähigkeit von Torfmoosen kann man nachweisen, indem man die Moose Wasser mit Elektrolytgehalt aussetzt. Das zu prüfende Moospolster – etwa zwei Hand voll – wird in einem Küchensieb mehrfach mit destilliertem Wasser ausgespült und ausgedrückt, dann werden vier gewichtsgleiche Teil des Polsters zu etwa 100 g, feucht, in 3 Bechergläser mit je 200 ml unterschiedlicher Salzlösungen und einem Becherglas mit 200ml destilliertem Wasser verteilt (wie in Abb. 21 dargestellt). In jedem Ansatz wird nach 10, 20 und 40 Minuten der pH-Wert bestimmt. Die Blindprobe mit destilliertem Wasser zeigt keine Veränderung des pH-Wertes, die Probe mit der 0,01 N Calciumschloridlösung zeigt die stärkste Ansäuerung, da die Ansäuerung in gewissen Grenzen der Menge der angebotenen Kationen proportional ist und dass durch zweiwertige Calciumionen mehr H+-Ionen freigesetzt werden können als durch einwertige Kaliumionen.

Abb. 23 Versuch zur Ionenaustauschfähigkeit von Torfmoosen (aus Probst 1987)

Torfmooskultur – eine Alternative zum Torfabbau?

Zur Jahrtausendwende wurden jährlich 25 Millionen m³ Torf im Gartenbau genutzt; die auf einer Fläche von 800 km² gewonnen wurden. Wäre die gezielte Kultur und Ernte von Torfmoosen eine umweltfreundliche Alternative? Wenn man annimmt, dass damit 2500 kg Torfmoos -Trockenmasse pro Hektar und Jahr gewonnen werden könnten, würde hierzu eine Fläche von 15.000 km² benötigt, die so nicht zur Verfügung steht. Könnte die Paludikultur trotzdem ein sinnvoller und klimaschonender Zweig der Landwirtschaft werden?

Moosbeeren und Sonnentau – Nischenbildung am Extremstandort Hochmoor

Für Gefäßpflanzen sind Hochmoore ein sehr extremer Standort. Nur wenigen Arten ist es gelungen, eine ökologische Nische aufzubauen, die zu diesen Biotop passt. Der insektenfressende Rundblätterige Sonnentau und die Gewöhnliche Moosbeere, ein immergrüner, niederliegend fadenförmige wachsender Zwergstrauch, sind Beispiele für unterschiedliche Nischenbildung am selben Standort.

Schmetterlinge im Hochmoor: Hochmoor-Perlmutterfalter, Hochmoor-Gelbling und Hochmoor-Bläuling

Die drei Schmetterlingsarten sind eng an Hochmoore gebunden. Wie andere Arten gelten sie als Eiszeitrelikte, die nach der Erwärmung in den Hochmooren eine letzte Zuflucht gefunden haben. Die Raupe des Hochmoor-Perlmutterfalters ernährt sich nur von den Blättern der Moosbeere, während die beiden anderen Arten auch Heidelbeeren, Preiselbeeren und Rauschbeeren als Futterpflanzen annehmen. Die Falter sind auf nektarreiche Blüten der umgebenden Vegetation angewiesen. Die Ursachen für die Gefährdung dieser Arten werden analysiert.

https://niedersachsen.nabu.de/tiere-und-pflanzen/insekten/schmetterlinge/hochmoorperlmutterfalter/index.html

Moore als Archive der Natur- und Kulturgeschichte

Moore besitzen besondere konservierende Eigenschaften, die vor allem dem Sauerstoffmangel und dem niedrigen pH-Wert zu verdanken sind. So können in Mooren eingelagerte Werkzeuge, Waffen oder Schmuck ebenso Jahrtausende überdauer, wie Siedlungsstrukturen und Reste von Pflanzen und Tieren (und Menschen!). Dies gilt auch für Mikrostrukturen wie Pollen und Sporen, mit deren Hilfe man die nacheiszeitliche Vegetationsgeschichte rekonstruieren konnte (Pollenanalyse).

https://www.researchgate.net/profile/Andreas-Bauerochse/publication/282755633_Moore_als_Archive_der_Natur-_und_Kulturgeschichte_-_das_Arbeitsgebiet_der_Moorarchaologie/links/574426d108ae9ace841b496e/Moore-als-Archive-der-Natur-und-Kulturgeschichte-das-Arbeitsgebiet-der-Moorarchaeologie.pdf?origin=publication_detail

Kompetenzen

Tab. 6 Kompetenzen, die mit dem Unterrichtsthema Moore angestrebt werden können

Quellen

Amberger-Ochsenbauer, S., Meinken, E. (2020): Torf und alternative Substratsausgangsstoffe. Herausgeber: Bundesanstalt für Landwirtschaft und Ernährung. https://www.ble-medienservice.de/0129/torf-und-alternative-substratausgangsstoffe

Bundesamt für Umwelt, Wald und Landschaft – Schweiz – (2002): Moore und Moorschutz in der Schweiz. Bern http://www.wsl.ch/info/mitarbeitende/scheideg/20141103_Bericht_Studierende.pdf

Bundesinformationszentrum Landwirtschaft (2020): Torf: unersetzlich oder verzichtbar? https://www.landwirtschaft.de/diskussion-und-dialog/umwelt/torf-unersetzlich-oder-verzichtbar

Bundestag (2016): Kein Verbot von torfhaltigen Substraten. https://www.bundestag.de/webarchiv/presse/hib/201601/401876-401876

Dargie, G.C. et al. (2017): Age, extent and carbon storageof the central Congo Basin peatland complex. Nature 542, 7639, pp 1476-1487

Dierßen, K./Dierßen, B. (2008): Moore. Ökosysteme Mitteleuropas in geobotanischer Sicht. Stuttgart:Ulmer

Eigner, J. (2003): Möglichkeiten und Grenzen der Renaturierung von Hochmooren. Laufener Seminarbeiträge, 1/03, S. 23 -36, Laufen/Salzach: Bayer: Akad. f. Naturschutz u. Landschaftspflege

Ellenberg, H./Leuschner, L. (6. A., 2010): Vegetation Mitteleuropas mit den Alpen. Stuttgart: Ulmer (UTB)

Frey, W./Lösch, R. (3.A., 2010): Geobotanik. Pflanze und Vegetation in Raum und Zeit. Heidelberg: Spektrum

Garcin, Y., Schefuß, E., Dargie, G.C. et al. (2022): Hydroclimatic vulnerability of peat carbon in the central Congo Basin. Nature. https://doi.org/10.1038/s41586-022-05389-3

Gewin, V. (2020): Bringing back the bogs. Nature 578, pp. 204-208

Göttlich, K. (Hrsg.,1990) Moor- und Torfkunde. Stuttgart: Schweizerbart’sche Verlagsbuchhandlung.

Hakobyan, A., Liesack, W. (2020): Unexpectedmetabolitic versality among type II methanotrophs in the alphaproteobacteria. Biol.Chem.401(12). pp1469-1477

Hölzel, N. T. et al. (2019): Leitfaden zur Torfmoosvermehrung für Renaturierungszwecke. Deutsche Bundesstiftung Umwelt, Osnabrück.

Jäger, C. (2020): Klimaschutz braucht Moorschutz. München: Oekom

Joosten,mH:;tanneberger, F., Moen, A. (eds., 2017): Mires and peatlands of Europe.Status, distribution and conservation.Stutttgart: Schweizerbart

Kremer, B. P./Oftring,B. (2013): Im Moor und auf der Heide. Bern CH: Haupt

Kosta ,J.E. et al. (2016): The Sphagnum microbiom: new insights from an ancient plant lineage. New Phytologist 211(1), pp 57-64. doi: 10.1111/nph.13993.

LLUR (2015): Moore in Schleswig-Holstein Geschichte – Bedeutung – Schutz. Landesamt für Landwirtschaft, Umwelt und ländliche Räume des Landes Schleswig-Holstein (LLUR). 162 S

Ministerium für ländlichen Raum und Verbraucherschutz Baden-Württemberg (2017): Moorschutzprogramm Baden-Württemberg, 2. A. https://mlr.baden-wuerttemberg.de/fileadmin/redaktion/m-um/intern/Dateien/Dokumente/2_Presse_und_Service/Publikationen/Umwelt/Naturschutz/Moorschutzprogramm_BW.pdf

Mooratlas (2023), Eimermacher/stockmarpluswalter (M), CC.BY 4.0.

Overbeck, F. (1975): Botanisch-ökologische Moorkunde. Neumünster: Wachholtz

Page, S.E., Rieley, J.O.,Wüst, R. (2006): Lowland tropical peatland of Southeast Asia. In: Martini,I.P., MatinezCortizas, A., Chesworth. E. editors: Peatland: Evolution and records of environmental and climate changes. Chapter 7, pp 145-170

POLYGON, Universiät Greifswald 2011-2014 https://botanik.uni-greifswald.de/moorkunde-und-palaeooekologie/forschung/projekte/polygon/

Probst, W. (1978): Zur Vegetation des Jardelunder Moores. Die Heimat 85 (Heft 10/11), S. 2 72-296

Probst, W. (1987): Biologie der Moos- und Farnpflanzen, 2. A.. Heidelberg/Wiesbaden: Quelle und Meyer

Proff, I., Furtak, S. (2022): Nasse Lawirtschaft. In: Spektrum Kompakt Feuchtgebiete, S.41-54, Heidelberg: Spekrum

Ricker, K.-M. (2021): Moore für das Klima. Die Bedeutung der Moore für den Klima- und Naturschutz kennenlernen. Biologie 5 – 10, S. 20-23, Hannover: Friedrich

Sachunterricht Grundschule Nr.68/2015: Lebensraum Moor – Heft und Materialpaket. Seelze: Friedrich-Verlag

Springer, P. (2013): Torfflächen nachhaltig nutzen – Zukunft: Peatfarming. GartenbauProfi, 8/13. S-48-50.

Springer, P. (2017): Sphagnum als Torfersatz. GartenbauProfi, 8/13. S-48-49

Steiner, G.M. (2005): Moortypen. Stapfia 0085, S. 5-26

Succow, M. (2001): Moorkunde, 2. A., Stuttgart: Schweizerbart’sche Verlagsbuchhandlung

Succow, M., Jeschke, L. (2022): Deutschlands Moore: Ihr Schicksal in unserer Kulturlandschaft. Rangsdorf: Natur& Text

Succow, M./Joosten, H. (2001): Landschaftsökologische Moorkunde. Stuttgart: Schweizerbart’sche Verlagsbuchhandlung

Trepel, M. (2007/8): Zur Bedeutung von Mooren in der Klimadebatte. Jahresbericht des Landesamtes für Natur und Umwelt des Landes Schleswig-Holstein.

Vile, M. A. et al. (2014): N2-fixation by mmethanotrophs sustains carbon and nirtrogen accumulation in pristine peatlands. Biogeochemistry Vol121, pp 317-328, DOI:10.1007/s10533-014-0019-6

Wichtmann, W., Schröder, C. & Joosten, H. (Hrsg.) 2016: Paludikultur – Bewirtschaftung nasser Moore. Stuttgart: Schweizerbart

Umweltbundesamt – Österreich – (2004): Moore in Österreich. Wien. https://www.google.com/search?client=firefox-b-d&q=Umweltbundesamt+%E2%80%93+%C3%96sterreich+%E2%80%93+%282004%29%3A+Moore+in+%C3%96sterreich.+Wien

WWF (2010): Klimaschutz-Schnäppchen: Moorschutz bringt viel für wenig Geld  http://www.wwf.at/de/moore/

Yu, Z. et al. (2010): Global peatland dynamics since the Last Glacial Maximum. Geophysical Research Letters, Volume 37, Issue 13 https://agupubs.onlinelibrary.wiley.com/doi/full/10.1029/2010GL043584

http://www.aktion-moorschutz.de/wp-content/uploads/Vortrag_Succow_MooreImNaturhaushalt.pdf

http://www.imcg.net/media/2016/imcg_bulletin_1611.pdf#page=29

https://www.moorwissen.de/moore-in-deutschland.html

Schleim in der Biologie

LINK-NAME LINK-NAME

Für den Jahrgang 2025 ist ein Unterricht Biologie Heft mit dem Thema „Schleim in der Biologie“ geplant. Als voraussichtlicher Herausgeber dieses Heftes suche ich Autor* innen für Unterrichtsmodelle zu diesem Thema. Diese Zusammenstellung soll Interesse wecken und zur Mitarbeit ermuntern.

Schleim ist ein bisschen ekelig aber gleichzeitig auch faszinierend.

Von Ernst Haeckels Urschleimtheorie über den intelligenten Schleimozean auf Stanislaus Lems Planet Solaris, Lovecrafts Shoggothen-Schleimmonstern und der wissenschaftich begründeten Horror-Zukunftsvision des Meeresbiologen  Daniel Pauly, eines Myxozäns, einer Erdepoche des Schleims, bis zum Kinderspielzeug Magic Slime, das auch Erwachsene fasziniert, zieht sich eine verzweigte Schleimspur durch die Vorstellungswelt der Menschen.

Bei Tieren und Menschen werden Schleimstoffe in Drüsen sezerniert. Sie dienen dem Schutz von Schleimhäuten und sie sind Bestandteil von Speichel und Magensaft sowie von Knorpeln, Sehnen, Haut und anderen Geweben. Für manche Tiergruppen ist die Schleimbildung besonders charakteristisch, zum Beispiel für die Mollusken. Fischen hilft ihr Schleimüberzug, den Widerstand des Wassers zu verringern und das Anheften von Schmarotzern und Krankheitserregern zu verhindern. Eine sehr primitive Fischform, die zu den Kieferlosen gehörenden Schleimaale, produzieren über ihre in der Haut gelegenen Schleimdrüsen bei Bedrohung plötzlich so viel Schleim, dass Maul und Kiemen der angreifenden Fische verstopft werden und diese den Schleimaal wieder ausspucken.

Pflanzliche Schleime findet man vor allem in Früchten und Samen (Leinsamen, Chiasamen), aber auch in Rinden, Wurzeln und Blättern (Aloe). Die stark quellfähigen Substanzen dienen der Wasseraufnahme und dem Schutz vor Austrocknung, bei Früchten und Samen auch als Klebstoff. Diese Eigenschaften machen sie auch für den Einsatz in Medizin und Kosmetik interessant. Auch Algen, Pilze und Bakterien können gute Schleimproduzenten sein (Agar). Die Schleimpilze oder Myxogastria sind eine ganz besondere Gruppe von Lebewesen zwischen Einzellern und Vielzellern, die nach ihrer häufig schleimigen Konsistenz benannt sind.

Verfolgen wir einige dieser Schleimspuren:

Physik und Chemie der Schleimstoffe

Typisch für Schleimstoffe ist ihre Quellfähigkeit und der daraus resultierender hohe Wassergehalt sowie ihre Klebrigkeit. Physikalisch gehören die Schleime zur „weichen Materie“ (soft matter, McLeish 2020), Stoffen, die sich nur bedingt dem Aggregatzustand fest oder flüssig zuordnen lassen. Das sind z. B. außer Schleimen kolloide Suspensionen (Milch), Flüssigkristalle (verwendet in Displays), Elastomere (Gummi), Tenside (Seifenschaum) oder Gele (Götterspeise). In der Strömungslehre bezeichnet man solche Substanzen auch als Nichtnewtonsches Fluide. Im Gegensatz zu Newtonschen Fluiden ändert sich ihre Viskosität, wenn sich die auf sie einwirkende Scherkräfte verändern. Damit entsprechen sie nicht dem newtonschen Elementargesetz der Zähigkeitsreibung. Dies hängt damit zusammen, dass die Scherkräfte eine Veränderung der mikroskopischen Struktur bewirken und damit die Wechselwirkungen zwischen den Teilchen des Fluids beeinflussen.

Schleime bestehen aus sehr langgestreckten Molekülfäden, die nicht einfach fließen können, wie die viel kleineren Moleküle normaler Flüssigkeiten wie Wasser oder Ethanol. Denn die Fäden verstricken sich miteinander und gehen an Kontaktpunkten Verbindungen ein. Sie können sich nur bewegen, wenn sie an den Kontaktpunkten getrennt und wieder neu zusammengefügt werden. Ein Bild dafür sind die etwas aneinander klebenden Nudelfäden auf einem Teller Spaghetti. Man kann sie entwirren und „zum fließen bringen“, wenn man sie mit einer Gabel aufwickelt und dadurch parallelisiert. In dem submikroskopischen Schleim bewirkt die Brownsche  Molekularbewegung diese Entwirrung, die dafür sorgt, dass die einzelnen Molekülfäden ihren Weg durch das Gewirr finden. Die Viskosität des Schleims ist dabei außer von der Temperatur von den Eigenschaften der Fadenmoleküle abhängig. Wenn die Polymere keine einfachen Fäden sind, sondern Verzweigungen oder kammartige Strukturen besitzen, erhöht sich die Zähigkeit.

Abb. 1 Hyaluronan-Monomer

Viele tierischen Schleime bestehen aus Glykosaminoglykanen (GAG, auch als Mucopolysaccharide bezeichnet). Das sind saure Polysaccharide aus linear aneinandergereihten Disacchariden, zum Beispiel der Hyaluronsäure (Hyaluronan, von griech. Hyalos = Glas) aus dem Disaccharid aus D-Glucuronsäure und N-Acetyl-D-glucosamin (Abb.1). Mit über 50 000 Disaccharideinheiten hat Hyaloronan eine Molekülmasse von mehreren Millionen. Hyaluronan ist ein wichtiger extrazellulärer Bestandteil des Bindegewebes der Wirbeltiere. Neben der Wasserspeicherung ist ihre Druckstabilität (zum Beispiel in den Bandscheiben), und ihre Wirkung als Gelenk-Schmiermittel bedeutend. Der Glaskörper des Auges besteht zu etwa 98 % aus Wasser, Hyaluronsäure und Kollagenfasern. Im Gehirn bewirkt Hyaluronan den Wiederaufbau von Markscheiden (Remyelinisierung), weshalb ihr eine inhibitorische Wirkung bei Multipler Sklerose zugeschrieben wird. Bei Zellteilungen und Zellwanderungen scheinen Wechselwirkungen von Hyaluronsäure und Zelloberflächen eine Rolle zu spielen.

Abb. 2 In Zellmembran verankertes Mucin; violett: Proteinfaden; gelb: verzweigte Polysaccharidketten

Noch größere Makromoleküle sind die Mucine, Glykoproteine mit einem zentralen Proteinfaden an den kovalent gebundenen Kohlenhydratgruppen angeheftet sind. Die Kohlenhydrate werden erst nach der Translation vor allem an die Aminosäurereste Asparagin, Serin, Threonin oder Hydroxylysin angelagert. Durch die Polysaccharide können die Mucine sehr viel Wasser binden und damit das zentrale Protein vor Abbau unter der Einwirkung von Säuren schützen. Sie spielen eine wichtige Rolle für die Barrierefunktion der Schleimhäute. (Abb. 2 ). Durch Disulfidbrücken können sich Mucinmoleküle zu noch größeren Aggregaten verbinden. An den Enden der Polysaccharidketten finden sich teilweise Sulfatgruppen oder Sialinsäuregruppen, welche den bakteriellen Abbau erschweren. Mucine werden von verschiedensten Mikroorganismen (Bakterien und Archäen, Einzeller, Pilze, Schleimpilze) und Tieren gebildet.

Andere pflanzliche Schleime und Schleime von Algen und Bakterien bestehen vorwiegend aus Polysacchariden. Dazu zählen die Pectine der pflanzlicher Zellwände, die Galactomannane aus Samen von Hülsenfrüchtlern und die quellfähigen Polysaccharide klebriger Samenschalen wie etwa bei Wegerich- Arten („Flohsamen“ des Indischen Wegerichs werden zur Regulierung der Verdauung genutzt). Auch die die Alginate und Carageene verschiedener Algen bestehen aus Polysacchariden (Abb. 3,  4 )

Abb. 3 Schleimige Jochalgen. Vor allem in Frühjahr können Jochalgen wie Spirogyra oder Mougotia (im Bild) schleimige Watten in Pfützen, Kleingewässern und Gartenteichen bilden (Foto: W. Probst)

Biofilme

Abb. 4 Bathybius Haeckelii (nach heutigen Nomenklaturregeln müsste das Epitheton klein geschrieben werden „haeckelii“) (aus Haeckel 1870)

Ernst Haeckel hat vor 150 Jahren angenommen, dass alles Leben einem Urschleim entstammen würde, der den Meeresgrund überzieht. Dieser wabbernde Glibber, so die Vorstellung, sollte ständig neues Leben hervorbringen. Thomas Henry Huxley, wie Haeckel begeisterter Anhänger von Darwins Selektionstheorie, meinte 1868 diesen Urschleim in Proben des nordatlantischen Meeresbodens gefunden zu haben und benannte die Entdeckung Bathybius Haeckelii. Haeckel war hocherfreut und schrieb in einer Publikation 1870 „ Die wichtigste Tatsache, die aus Huxley‘s sehr sorgfältigen Untersuchungen des Bathybius hervorgeht, ist, dass der Meeresgrund des offenen Ozeans in den bedeutenderen  Tiefen (unterhalb 5000 Fuß) bedeckt ist mit ungeheuren Massen von freiem lebendem Protoplasma, … Dieser universelle Urschleim der älteren Naturphilosophie, der im Meer entstanden sein und der Urquell alles Lebens, das produktive Material aller Organismen sein sollte, … – er scheint durch Huxleys Entdeckungen des Bathybius zur vollen Wahrheit geworden zu sein“. (Ernst Haeckel 1870)

Abb.5 Stromatolithen in der Shark Bay an der Westküste Australiens (Foto E. Steiner 2005)
Abb. 6 Tintenstriche an Kalkfelsen der Gola Gorropu, Sardinien (Foto: W. Probst 1992)

Der von Thomas Henry Huxley beschriebene Bathybius haeckelii stellte sich allerdings schon bald als ein durch Alkoholkonservierung entstandenes anorganisches Produkt heraus (Wedlich 2019). Aber die von Mikroorganismen gebildeten und besiedelten Schleimschichten, Biofilme genannt, haben durchaus etwas Urschleimiges. Man kann davon ausgehen, dass es ähnliche Kongregationen schon seit Urzeiten gibt. Stromatolithen, Kalkstrukturen, die von schleimigen Bakterienschichten überzogen und aufgebaut werden, gelten als die ältesten Lebensgemeinschaften. Als Fossilien kennt man sie seit über 3 Milliarden Jahren und man findet sie noch heute, zum Beispiel an der Westküste Australiens (Shark Bay; Abb. 5). Für 2-3 Mrd. Jahre waren solche schleimigen Lebensgemeinschaften in den Meeren die einzigen Lebensformen. Aber ähnliche Aggregate könnten auch schon früh die Festländer besiedelt haben.

Die schleimigen Kolonien des Blaugrünen Bakteriums Nostoc, biologische Bodenkrusten und „Tintenstriche“ an Kalkfelsen sind möglicherweise solche terrestrischen bis heute überdauernde Lebengemeinschaften der Früherde (Abb. 6)., ebenso die Biokrusten, die sich auf offenen Sandbödn bilden können.

Als Biofilme bezeichnet man Schleimschichten, die eine Mischung aus Mikroorganismen (Bakterien, Archäen, Algen, Pilze, Einzeller) bestehen (Abb. 7, 8).

Abb. 7 Initialstadium eines Biofilms. Frei lebende Bakterien setzen sich fest, werfen ihre Geißeln ab und sondern Schleim ab (Grafik W. Probst)

Sie können auch einige mehrzeiligen Organismen (Rädertierchen, Fadenwürmer, Milben) enthalten, die sich von den Mikroben ernähren. Die Schleimbeläge bilden sich an Oberflächen und Grenzflächen, sowohl an Übergängen von flüssigen zu gasförmigen als auch von festen zu flüssigen Substraten. In weiterer Fassung kann man darunter auch mit Mikroorganismen angereicherte Schleimklümpchen in Flüssigkeiten verstehen. Die Schleimstoffe werden von den Lebewesen, vorwiegend von den Bakterien und Archäen, abgeschieden. Die sogenannten extrazellulären polymeren Substanzen (EPS) bestehen aus Polysacchariden, Proteinen, Lipiden und Nukleinsäuren. Sie  können sehr viel Wasser binden und Hydrogele bilden, in denen Nähr- und Mineralstoffe gelöst sind. Neben verschiedenen organischen und anorganischen Partikeln können auch Gasblasen eingeschlossen werden. In einem Biofilm können in geringen Abständen sauerstoffreiche und sauerstoffarme oder -freie  Bereiche liegen, die dann jeweils von aeroben bzw. anaeroben Mikroorganismen besiedelt werden. Die Oberflächen der Filme können ebenfalls sehr unterschiedlich gestaltet sein. Teilweise siedeln sich dort in das umgebende Wasser hineinragende Organismen (zum Beispiel Glockentierchen) an, teilweise bilden sich Ausbuchtungen, Poren oder Höhlen, die den Stoffaustausch erleichtern. An der Grenzschicht können Teile des Biofilms abreißen vom vorbeiströmenden Wasser weiterverbreitet werden und im Wasser Schleimflocken bilden.

Abb. 8 Entwicklung und Alterung eines Biofilms (Grafik W. Probst)

Voraussetzung für die Bildung eines Biofilmes ist, dass sich die Mikroben an einer Oberfläche festsetzen können. Dabei verändern sich die Organismen. Bei Bakterien ist es häufig mit dem Verlust der Flagellen und dem Abscheiden von Polymeren verbunden. In Biofilmen gibt es zwischen den einzelnen Mikrobenzellen einen Signalaustausch, der dafür sorgt, dass Zellteilung und Wachstum reguliert ablaufen. Dadurch wird Mangelernährung und Zusammenbruch des Systems vermieden (Quorum Sensing). Als Kommunikationsfaktor ist z. B. bei Bacillus subtilis die Abgabe von K+-Ionen nachgewiesen. Auch ein altruistischer Nährstoffaustausch von gut versorgten Mikroben zu „unterernährten“ Mikroben ist nachgewiesen.

Durch horizontalen Gentransfer können die Organismen in einem Biofilm gegenseitig ihre Genausstattung verbessern und zum Beispiel Gene weitergeben, die sie zur energetischen Nutzung bestimmter Substrate befähigen oder sie gegen Gifte resistent machen. In der Endphase der Biofilmentwicklung kommt es dann, ebenfalls durch Signalstoffe verursacht, zur Abgabe von begeißelten Formen und zur Sporenbildung. Auch abgerissene Biofilm-Flocken dienen der Ausbreitung, denn sie können sich leicht an neuen Oberflächen festsetzen und weiter wachsen.

All diese besonderen Formen der Kooperation und Vehrmehrung lassen Biofilme als Superorganismen erscheinen, in denen sich verschiedene Prokaryoten über extrazelluläre Matrices aus Makromolekülen verbinden und  ihre Stoffwechselaktivitäten sehr effektiv aufeinander abstimmen können. Schon kurz nach der Entstehung des Lebens und lange vor echter Vielzelligkeit entwickelte sich so eine höhere Organisationsebene des Lebens mit echter Differenzierung der verschiedenen beteiligten Einzelzellen (vgl. Margulis 1997).

Biofilme sind sehr weit verbreitet, in allen Böden, auf Sand, auf Gesteinen auf und in Pflanzen und Tieren, in heißen Quellen und auf dem Gletschereis, in technischen Geräten, Rohren und Röhrchen, Tanks und U-Booten. Wüstenkrusten zum Beispiel sind die ersten Biozönosen lockerer Wüsten-Sandböden. Sie bestehen aus Bakterien, Algen, Pilzen und schließlich auch Flechten und Moosen. Die von den Mikroben abgegebenen Kohlenhydrate bilden nicht nur eine Matrix für die verschiedenen Lebewesen, sie verkleben auch die anorganischen Substratpartikel. Diese Krustenbildung verhindert Winderosion, fördert Wasserabsorbtion selbst aus Tau oder Nebel und führt über Luftstickstoff-Fixierung sogar zu einer Anreicherung lebenswichtiger Stickstoffverbindungen. Auch für Wattboden-Oberflächen sind Biofilme charakteristisch. Hier spielen neben Blaugrünen Bakterien Diatomeen (Kieselalgen) eine wichtige Rolle. Auch hier kommt es durch ausgeschiedene Polysaccharide zur Krustenbildung („Wattpapier“).

Besondere Biofilm-Gemeinschaften finden sich auf den Häuten und Schleimhäuten von Tieren und als Zahnbelag. Die große Bedeutung dieses Mikrobioms, das an Zellenanzahl häufig die Zellenzahl ihres Trägertieres übertrifft, wurde erst in den letzten Jahrzehnten erkannt und ist immer noch ein zentrales Forschungsthema.

Dies gilt auch für die klinische Bedeutung von Biofilmen. Trotz ihrer weiten Verbreitung wurde ihre Gefahr in der Medizin lange Zeit unterschätzt. Dabei schützen sich etwa 60 % aller mikrobiellen Krankheitserreger durch Biofilmbildung vor dem Immunsystem (Fux et al. 2005). Die Ablösung von Bakterienflocken aus Biofilmen kann zur Quelle chronisch wiederkehrender Infektionen werden, besonders bei Patienten mit geschwächtem Immunsystem. Dies betrifft zum Beispiel Krankheiten wie Blasenentzündungen, Parodontose, chronische Mittelohrentzündung oder chronische Lyme-Borreliose. Auch Biofilmbildungen auf medizinischen Instrumenten, Kathetern und chirurgischen Implantaten können der Ausgangspunkt von Infektionen sein. In sehr vielen chronischen Wunden lassen sich Biofilme nachweisen.

An technischen Konstruktionen aus Metall können Biofilme Korrosion hervorrufen. Auch Luftbefeuchter und Verdunstungskühlanlagen sind besonders anfällig für Biofilmbildungen.

Die schleimigen Mikrobengemeinschaften können aber auch sinnvoll genutzt werden, zum Beispiel in der biologischen Abwasserreinigung oder bei der mikrobiellen Laugung von Erzen (selektive Anreicherung bestimmter Mineralien). Selbst Bodenschadstoffe wie Mineralölrückstände können durch entsprechende Mikroorganismen-Gemeinchaften abgebaut werden.

Eine wichtige Nutzanwendung sind die Biofilme aus lebenden Essigbakterien zur Herstellung von Essig aus Ethanol (Essigmutter) oder das schleimige Konglomerat aus Essigbakterien und Hefepilzen („Teepilz“), mit dem sich gesüßter Schwarztee in den Kombuchatrank (Teekwaß) umwandeln lässt.

Kombucha – das Geheimnis eines Zaubertrankes

Abb. 9 Teepilz (Kombucha) – aus einem ebay-Angebot von ilja.g94 (11.2021)

„Wenn sie nach einem Mittel mit fast magischen Kräften suchen, das Sie stimulieren und verjüngen kann, so gibt es keine Möglichkeit, die Sie näher an Ihr Ziel bringt, als der Kombuchapilz-Tee. Wir machen Ihnen diese Versprechungen, und wenn Sie nicht hundertprozentig befriedigt von dem herrlich schmeckenden Tee und dem von ihm bewirkten gesundheitlichen Segnungen sind, werden wir Ihnen alle Auslagen einschließlich der Transportkosten zurück erstatten!“

Mit diesem einleitenden Satz wird von einem Anbieter von Kombucha-Tee im Inter­net geworben.

Der Glaube an Wunder wirkende „Allheilmittel“ ist wahrscheinlich so alt wie die Menschheit. Als eine solche Wunderdroge wird der Tee“pilz“ oder Kombucha immer wieder benannt und angeboten. Ähnlich wie bei Kefirknollen han­delt es sich dabei um eine enge Gemeinschaft von Bakterien und Hefepilzen. In die­sem Falle gewinnen Sie Ihre Lebensenergie vor allem aus dem Abbau des im ge­süßten Tee reichlich enthaltenen Rohrzuckers. Dabei werden auch andere Inhalts­stoffe der Teeflüssigkeit genutzt und im Stoffwechsel verarbeitet. Als Endprodukte entstehen nicht nur Kohlenstoffdioxid und verschiedene Karbonsäuren (vor allem Essigsäure, Milchsäure, Ethanol,Gluconsäure und Glucuronsäure), im Kombuchatrank konnten auch Aminosäuren, Usninsäure, die Vitamine B1, B2, B3, B6, B12, Folsäure sowie Vitamin C nachgewiesen werden.

Der sogenannte Pilz ist in biologischem Sinne natürlich kein Pilz. Er besteht aus einer gallertigen Masse aus Polysacchariden, vorwiegend Zellulose, die als Matrix für verschiedene Hefearten und Bakterien dient (Abb. 11 ). Dieses schleimige Aggregat kann Tochteraggregate bilden oder durch Teilung vermehrt werden. Ähnliche Mikrobengemeinschaften sind verhältnismäßig weit verbreitet, ja, sie dürften eine ganz charakteristische Lebensweise von Mikroorganismen, insbesondere von Prokaryoten, Hefen und Schimmelpilzen darstellen. Für die menschliche Ernährung genutzt, werden sie z.B. auch als „Essigmutter“, als Kefir oder als Wasser­kefir.

Die „Teepilz-Sym­biose“ ist zunächst ein farbloses, fast völlig transparentes Schleimklümpchen. Bei Temperaturen zwischen 12 und 30 °C (Vorzugstemperatur: 23-27 °) und genügendem Sauerstoffzutritt wächst ein sol­ches Klümpchen in mit Zucker gesüßtem Tee zu einem weißlich durchscheinenden Ge­bilde unregelmäßiger Form mit schleimigem Äußeren heran. Bei weiterem Wachstum flacht es sich ab und nimmt schließlich die ganze Oberfläche des Gefäßes ein. Wenn die gesamte Flüssigkeitsoberfläche vom „Teepilz“ bedeckt ist, wächst der hellgrau durch­schimmernde Schirm verstärkt in die dritte Dimension und die Bezeichnung Bio“film“ passt dann eigentlich nicht mehr. Aus dem scheibenförmigen Gebildet wachsen lamellenähnliche Strukturen nach unten in die Kulturflüssigkeit. Mit der Zeit sinkt das ganze Aggregat tiefer in die Flüssigkeit ein. Unter Bei­behaltung der schleimigen Oberfläche nimmt es dabei eine immer dunklere, bräunlich-hellgraue Farbe an und wird außerordentlich zäh. Wenn die äußeren Bedingungen ungünstig werden, wenn z.B. in der Kulturlösung kein Zucker mehr enthalten ist, kann das Aggregat seine „Zusammenarbeit“ beenden und sich auflösen. Ein solcher Vorgang kann mit dem Sterben eines vielzelligen Organismus verglichen werden (vgl. Margulis 1997). Die einzelnen Mikroorganismen – Hefezellen und Bakterienzellen – müssen dabei nicht absterben. Isoliert sind sie jedoch nicht zu den gleichen Stoffwechselleistungen in der Lage wie im Verband. Wohl aber können sie unter günstigen Umweltbedingungen wieder zu einem neuen Verband zusammen treten. So gesehen ist eine Analogie zu den Keimzellen vielzelliger Organismen gegeben.

Abb. 10 Teepilz – Mikroskopische Aufnahme eines Schleimklümpchens mit Bakterien- und Hefezellen, ca. 400x (Foto W.Probst 2002)

Im Gegensatz etwa zur Flechtensymbiose, bei der es sich bei jeder „Flechtenart“ um eine ganz dezidierte Kombination einer oder weniger bestimmter Pilz- und Algenarten handelt, ist die Zusammensetzung des Kombuchaaggregates variabel. Auch das Kulturmedium hat Einfluss auf diese Zusammensetzung und damit auch auf die abgegebenen Stoffwechselprodukte und die Inhaltsstoffe  des Kombucha-Getränkes. Mit dem Kombuchatrank nimmt man jedoch immer neben den organischen Säuren, unter denen vor allem die Gluconsäure und die Glucuronsäure sich förderlich auf die Entgiftungsprozesse in der Leber auswirken sollen, auch lebende Hefe- und Bakterienzellen auf. Soweit sie verdaut werden, können daraus Vitamine z.B. der B-Gruppe freigesetzt werden. Wenn sie lebend in den Dünndarm gelangen, können sie sich günstig auf die Zusammensetzung und Wirkung der Darmflora auswirken. Gesundheitsfördernde und heilende Wirkungen sind damit vor allem im Zusammenhang mit einem starken Glauben durchaus möglich. Schädliche Wirkungen jedenfalls braucht man bei dem Genuss von Kombucha nicht zu befürchten, soweit das Getränk mäßig eingenommen wird. Bei einer mäßigen Dosierung dürfte der geringe Alkoholgehalt auch für Kinder nicht schädlich sein. Dasselbe gilt für den Säuregehalt. Im Gegenteil: Man kann sagen, dass das regelmäßige Vorhandensein von Essigsäurebakterien dafür sorgt, dass durch den niederen pH-Wert gefährliche Mikroben in dem Kombuchaaggregat kaum Fuß fassen können.

Der Kombuchatrank soll in China schon vor 2000 Jahren bekannt gewesen sein. Den Namen Kombucha führt man auf  die japanische Bezeichnung für Tee „Cha“ und für einen ebenfalls für Teezubereitung, Salate und Gemüse verwendeten Tang „Conbu“(Laminaria japonica) zurück. Außer in Ostasien hat der Teepilz und das mit seiner Hilfe gewonnene Gärgetränk  auch in Russland eine lange Tradition. Dies schlägt sich in Namen wie Teekwass, Kargasok-Teepilz, Fungojapon, Chinesischer Teepilz,  Japanischer Teepilz , Mandschurischer Pilz, Russische Blume, Russische Qualle, oder Wolgameduse nieder. Die sagenhaften Heilwirkungen des Getränkes werden durch Namen wie Heldenpilz, Champignon de la Charité oder Champignon de Longue Vie beschrieben.

Wissenschaftliche Untersuchungen des „Teepilzes“ begannen erst im 20. Jahrhundert. 1913 beschrieb Lindau in den Berichten der Deutschen Botanischen Gesellschaft über eine Teepilzkultur, die er von einem Herrn Dr. Gisevius aus dem Kurland erhalten hatte (Medusomyces gisevii Lindau). Bei der mikroskopischen Untersuchung  konnte Lindau  nur Hefepilze erkennen und so beschrieb er das Gebilde als „Medu­somyces Gisevii nov. spec. et  nov.gen.“ Noch im selben Jahr konnte der Botanikprofessor Lindner nachweisen, dass der Teepilz keine eigene Art ist, sondern vielmehr  aus einem Konglomerat verschiedener Bakterien- und Hefe-Arten gebildet wird. Als bakteriellen Hauptbestandteil isolierte er das Schleim-Essigbakterium Acetobacter xylinum und der wichtigste pilzliche Organis­mus konnte von ihm als der auch aus dem afrikanischen Hirsebier („Pombe“) bekannte Hefepilz Schi­zosaccharomyces pombe bestimmt werden. Weitere Hefepilze der Gattungen Torula, Torulopsis, Pichia, Candida, Saccharomycodes und Mycoderma konnte nachgewiesen werden. In den Jahren nach dem ersten Weltkrieg brachten aus Russland zurückkehrende Kriegsgefangene Teepilzkultu­ren mit. Die Herstellung des Teekwass wurde auch in Deutschland bekannt. In den 20er und 30er Jahren wurden erste wissenschaftliche Untersuchungen über die Stoffwech­selleistungen der Teepilz-Symbiose durchgeführt. Dabei konnten im Teekwass  Milchsäure, Essigsäure, Ethanol und auch Gluconsäure nachgewiesen werden. In einer neueren Untersuchung stellte Reiß ( 1987) die quantitative Zusammensetzung der Teepilz-Gärungsprodukte fest. Er konnte auch zeigen, dass das verwendete Substrat (Schwarztee bzw. Lindenblüten-, Pfefferminztee, Colagetränk und Bier) Einfluss auf die Zusammensetzung der Gärungsprodukte hat.

Unter natürlichen Bedingungen dürften ähnliche Mikrobenaggregate vermutlich überall dort vorkommen, wo zuckerhaltige Pflanzensäfte in größeren Mengen auftreten. Vor allem dürfte dies der Blutungssaft von Bäumen und anderen verletzten Gewächsen sein, eventuell auch Blüten mit reichlicher Nektarproduktion oder süße, große Früchte.

In der Literatur wird beschrieben, dass „Teepilze“ auch technisch genutzt wurden (Lindner 1917/ 1918 und Lakowitz 1928 nach Meixner 1983). Man ließ die Aggregate  meterdick und zentnerschwer werden und nutzte sie zur Herstellung von Handschuhleder und für Gasballonhüllen.

Sukkulente

Eine mögliche Anpassung von Pflanzen an trockene Standorte ist die Sukkulenz: Blätter oder Sprossachsen, seltener auch Wurzeln, können stark verdickt sein und ein sehr wasserhaltiges Gewebe aus großlumigen Zellen enthalten. Der Zellsaft weist meist eine schleimige Konsistenz auf, die vor allem von Polysaccharideden aus Glucose, Mannose, Galactose und Xylose sowie Aminosäuren und Carbonsäuren zustande kommt. Das Gel dient nicht nur der Wasserspeicherung sondern auch einer besonderen Form der Photosynthese, der CAM-Photosynthese (von Crassulacean Acid Metabolismus). Diese sukkulenten Pflanzen öffnen nachts ihre Spaltöffnungen und speichern CO2 in organischen Säuren, zum Beispiel Äpfelsäure. Tagsüber bleiben die Spalten geschlossen und das CO2 aus den Carbonsäuren wird freigesetzt und für die Photosynthese verwendet. Dadurch kann der Wasserverlust durch Transpiration stark eingeschränkt werden.

Abb. 11 Aloe aristata-Blatt mit schleimigem Inhalt (Foto W. Probst 2021)

Sukkulente kommen in vielen verschiedenen Pflanzenfamilien vor. Besonders bekannt sind Kakteen und Kakteen-ähnliche Euphorbien oder die Dickblattgewächse (Crassulaceae), deren Name schon auf ihr Blattsukkulenz hinweist. Auch bei den Lilienverwandten gibt es viele Blattsukkulente, zum Beispiel die Agaven und die Aloe-Arten. Besonders berühmt für ihren Blattschleim ist die Echte Aloe (Aloe vera). Die Pflanze wird seit dem Altertum medizinisch genutzt und gilt bis heute als medizinisches Wundermittel. Im Internet finden sich zahlreiche Angebote, die das Pflanzengel nicht nur zur äußerlichen Anwendung gegen Verbrennungen, Sonnenbrand, Mückenstiche, Ekzeme, Geschwüre, unreine Haut und Entzündungen aller Art empfehlen, sondern auch zur inneren Anwendung bei Husten, Sodbrennen, Diabetes, Allergien und Reizmagen bzw. Reizdarm. Entsprechend groß ist die Palette der Aloe-vera-Produkte.

Abb. 12 Aloe-Schleim (Foto W.Probst 2021)

Wie bei allen Wundermitteln und Allheilmittel ist auch hier Vorsicht geboten. Medizinische eindeutige Nachweise für die vielseitigen Heilwirkung gibt es nicht. Eine Verwendung des Gels bei zu trockener Haut kann sicherlich nicht schaden und zumindest die kühlende, Juckreiz stillende Wirkung bei Insektenstichen gilt auch als gesichert. Bei der innerlichen Anwendung ist Vorsicht geboten, denn der in den äußeren Blattgeweben enthaltene gelbliche Saft enthält Aloin, ein Stoff aus der Gruppe der 1,8-Dihydrohxyanthracene. Der bitter schmeckende Stoff ist möglicherweise krebserregend außerdem stark abführend.

Drosseln, die sich selber schaden

Turdus sibi ipse malum cacat“ (Die Drossel scheißt sich ihr eigenes Verderben) Römisches  Sprichwort

In alten Streuobstwiesen kann man Apfelbäume finden, die im Winter so grün sind wie Immergrüne. Auch Pappeln und Birken können sehr dicht mit Misteln (Viscum album) besetzt sein. Diese immergrünen Pflanzen wachsen nicht nur auf sondern auch in ihren Wirtsbäumen. Sie treiben ihre Wurzeln bis in das Holz ihrer Wirte und zapfen deren Wasserleitungsbahnen an. So gewinnen sie Wasser und Mineralstoffe, für die Produktion von Kohlenhydraten sorgt ihr eigener Fotosyntheseapparat in den grünen Blättern (Abb. 13).

Abb. 13 Misteln (Viscum album) auf Schwarz-Pappeln, Eriskircher Ried, 19.4.2014 (Foto W. Probst)

Misteln sind zweihäusig, d. h., eine Mistelpflanze trägt immer nur männliche oder weibliche Blüten. Allerdings können Misteln auch auf Misteln parasitieren. Wenn Parasit und Wirt unterschiedlichen Geschlechts sind, entsteht so der Eindruck einer einhäusigen Pflanze.

Abb. 14 Mistelpflanze (Viscum album) an Birke. Dank ihrer streng dichotomen Verzweigungen haben ältere Mistelpflanzen eine nahezu perfekte Kugelform (Foto W. Probst, 2016)

Geringer Mistelbesatz schadet einem Baum wenig. Aber sehr viele Misteln können dazu führen, dass der Wirtsbaum – vor allem bei niedrigen Temperaturen im Winter, wenn die Wasseraufnahme eingeschränkt ist – vertrocknet. Das ist dann allerdings auch das Ende seiner grünen Parasiten, aber diese haben sich in der Zwischenzeit schon stark vermehrt. Denn die Misteln haben eine sehr effektive Form der Samenverbreitung. In ihren weißen Beerenfrüchten ist normalerweise ein Same enthalten. Er ist eingebettet in einen zähen Schleim (Abb. 16). Die Früchte reifen im Spätherbst und bleiben bis zum Frühjahr, manchmal sogar bis zum Frühsommer erhalten. Die Beeren werden sehr gerne von Drosseln, vor allem von den danach benannten Mistel-Drosseln, gefressen. Die Samen werden aber nicht verdaut. Sie werden von den Drosseln wieder ausgeschieden, und auch ein Teil des zähen Schleims überlebt die Darmpassage. Solche ausgeschiedenen Mistelsamen mit Schleimfäden kann man bei genauer Beobachtung nicht selten an Ästen von Bäumen finden. Dieser biologische Zusammenhang war schon den Römern bekannt. Außerdem waren Drosseln schon im alten Rom eine beliebte Delikatesse und sie wurden mit Vogelleim gefangen, den man aus Mistelbeeren herstellte (meist allerdings aus der Eichenmistel Loranthus europaeus, die in Deutschland nur an wenigen Stellen vorkommt. Daher das römische Sprichwort).

Abb. 15 Mistelfrucht (Foto W. Probst 2016)

Kleinere Vögel wie Meisen fressen nur den äußeren, weniger klebrigen Teil des Fruchtfleischs und streifen den Samen mit seinem klebrigen Mantel an den Zweigen ab. In beiden Fällen werden die Samen so durch die Vögel an Zweige und Äste von Bäumen geklebt.

Im Übrigen war die Mistel schon in der Antike eine verehrte Heilpflanze, nicht nur bei Griechen und Römern, sondern auch bei Kelten (für Asterix-Fans: ein wichtiger Bestandteil des Zaubertrankes des Druiden Mirakulix). Die Verehrung spiegelt sich bis heute in dem vor allem in angelsächsischen Ländern beheimateten Brauch wieder, grüne Mistelzweige zu Weihnachten ins Zimmer zu hängen. Dass man sich unter solchen in Wohnungen aufgehängten Mistelzweigen küsst bzw. küssen darf, gehört in England und den Vereinigten Staaten zu den Weihnachtsbräuchen und hat seinen Ursprung vermutlich in heidnischer Vorzeit. In der modernen Heilkunde spielen vor allem die Mistellektine als mögliche Tumorhemmer und Stimulatoren des Immunsystems eine gewisse Rolle. Lektine sind Proteine oder Glykoproteine, die sich spezifisch mit Zellmembranen verbinden können und von dort biochemische Reaktionen auslösen.

Abb. 16 Der Schleim in der Mistelfrucht (Fotos W. Probst)

Früchte oder Samen, die klebrigen Schleim für ihre Verbreitung nutzen, kennt man auch von anderen Pflanzen. Ein gutes Beispiel sind die Früchte der Wegerich Pflanzen. Die meisten Pflanzen mögen es nicht so gerne, wenn man auf ihnen herum trampelt, nicht so – wie schon der Name sagt – die Wegeriche. Sie gedeihen gerade an solchen Stellen, an denen Konkurrenten durch Vertritt ausgeschaltet werden. Besonders trifft dies in unserer heimischen Flora auf den Breit-Wegerich zu. Man findet ihn fast nur auf Wegen oder anderen häufig begangenen und befahrenen Stellen.

Abb. 17 Gequollene Samen des Breit-Wegerichs (Plantago major) in wässriger Methylenblau-Lösung. Die Schleimhüllen nehmen die Farblöung nicht so schnell auf. (Foto W. Probst 2010)

Ab Juli kann man seine Früchte finden. Es sind Kapseln, die sich an langen Ähren entwickeln. Wenn sie reif sind, löst sich ein Deckel ab und die Samen werden ausgestreut. Die Samen sind von einer Klebschicht umgeben, die allerdings erst klebt wenn sie nass wird – ähnlich wie der Kleber auf der Rückseite einer Briefmarke. In diesem Zustand hat sie ausgezeichnet an Hufen aber auch an Schuhen. Das ist ein Grund dafür, dass der Breit-Wegerich heute auf der ganzen Erde anzutreffen ist. Nach der Besiedelung durch weiße Siedler kam die Pflanze auch nach Nordamerika. Wo die Siedler mit ihren Planwagen und Tieren ihre breiten Spuren hinterlassen hatten, breitete sich die vertrittfeste Pflanze aus und weitere Siedlerkarawanen schadeten ihr nicht. Den Indianern galt diese Pflanze bald als Zeichen der Kolonisten und sie nannten sie „Fußspur des weißen Mannes“ (Abb. 18).

Abb. 18 Breit-Wegerich in Pflasterfuge (Foto W. Probst 2019)

Schleimige Samen werden vom Menschen traditionell in Heilkunde und Medizin genutzt. „Flohsamen“ werden aus den Samenschalen der Wegerich Arten Plantago indica  und Plantago  afra hergestellt und dienen wegen ihrer wasserbindenden Eigenschaften der Verdauungsregulation. Sie werden sowohl bei Verstopfung als auch bei Durchfall eingesetzt. Leinsamen sind ein altbekanntes Mittel gegen Verstopfung. Eine ganz hippe neue Schleimspeise sind Chia-Samen (von der mexikanischen Salvia hispanica), die zum Beispiel als Brotzusatz oder in Müsli-und Joghurtspeisen Leinsamen mittlerweile an Popularität übertreffen. Auch die traditionelle Krankenmahlzeit „Schleimsuppe“ aus Haferflocken erhält ihre schleimige Konsistenz aus den Schleimstoffen der zu Flocken gewalzten Haferkörner.

Schneckenschleim

Abb. 19 Spanische Wegschnecken (Arion vulgaris) bei der Paarung (Foto W. Probst 9.2000)

Schneckenschleim ist zäh und klebrig. Besonders haftstark ist der Schleim der Spanischen Wegschnecke. Das erfährt man, wenn man ein solches Schneckentier mit der Hand von Pflanzen absammelt. Der Reiz stimuliert die Nacktschnecke zur Schleimproduktion. Dieser Schleim ist nicht nur besonders zäh, er enthält auch Bitterstoffe. Natürliche Schneckenfresser wie Kröten und Igel halten sich deshalb bei Spanischen Wegschneckten zurück. Gartenbesitzern sind diese Schnecken ein Graus, denn sie können besonders in feuchten Sommern in solchen Massen auftreten, dass man kaum eine Chance hat, ein Gemüsebeet anzulegen, da alle Setzlinge oder Keimlinge sofort abgefressen werden. Salatpflanzen, Zucchini und Kohlrabi werden ebenso vertilgt  wie Basilikum und Rucola oder Zierpflanzen, vor allem Lilienverwandte.

Mit ihrer Raspelzunge können die Schnecken nicht nur Pflanzenblätter im Nu klein raspeln, sie vertilgen alle möglichen Arten von organischem Abfall und sie schrecken auch vor Kannibalismus nicht zurück. Um ihre Pflanzen zu schützen, gehen Gartenbesitzer mit Messern, Scheren, Salz oder Fallen auf Schneckenjagd. Das giftige Schneckenkorn wirkt anziehend auf Schnecken und führt bei Verzehr zu einem schleimigen Tod. Da der enthaltene Wirkstoff Methiocarp ein gefährliches Nervengift ist, dass nicht nur alle Arten von Schnecken tötet, sondern auch für andere Tiere und für den Menschen gefährlich werden kann, wurde seine Zulassung als Molluskizid in der EU im Oktober 2013 und generell 2019 zurückgenommen.

Die reizabhängige Schleimproduktion der Spanischen Wegschnecken wird seit einiger Zeit genutzt um medizinische Produkte zu testen, die für Schleimhäute – zum Beispiel bei Augenuntersuchungen – eingesetzt werden sollen. Die Wegschnecke dient als Tiermodell, um chemische Substanzen auf ihre Verträglichkeit zu untersuchen. Je mehr Schleim abgegeben wird, desto stärker ist der Reiz.

Daran kann man schon erkennen, dass der Schleim der Schnecken eine Schutzfunktion hat. Er hält Fressfeinde ab, aber er enthält auch bakterizide und fungizide Wirkstoffe. Für die kriechende Fortbewegung hat er eine wichtige Funktion, indem er als Gleit-und Haftmittel wirkt: Im Ruhezustand ist das Schleimgel ziemlich fest und klebrig. Wirken Scherkräfte ein, geht es in einen flüssigeren, gleitfähigen Zustand über. Dadurch kann die Schnecke durch die Muskelbewegungen die physikalischen Eigenschaften dieses Schleims nach ihrem Bedarf variieren. Die wellenförmig von vorne nach hinten über die Unterseite laufenden Muskelkontraktionen ermöglichen eine gleitende Fortbewegung. Allerdings bleibt dabei immer eine gewisse Schleimmenge am Untergrund haften, weshalb ständig Schleim nachproduziert werden muss. Das bedeutet einen ziemlichen Material- und Energieaufwand und vor allem einen großen Flüssigkeitsbedarf: Wird es zu trocken, „geht den Schnecken der Schleim aus“.

Wichtiger Bestandteil des Schneckenschleims sind die Faserproteine Kollagen und Elastin. Kollagen besteht aus drei umeinander gewundenen Polypeptidketten und kommt bei allen Stämmen der vielzelligen Tiere vor, Elastin bildet ein Netzwerk aus Proteinfäden die über die Aminosäure in Lysin vernetzt sind. Im Gegensatz zu Kollagen ist Elastin dehnbar. Beide Stoffe kommen auch im Bindegewebe der Wirbeltiere vor und sie sind für eine straffe, faltenfreie Haut verantwortlich. Die äußerliche und innerliche Anwendung von Schneckenschleim als Schönheits- und Anti-Aging-Mittel hat deshalb Konjunktur.

Spitzen-Schleimer: Die Schleimaale

Abb. 19 Atlantischer Schleimaal (Myxine glutinosa) (Grafik W. Probst 2021)

„Es wimmelten dort in krausen Gemisch, zu hässlichen Klumpen geballt“ die Schleimaale, so könnte man mit einer Verszeile aus Schillers Taucher die Lebensumstände der atlantischen Neunaugenverwandten Myxine glutinosa beschreiben. Die fischähnlichen Lebewesen mit aalförmigen Körper aus der Gruppe der Kieferlosen (Agnatha) haben ihr Erscheinungsbild in den letzten 300 Millionen Jahren kaum verändert. So gesehen sind sie ein Erfolgsmodell der Evolution.

Lange Zeit galten Schleimaale oder Inger – es sind rund 80 Arten beschrieben –  als Schädlinge, vor allem für die Grundnetzfischerei. Sie fressen die gefangenen Fische an und machen den Fang dadurch unbrauchbar. Andererseits spielen sie im Ökosystem der Tiefsee eine wichtige Rolle bei der Aufbereitung von Abfallstoffen, vor allem großer Kadaver. Sie wurden deshalb als „Totengräber der Tiefsee“ bezeichnet. Wirtschaftliche Bedeutung hat seit einiger Zeit die Haut der Schleimaale, da sie zur Lederherstellung verwendet („Aalleder“) werden kann. In Ostasien werden Schleimaale auch als Speisefisch genutzt. Vor allem im  Westen der USA wird Aalleder in größerer Menge produziert. Die Schleimaale werden von LKWs zu den Lederproduktionsstätten gefahren. So kam es wohl 2017 in Oregon zu einem Verkehrsunfall mit einem solchen Schleimaal-Transporter, bei dem 3,4 t dieser Tiere auf die Straße gerieten und alles mit ihrem Schleim überzogen. Von ProSieben wurde ein Video dieses Unfalls in der Hoffnung auf Werbeeinnahmen ins Netz gestellt , auch in National Geographic wurde der Unfall beschrieben.

Walkadaver in der Tiefsee mit Schleimaalen (Grafik W. Probst 2021)

Der Schleimaal-Schleim ist ein ganz besonderer Glibber und deshalb ist er in den Fokus der Wissenschaft geraten. Einmalig ist seine extrem hohe Wasserspeicherfähigkeit. In gequollenem Zustand bestehen nur 0,004 Gewichts% des Schleims aus Proteinen und Polysacchariden, der Rest ist Wasser. Eine weitere Besonderheit ist, dass er nicht nur Mucine sondern 15-30 cm lange Proteinfäden enthält, die Ähnlichkeiten mit der Spinnenseide aufweisen und wie diese eine extrem hohe Reißfestigkeit besitzen. Produziert werden diese beiden Schleimbestandteile in speziellen Drüsen in zwei verschiedenen Zelltypen, die entweder den Proteinfaden oder das Mucin produzieren. Über Poren werden diese beiden Bestandteile gleichzeitig ins Wasser ausgestoßen, mit dem sie sofort interagieren und zu gewaltigen Schleimmassen aufquellen. Potenzielle Anwendungsgebiete wären zum Beispiel neue, biologisch abbaubare Polymere, Gele als Füllmaterial und Mittel, um Blutungen bei Unfallopfern und Chirurgie-Patienten zu stoppen. Die Hoffnung, den Schleim exakt nachbilden zu können, sind bis jetzt allerdings gering, da seine genaue Zusammensetzung und Bildung sehr komplex erscheinen. Aber eventuell könnte das Prinzip nachgebildet werden und dann Stoffe ergeben, die ähnliche Eigenschaften haben.

Eine weitere Besonderheit des Schleimaals ist erwähnenswert: Nachdem er sich durch Schleimausstoß seine Gegner vom Hals gehalten hat, besteht für ihn nun das Problem, seinen eigenen Schleim wieder loszuwerden. Dabei nützt ihm seine große Beweglichkeit und Biegsamkeit: Er kann in seinen Schlangenleib einen Knoten machen, diesen lässt er dann langsam vom Schwanz bis zum Kopf wandern und streift damit den Schleim ab.

Schleimhäute

Abb. 21 Aufbau der menschlichen Mundschleimhaut (Grafik W. Probst 2021)

In der Medizin werden als „Schleimhäute“ die Schutzschichten bezeichnet, die innere Organe auskleiden, zum Beispiel die Verdauungsorgane, die Atmungsorgane und die Geschlechtsorgane. Im Gegensatz zur äußeren Haut besitzen Schleimhäute fast keine Hornschicht und keine Haare dafür meist Schleimdrüsen oder einzelne Zellen, die Schleim abgeben also Mucine produzieren. Sie sind aufgebaut aus einer ein-oder mehrzelligen Epithelzellenschicht, einer Bindegewebsschicht und teilweise auch noch einer Muskelschicht. Die Epithelzellen können zur Oberflächenvergrößerung kleine Ausstülpungen (Mikrovilli) tragen oder auch mit Cilien besetzt sein (Wimpernepithel). Durch die enge Verbindung mit dem Lymphsystem haben Schleimhäute eine wichtige Schutzfunktion gegen eindringende Krankheitserreger.

Der Mundspeichel wird in unterschiedlicher Zähigkeit von kleinen Speicheldrüsen in der Mundschleimhaut und von den großen Speicheldrüsen Ohrspeicheldrüse, Unterzungendrüse und Unterkieferdrüse gebildet, bei einem erwachsenen Menschen am Tag im Durchschnitt etwa ½ L. Die schleimigen Bestandteile sind Mucine, außerdem enthält der Mundspeichel das Kohlenhydrate-Verdauungsenzym Ptyalin, Ca-,Na- K- und Cl-Ionen. Antikörper (Immunoglobulin A), Laktoferin, Lysenzym und Histatin Er wirkt antiseptisch und wundheilend, weshalb es sehr wirkungsvoll ist, seine Wunden zu lecken.

Aber auch Krankheitserreger können durch Speichel übertragen werden. Deshalb ist das Auf-den-Boden-Spucken zu vermeiden und in manchen Ländern verboten, anderenorts aber auch durchaus verbreitet, zum Beispiel in China und in Indien. Früher war das Spucken auch in Mitteleuropa üblich, auf Bahnhöfen wurden Spucknäpfe aufgestellt und in Zugabteilen fand man das Schild „Nicht auf dem Boden spucken!“

Das Ausspucken ist in Indien und Südostasien oft mit dem Kauen von Betel verbunden. Für einen als“Pan“ bezeichneten Betelbissen werden die kleingehackten Arekanüsse der Betelpalme (Areca catechu) mit Löschkalk in ein Blatt des Betelpfeffers (Piper betle) gewickelt, zur Abmilderung des bitteren Geschmacks werden meist einige Gewürze wie Pfefferminze oder Lakritze zugefügt. Die Mischung wird etwa eine Viertelstunde gekaut. Das führt zu einer starken Anregung des Speichelflusses und zu einer intensiven Rotfärbung des Speichels durch die in der Arekanuss enthaltenen Phlobatannine. Überflüssige Flüssigkeit wird ausgespuckt – auf dem Boden und an Wänden und Mauern kann man überall die roten Flecken erkennen. Die Wirkung der enthaltenen Alkaloide ist so ähnlich wie die von starkem Kaffee.

Ein verwandter Brauch ist das Kauen von Tabak. Beim Schnupftabak werden dagegen die Nasenschleimhäute zur Aufnahme des Nikotin genutzt. Das durch den Schnupftabak ausgelöste Niesen ist ein Teil des Genusses und ein großes Schnupftuch gehört dazu. Früher waren solche Stofftaschentücher auch für das Schneuzen bei normalem Erkältungsschnupfen sehr üblich und ein beliebtes Verlegenheitsgeschenk bei Geburtstagen. Erst durch den Siegeszug der Papiertücher sind die Stofftaschentücher zur Aufnahme des Nasenschleims weitgehend verschwunden.

Ein genetisch bedingte Schleimkrankheit ist die Mukoviszodose oder Cystische Fibrose (CF). Bei den Schleim absondernden Zellen funktionieren Chloridkanäle in der Zellmembran nicht mehr richtig, da in dem für das Zellkanal-Protein zuständigen Gen eine Mutation aufgetreten ist. Dadurch wird der osmotisch bedingte Wasseraustritt von den umgebenden Zellen in den abgesonderten Schleim gebremst und der Schleim bekommt eine sehr zähe Konsistenz. Dies betrifft nicht nur Nasenschleimhäute und Bronchien sondern auch Sekrete der Bauchspeicheldrüse, der Leber (Gallen), der inneren Geschlechtsorgane, der Speiseröhre, des Darms und der Schweißdrüsen. Die Folge sind Funktionsstörungen unterschiedlichster Art. Die Symptome der Krankheit zeigen sich bereits in der frühen Kindheit und die Krankheit ist unheilbar und führt meist über kurz oder lang zum Tode.

Bei Menschen liegt das mutierte Gen auf dem langen Arm von Chromosom 7. Bisher sind über 2000 verschiedene Mutationen dieses Gens bekannt, das auch CFTR-Gen genannt wird (Cystic Fibrosis Transmembran Conductance Regulator bezeichnet das transmembrane Kanalprotein). Die häufigste Mutation ist eine Punktmutation, die zu einem fehlen der Aminosäure Phenylalanin an Position 508 des CFTR-Proteins führt.

In Europa kommt auf 2000 Geburten ein Fall von Mukoviszidose. Die Krankheit wird autosomal rezessiv vererbt. Dank verbesserter Therapiemöglichkeiten hat sich die Überlebensrate von Mukoviszidose-Patienten in den letzten Jahrzehnten deutlich verbessert. Aus evolutionsbiologischer Sicht ist es verwunderlich, dass sich die krankheitserregenden Allele dieses Gens sich in so hoher Konzentration in der Population erhalten haben. Das kann man sich eigentlich nur durch einen Selektionsvorteil des heterozygoten Genotyps erklären. Möglicherweise besteht bei den Heterozygoten eine höhere Resistenz gegen Tuberkulose.

Neben der symptomatischen Behandlung wird seit einiger Zeit auch versucht, ein gesundes Gen in die Zellen einzubauen, dass dann für die Produktion eines funktionsfähigen CFTR-Gens fungiert (Gentherapie). Bisher gibt es bei diesen Versuchen aber noch keine funktionierenden Ergebnisse. Eine weitere Möglichkeit wäre eine Behandlung mit entsprechender mRNA, die dann direkt an Ribosomen in die richtigen Proteine translatiert werden könnte. Auch hier liegen bisher (2021) noch keine positiven Ergebnisse vor.

Zum Schluss

Unser Weg auf biologischen Schleimspuren ist nun erst einmal zuende, aber natürlich wäre noch vieles zu entdecken, zum Beispiel

  • die schleimigen Netze der Myxogastria, die sich in Labyrinthen zurecht finden und die effektivsten Verbindungen zu verschiedenen Nahrungsquellen finden, und die deshalb sogar menschlichen Netzwerkplanern als Vorbild dienen;
  • der Schleim der Amphibien, der ihre fast unverhornte Haut vor Austrocknung schützt aber auch giftige Substanzen zur Feindabwehr einhalten kann und ihre Eier mit einer glibberigen Hülle umgibt;
  • die Bedeutung von Schleimstoffen bei der Fortpflanzung;
  • die verschiedenen Schleimstoffe in unseren Speisen, von Haferschleimsuppe und Chiamüsli, Remoulade und Hering in Aspik bis zu glibberigem Kaviar und schleimigen Austern.

Vielleicht haben Sie Lust auf weitere Entdeckungen? Die Internetslinks eröffnen einige Möglichkeiten.

Abb. 22 Grasfrosch mit Laich, 11.3.2017 (Foto W. Probst)

Quellen

Buslau, S.-J., Hembd, C. (1999): Kombucha. Das Gesundheitselexier aus China. München: Heyne

Flemming, H.-C. (2000):Biofilme – das Leben am Rande der Wasserphase. In: Nachrichten aus der Chemie 48 (4): 442 f, 2000

Flemming, H.-C., Wingender, J. (2001): Biofilme – die bevorzugte Lebensform der Bakte­rien. Biologie in unserer Zeit 31 (3): 169

Flemming, HC., Wingender, J., Szewzyk, U. et al. Biofilms: an emergent form of bacterial life. Nat Rev Microbiol 14, 563–575 (2016). https://doi.org/10.1038/nrmicro.2016.94

Frank, G.W. (1999): Kombucha. Mythos, Wahrheit, Faszination. Styr (Österreich): Ennsthaler Verlag

Fux, C. A. et al. (2005): Survival strategies of infectious biofilms. Trends Microbiol. 13(1),34-40.

Haeckel, E. (1870): Beiträge zur Plastidentheorie. Jena: G. Fischer

https://www.laborpraxis.vogel.de/super-hydrogel-nach-natuerlichem-vorbild-a-518812/

Lange, O. L. Hrsg.(2013): Biological Soil Crusts: Structure, Function, and Management. Springer

Lem, S: Solaris 1961, Deutsch von I. Zimmermann-Göllheim. Berlin:Ullstein 2006

Lüttig, A., Kasten, J. (2003): Hagebutte & Co. Blüten, Früchte und Ausbreitung europäischer Pflanzen. Not drei Nahrungen Allweil mangelnden RES Januar zwei ja tuln: Fauna-Verlag

Margulis, L.( 1997): From Kefir to death. In: Margulis, L./Sagan, D.(1997): Slanted truths., New York: Copenicus-Springer, 83-90

Margulis, L., Sagan, D. (1986): Microcosmos. Four billion years of microbial evolution. Berkeley…:University of California Press

Mayser, P. u.a.: The yeast spectrum of the tea fungus Kombucha. Mycoses 38: 289-295, 1995

McLeish, T. (2020): Soft matter. A very short introduction. Oxford Univ. Press

Meixner, A. 1983(1):1-4, 1984(2): 32-34, 1985(1): 7-10: Combucha, der Teepilz. Südwestdeutsche Pilzrundschau, Stuttgart

Nelson, D. L., Cox, M. M. (2009): Lehninger Biochemie. 4.A. Berlin/Heidelberg: Springer

Nowotny, W. (2000): Myxomyceten (Schleimpilze) und Mycetozoa (Pilztiere) – Lebensformen zwischen Pflanze
und Tier. https://www.zobodat.at/pdf/STAPFIA_0073_0007-0037.pdf

Probst, W. (2002): Kombucha – das Geheimnis eines Zaubertranks. Unterricht Biologie 280, S. 33-37, Seelze: Friedrich

Probst, W. (2010): Klebrige Samen. In: Probst, W.: Ungeladene, war klar Pflanzen leben. Unterricht Biologie Kompakt. Seelze: Friedrich

Reiß, J. (1987): Der Teepilz und seine Stoffwechselprodukte. Deutsche Lebensmittelrund­schau 83: 286-290

Reiß, J.: Herstellung von Lebensmitteln durch den Einsatz von Schimmelpilzen. In: Biologie in unserer Zeit 17 (2) 1987: 55-63

Rüeg, P. (2016): Glibber aus der Tiefsee – Super-Hydrogel nach natürlichem Vorbild. https://ethz.ch/de/news-und-veranstaltungen/eth-news/news/2016/01/schleimaale-projekt.html

Schlichting,H.J. (2021): Auf der Spur einer Schnecke. Spektrum.de https://www.spektrum.de/wissen/schneckenschleim-ist-ein-physikalisches-wunder-der-natur/1900312

Schramayer, G. (2012): Die Laubholzmistel – Vicum album ssp-album L. Amt der NÖ Landesregierung, Abteilung Landentwicklung (LF6), St. Pölten.

Stopp, F.(1961): Unsere Misteln. Die Neue Brehm-Bücherei. Wittenberg: Ziemsen-Verlag

Tubeuf, Freiherr K.v. (1923): Monographie der Mistel. München u.Berlin: Oldenbourg.Nachruck von Forgotten Books, London 2017

Wagner, E. (2012): Das glibberig-glitschige Buch vom Schleim. ArsEdition

Wedlich, S. (2019): Das Buch vom Schleim. Berlin: Matthes und Seitz

Wegner, C., Welz, T. (2015): Der kriechende Schleim. Unterricht Biologie 405, S. 41-43, Seelze: Friedrich

Botanischer Spaziergang in den Brochenzeller Wald am Samstag, dem 14.08.2021

LINK-NAME LINK-NAME

Treffpunkt: 10.00h am Wanderparkplatz im Brochenzeller Wald an der Landstraße L 329 zwischen Ettenkirch und Brochenzell, von Oberteuringen kommend links, kurz vor dem Kreisverkehr am Ortseingang von Brochenzell

Auf diesem Spaziergang gehen wir eine kleine Runde durch dieses schöne Waldgebiet mit abwechslungsreichem Baumbestand. Besonders interessieren uns die Pflanzen an den feuchten Wegrändern und Gräben.

Dauer: Etwa 2,5 Stunden

Ersatztermin bei schlechtem Wetter: 21.08.2015

Wälder am Rand des Schussenbeckens

Größere zusammenhängende Waldgebiete sind im heutigen Oberschwaben ziemlich selten. Im Laufe der mehrtausendjährigen Siedlungsgeschichte ist die typische kleinräumige Landschaft aus Felder – heute vielfach Obstplantagen -, Wiesen und kleinen Waldstücken entstanden. Das größte Waldgebiet, der Altdorfer Wald  etwa zwischen Vogt und Wolpertswende gelegen, hat immerhin eine Längsausdehnung von ca. 17 km. Dagegen ist das Waldgebiet , das sich am westlichen Rand des Schussenbeckens etwa von Ravensburg bis Meckenbeuren erstreckt, mit knapp 8 km deutlich kleiner. Die geplante Umgehungsstraße für Meckenbeuren könnte es noch weiter verkleinern. Trotzdem kann man in diesem Wald stundenlang wandern. Mehrere Bäche entwässern das Gebiet zur Schussen hin. Sie haben sich zum Teil ziemlich tief in die Jungmöräne eingeschnitten.Trotzdem ist der Wald ein guter Puffer, der einen Teil des Regenwassers speichert und dadurch vor Überschwemungen schützt.

SIG Sigmaringen, EHI Ehingen, UL Ulm, SLG Saulgau, BC Biberach, STO Stockach, ÜB Überlingen, KN Konstanz, TT Tettnang, RV Ravensburg, WG Wangen, MM Memmingen (aus Köhler, A.: Vom Wesen und Werden der oberschwäbischen Landschaft. In Ott, St. (Hrsg.), 1971: Oberschwaben. Otto Maier Verlag Ravensburg)

Mit dem Bodenseebecken wird das untere Schussental im Allgemeinen zum Landschaftsraum Bodensee-Schussen-Becken zusammengefasst, der am Ende der Würmeiszeit durch den Rheingletscher geprägt wurde.

Zum Exkusionsverlauf

Exkursionsweg

Wegbegleitende Hochstaudenflur

Wegränder sind häufig die artenreichsten Biotope eines Waldgebietes. Wenn sie nicht zu oft gemäht werden, entwickelt sich hier vor allem hochwüchsige, nährmineralliebende Stauden, aber auch Sträucher und Lianen. Besonders im Spätsommer und Herbst sind ihre Blüten ein wichtiges Futter für viele Nektar oder Pollen fressende Insekten. Auf unserem Spazierweg fallen besonders die großen Blüten- und Fruchtstände des Wiesen-Bärenklaus auf – wir messen beim höchsten 2,50m. Sie werden ebenso wie die der Wald-Engelwurz von Bienen, Hummeln, Schwebefliegen, Käfern und Schmetterlingen besucht.

Wald-Engelwurz (Angelica sylvestris) (Foto w.Probst, 20.8.2021)

Auch der Wasserdost liefert reichlich Nektar. Wegen der etwas tieferen Blütenkronröhren ist er vor allen für Schmetterlinge attraktiv. Wie Riesen-Schachtelhalm, Gilbweiderich und Kohl-Kratzdistel ist er Zeichen für einen feuchten Standort. Quellhorizonte sind typisch für die das Schussenbecken umrandenden Jungmoränen, in die immer wieder Lehm- und Tonschichten eingelagert sind. Neben dem befestigten Waldweg wurden zwei Gräben angelegt, um das Wasser der Quellhorizonte aufzunehmen.

Zitronenfalter (Gonepteryx rhamni) auf Kohl-Kratzdistel (Cirsium oleraceum) (Foto M. Pohl, 14.8.2021)

Der Name „Kohl“-Kratzdistel weist darauf hin, dass die Pflanzen als Gemüse genutzt werden können. Besonders die großen, weichen Grundblätter können wie Spinat zubereitet werden. Der Wurzelstock enthält reichlich Inulin und kann zu Mehl verarbeitet werden, das zum Andicken von Speisen dient. Auch der gegarte Blütenboden kann ähnlich wie Artischockenblütenstände genutzt werden. Kohl-Kratzdisteln werden in Japan angebaut. Ein weiterer Korbbühler, der Gewöhnliche Rainkohl, kann als Jungpflanze ebenfalls für Gemüse und Salate verwendet werden. Die einjährige, selten zweijährige Pflanze ist schon verblüht und überall stehen die weitgehend abgestorbenen Fruchtstände.

Ein auffälliges, häufiges Gras der Wegränder ist der Riesen-Schwingel mit langen überhängenden Rispen und großen begrannten Ährchen. Er ist typisch für feuchte Laubwälder und wächst besonders häufig in Auwäldern entlang der Wasserläufe. Zwei andere Gräser, die erst jetzt, für Gräser also ausgesprochen spät blühen, sind das Pfeifengras und die Rasen-Schmiele, die beide auf feuchten Standort hindeuten. Beim Pfeifengras ist der lange Halm knotenlos, alle Knoten finden sich an der Halmbasis. Pfeifengrashalme wurden deshalb früher zum reinigen langer Pfeifenrohre verwendet. In Norddeutschland heißt das Gras „Benthalm“. Dieser Name weist auf die Nutzung der Halme zum Aufbinden hin. Besenried wird das Gras genannt, weil man aus den Halmen früher auch Besen angefertigt hat. Pfeifengraswiesen sind typisch für teilweise trockenfallende Moore, auch entwässerte Hochmoore.

Die Rasen-Schmiele hat große, stark aufgeteilte Blütenrispen mit sehr kleinen Ährchen und sehr raue, gerillte Blätter, die im Durchlicht auffällig gestreift erscheinen. Die durchscheinenden Rillen sind die Stellen, über die sich die Blätter bei Trockenheit einrollen können. Außer auf feuchten bis nassen Wiesen, Weiden und Sümpfen gedeiht sie in feuchten, lichten Laubwäldern und in Quellfluren.

Blatt der Rasen-Schmiele (Grafik W. Probst)

Artenliste

Wiesen-Bärenklau (Heracleum sphondylium)

Wald-Engelwurz ( Angelica sylvestris)

Gewöhnlicher Wasserdost (Eupatorium cannabinum)

Gewöhnlicher Gilbweiderich (Lysimachia vulgaris)

Kohl-Kratzdistel (Cirsium oleraceum)

Sumpf-Kratzdistel (Cirsium palustre)

Gewöhnlicher Rainkohl (Lapsana communis)

Kleiner Pippau (Crepis capillaris)

Große Brennnessel (Urtica dioica)

Zottiges Weidenröschen (Epilobium hirsutum)

Schmalblättriges Weidenröschen (Epilobium angustifolium)

Gewöhnliches Hexenkraut (Circaea lutetiana)

Gewöhnliches Johanniskraut (Hypericum perforatum)

Gewöhnlicher Wirbeldost (Clinopidium vulgare)

Drüsiges Springkraut (Impatiens glandulifera)

Wasserdarm (Myosoton aquaticum)

Gewöhnliches Mädesüß (Filipendula ulmaria)

Riesen-Schwingel (Festuca altissima)

Rasen-Schmiele (Deschampsia cespitosa)

Pfeifengras (Molinia caerulea)

Brombeere (Rubus fruticosos agg.-Sammelart mit vielen schwer unterscheidbaren Kleinarten)

Kratzbeere (Rubus caesius)

Himbeere (Rubus idaeus)

Sträucher

Vogelbeere, Eberesche (Sorbus aucuparia)

Schlehe, Schwarzdorn (Prunus spinosa)

Weißdorn (Crataegus spec.)

Faulbaum (Rhamnus frangula)

Rote Heckenkirsche, Beinholz-Geißblatt (Lonicera xylosteum)

Artenreicher Baumbestand

Nach der waldökologischen Standortkartierung Baden-Württemberg ist der typische Wald des Schussenbeckens und seiner Randmöränen ein Buchenwald mit Tanne, Edellaubbäumen – also Ahorn-Arten, Ulmen, Kirschen, Linden und Eschen – Eichen und Hainbuchen. Die ebenfalls relativ häufigen Rot-Fichten und Wald-Kiefern sind vor allem auf Aufforstungsmaßnahmen zurückzuführen.

In den Bereichen in denen der Weg durch die Kronen der Laubbäume ziemlich stark beschattet ist, treten die Hochstauden am Wegrand zurück. Vor allem die dichten Kronen von einigen Winter-Linden (gekennzeichnet durch braune Haare in den Winkel der Blattadern auf der Unterseite) beschatten die Wegränder. Hexenkraut und Stinkender Storchschnabel sind häufig, in den moosreichen Nadelwaldbeständen gedeiht Wald-Sauerklee. An einigen Stellen haben sich große Bestände des einjährigen Großen Springkrautes (mpatiens noli-tangere) entwickelt, das im Gegensatz zu dem eingeschleppten Drüsigen Springkraut typisch für sehr schattige Standorte ist.

Winter-Linde und Weiß-Tanne (Foto W. Probst,20.8.2021)

Hier wachsen nebeneinander Rot-Fichte und Weiß-Tanne und wir beschäftigen uns mit den Unterschieden dieser beiden einheimischen Nadelgehölze („Fichte sticht, Tanne nicht“) und auch mit den Gattungsunterschieden von Tanne und Fichte: Für die Gattung Fichte sind die braunen Nadelstielchen charakteristisch, die nach dem abfallen der Nadeln am Zweig stehen bleiben. Für die Gattung Tanne ist die verbreiterte grüne Nadelbasis charakteristisch, die nach dem abfallen eine glatte Zweigoberfläche zurücklässt.

Gelbbauchunken (Bombina variegata)

Gelbbauchunke (Bombina vriegata) aus dem Brochenzeller Wald (Foto Lilli Schiller, 14.8.2021)

An der tiefsten Stelle des Weges, der die L 329 mit der Kreisstraße 7731 von Meckenbeuren nach Taldorf verbindet, liegen wir in einen kleineren Weg nach rechts ab. Er wird von einem Wasser führenden Graben begleitet, in dem große Bestände der Wasser-Schwertlilie stehen. In einer Wegpfütze entdecken wir Kaulquappen der Gelbbauchunke und nach genauem hinschauen sowohl in der Pfütze als auch im angrenzenden Graben die Unken selbst.

Kaulquappen der Gelbbauchunke in Wegpfütze, 20.8.2021 (Foto W. Probst)

 „Eine Gefährdung für die Vorkommen der Gelbbauchunke geht vor allem von Lebensraumverlusten aus, wie sie beispielsweise durch das Verfüllen von Tümpeln, durch Ausbau von unbefestigten Waldwegen und Rückegassen, aber auch durch natürliche Sukzession (vor allem die Verbuschung) der Pionierbiotope auftreten. Infolge einer räumlichen Verinselung, also einer Fragmentierung der Habitate (beispielsweise durch Straßen oder intensive Landwirtschaft), werden Vorkommen voneinander getrennt. Dadurch werden der genetische Austausch zwischen den Populationen und die Zuwanderung von außen eingeschränkt, was letztlich die Überlebensfähigkeit der isolierten Bestände gefährdet“.(Wikipedia)

Die Unken sind nach der Roten Liste der Bundesrepublik Deutschland stark gefährdet (2). Sie sind sowohl nach dem Bundesnaturschutzgesetz als auch nach der Fauna-Flora-Habitat-Richtlinie streng zu schützen. Innerhalb Deutschlands sind sie als „Verantwortungsart“ eingestuft.

Gelbbauchunke in einer Wegpfütze im Brochenzeller Wald (Foto W. Probst, 20.8.2021)

Die Unkenpfütze hat Verbindungen zum wegbegleitenden Graben. Dort gedeihen Hänge-Segge (Carex pendula), Gewöhnlcher Blutweiderich (Lytrum salicaria), Gewöhnliches Mädesüß (Filipendula ulmaria), Kohl-Kratzdistel (Cirsium oleraceum), Sumpf-kratzdistel (Cirsium palustre) und Pfeifengras (Molinia caerulea).

Unkenbiotop im Brochenzeller Wald 26.8.2021 (Foto W. Probst)

Botanischer Spaziergang am 10.7.2021 um den Drumlin Heidengestäud bei Raderach

LINK-NAME LINK-NAME

Titelbild: Zwerg-Hollunder, Attich (Sambucus ebulus) (Foto A. Winter)

Zur Einführung

Der Spazierweg  entspricht weitgehend der Route des letzten Jahres. In dem Protokoll vom letzten Jahr findet sich auch eine Beschreibung der Drumlin-Entstehung und ein Hinweis auf die Gebäudereste auf dem Gipfel des Hügels, die möglicherweise auf eine keltische Fliehburg zurückzuführen sind. Der Exkursionsteilnehmer und Hobbyarchäologe Rudolf Lang meint allerdings, die Reste stammten aller Wahrscheinlichkeit nach aus einer späteren Zeit und wären im Zusammenhang mit dem aufgegebenen Ort Tepfenhausen zu sehen. Der Name tritt heute noch als Gemarkungsbezeichnung in der topographischen Karte auf. Bevor wir losgehen, weise ich darauf hin, dass bei Raderach am Ende des letzten Weltkrieges ein Motorenprüfstand für die V 2-Raketen eingerichtet wurde. In diesem Zusammenhang wurden KZ Häftlinge aus Dachau als Zwangsarbeiter hierher verlegt und in einem Barackenlager unterhalb von Raderach untergebracht.

Wiese und Wegrand

Die Wiese rechts des Weges war letztes Jahr gerade zum zweiten Mal gemäht, dieses Jahr wurde sie noch gar nicht gemäht. Das vorherrschende Wiesengras, der Glatthafer, hat schon gelbe Halme, sodass die ganze Wiese ein bisschen wie ein reifes Getreidefeld aussieht. Dazwischen sieht man aber noch eine ganze Menge blühender Pflanzen und um die soll es im ersten Teil unserer Exkursion gehen. Die Teilnehmenden sammeln Wiesenblumensträuße und die verschiedenen Pflanzen werden dann auf einem Leintuch sortiert und beschriftet. Erstaunlicherweise finden sich auf der Wiese auch die typischen Getreidefeld-Pflanzen Klatsch-Mohn und Kornblume. Besonders auffällig sind die weißen Dolden von Wiesen-Bärenklau und Wilder Möhre. Vor allem die Blüten des Wiesen-Bärenklaus werden sehr gerne von verschiedenen Insekten besucht, die das offen liegende Nektarangebot schätzen, zum Beispiel Fliegen und Käfer. Wir können allerdings nur sehr wenige Tiere beobachtenund werten das als ein Indiz für den starken Rückgang der Insekten. Die Wilde Möhre ist die Stammpflanze von Möhre bzw. Mohrrübe bzw. Gelber Rübe bzw. Karotte.

Pflanzen von Wiese und Wegrand (Foto A.Winter)

Artenliste der Pflanzen von Wiese und Wegrand (zusammengestellt von Anastasia Winter)

  • Klatsch-Mohn (Papaver rhoeas)
  • Kornblume (Cyanus segetum)
  • Stumpfblättriger Ampfer (Rumex obtusifolius)
  • Gewöhnlicher Rainkohl (Lapsana communis)
  • Echte Nelkenwurz (Geum urbanum)
  • Kleinköpfiger Pippau (Crepis capillaris)
  • Gewöhnliche Schafgarbe (Achillea millefolium)
  • Wilde Möhre; Gelbe Rübe (Daucus carota subsp. carota)
  • Raue Gänsedistel (Sonchus asper)
  • Rote Lichtnelke (Silene dioica)
  • Zickzack-Klee; Mittlerer Klee (Trifolium medium)
  • Weiß-Klee (Trifolium repens)
  • Wiesen-Flockenblume (Centaurea jacea)
  • Einjähriges Berufkraut; Feinstrahl (Erigeron annuus)
  • Wald-Ziest (Stachys sylvatica)
  • Geruchlose Kamille (Tripleurospermum inodorum)
  • Kleinblütiges Springkraut (Impatiens parviflora)
  • Kleine Braunelle (Prunella vulgaris)
  • Gefleckte Taubnessel (Lamium maculatum)
  • Weiße Taubnessel (Lamium album)
  • Gewöhnlicher Dost, Oregano (Origanum vulgare)
  • Blutweiderich (Lythrum salicaria)
  • Glatthafer (Arrhenaterum elatius)
  • Wiesen-Lieschgras (Phleum pratense)
  • Wolliges Honiggras (Holcus lanatus)
  • Fieder-Zwenke (Brachypodium pinnatum)

Silphienfeld

Die neue Kulturpflanze Silphium perforatum (Verwachsenblättrige oder Durchwachsenblättrige Silphie, Becherpflanze) aus der Familie der Korbblütler wächst hier schon im vierten Jahr ohne neue Aussaat. Im Gegensatz zu Mais können diese Pflanzen bis zu zehn Jahre aus dem gleichen Stock wachsen und immer wieder geerntet werden. Ihre Biomasseproduktion ist durchaus mit Mais vergleichbar und deshalb können die Pflanzen – ähnliche wie Mais – zur Gewinnung von Silofutter oder für die Biogasproduktion eingesetzt werden. Dadurch, dass die Felder nicht brach fallen und umgebrochen werden, wird die Erosion verringert. Auf Herbizide kann ebenfalls verzichtet werden und bisher sind die Pflanzen auch nicht sehr anfällig für Parasiten. Die Pflanze ist auch relativ trockenresistent, was möglicherweise damit zusammenhängt, dass das Wasser; das in den Bechern am Blattgrund gesammelt wird, direkt aufgenommen werden kann.

Landwirte, die Silphien anbauen, erhalten eine Subvention, sie dürfen jedoch keine Pestizide einsetzen. Die Blütenstände enthalten viel Nektar und werden sehr gerne von Bienen besucht. Teilnehmer* innen berichten, dass Silphien-Honig auch schon in Oberteurings Hofläden angeboten wird. Wir können am Rand eines entfernteren Silphienfeldes einige Bienenkästen entdecken.

Pflanzliches Mimikry

Nesselblättrige Glockenblume (Campanula trachelium) (Foto A. Winter)

Die Nesselblättrige Glockenblume ähnelt in ihrem Habitus – solange die Blüten noch nicht zu sehen – sind sehr stark einem Brennnesselspross, weil ihre Blätter wirklich den Brennnesselblättern sehr ähnlich sind. Solches Brennnessel-Mimikry kennt man auch von einer ganzen Reihe anderer Pflanzenarten, zum Beispiel Taubnesseln, Hohlzahn-Arten und Wald-Ziest. Inwieweit diese Pflanzen damit tatsächlich erreichen, dass sie von Weidegängern weniger gefressen werden, ist meines Wissens bisher nicht genauer untersucht worden.

Johanniskraut

Echtes Johanniskraut (Hypericum perforatum) (Foto K. u. F. Rostan)

Zu Johanni, dem christlichen „Mitsommerfest“ am 24. Juni, an welchem Johannes des Täufers gedacht wird, blüht auch das Echte Johanniskraut.(Hypericum perforatum), wegen der scheinbar durchlöcherte Blätter – gegen das Licht sieht man Öltröpfchen in den Blättern als helle Punkte – auch Tüpfel- Johanniskraut genannt. Die Pflanze wurde früher auch als „Herrgottsblut“ bezeichnet, da beim Drücken noch geschlossener Blütenknospen ein dunkelroter Flüssigkeitstropfen sichtbar wird. Dieses „Blut“ verdankt seine Farbe dem Hypericin, einem Antrachinon-Farbstof mit medizinischer Wirkung.

Strukturformel des Antrachinon-Farbstoffs Hypericin (aus Wikipedia)

Vermutet wird, dass die antidepressive Wirkung darauf zurückgeht, dass die Wiederaufnahme der Neurotransmitter Dopamin und Serotonin gehemmt wird und diese deshalb in den Synapsen länger in höherer Konzentration vorliegen. Dafür sind neben dem Hypericin vermutlich auch noch andere Inhaltsstoffe des Johanniskrauts verantwortlich. Eine Nebenwirkung des Farbstoffmoleküls ist, dass es die Fotosensibilität des Körpers erhöht. Nach äußerlicher Anwendung kann es bei Sonneneinwirkung zur Bildung von Blasen kommen. In der Leber fördert Hypericin den Abbau verschiedener Stoffe, auch von Arzneimitteln, unter anderem von Gestagenen der Antibabypillen, deren Wirkung dadurch gemindert wird. Da sich Hypericin vor allem in Zellen krebsartiger Gewebe sammelt, kann es zur Fluoreszenzdiagnose von Krebszellen eingesetzt werden (Wikipedia).

Die ebenfalls beobachtete antivirale Eigenschaft von Johanniskrautauszügen geht vermutlich darauf zurück, dass das Hypericin bei Belichtung Sauerstoffradikale bildet, welche die Viren angreifen.

Echtes Mädesüß (Filipendula ulmaria)

Ende Juni Anfang Juni blüht nicht nur das Johanniskraut sondern auch das Mädesüß (Filipendula ulmaria). Dieses Rosengewächs mit seinen weißen Blütenrispen wächst auf feuchten Wiesen, bevorzugt entlang von Gräben aber auch an quelligen Stellen, wie hier an der Wegböschung. Der Name geht vermutlich darauf zurück, dass die süßlich duftenden Blüten früher zu automatisieren von Wein und Met verwendet wurden („Metsüße“ ). Eine andere Deutung ist „Mahdsüße“, denn nach dem Abmähen verströmen die Pflanzen einen süßlichen Duft (Wikipedia).

 Wir graben ein Stück Rhizom (unterirdischer Wurzelspross) aus. Wenn man den erdigen Geruch abzieht, kann man deutlich einen Duft wahrnehmen, der an Zahnpasta oder gewisse Kaugummisorten erinnert. Er geht auf den Inhaltsstoff Salicylsäure-Methylester zurück. Der Stoff kommt auch in anderen Pflanzen vor, zum Beispiel im Wintergrün. Unter dem Namen „Wintergrünöl“ wird er als Mittel gegen rheumatische Beschwerden aber auch als Badezusatz ich angeboten, ebenso findet er in Kaugummis und Krauttabak (Snus) Verwendung. Wegen seiner antiseptischen Wirkung wird der Stoff auch in Zahnarztpraxen eingesetzt.

Salicylsäure ist ein Stoff, der in vielen Pflanzen gefunden wird. Lange bekannt ist sein Vorkommen in der Rinde von Weiden (Gattung „Salix“). Der Stoff wirkt nicht nur als Fraßschutz sondern auch als pflanzliches Pheromon (von Pflanze zu Pflanze übertragener Signalstoff). Der Acetylsäureester der Salicylsäure, Acetylsalicylsäure, ist besonders bekannt unter dem Firmennamen Aspirin. Diese Bezeichnung wurde aus Acetylsalicylsäure und dem alten wissenschaftlichen Namen des Mädesüß Spiraea filipendula zusammengesetzt.

Blattminen

Als Blattminen bezeichnet man die Larvengänge von bestimmten Insektenarten (Kleinschmetterlinge, Kafer, Fliegen) in Blättern. Die Larevn fressen das Blattgewebe, lassen aber obere und untere Blattepidermis stehen. Es gibt flächig entwickelte Platzminen und Gangminen, die mit der Larvengröße an Breite zunehmen – wie bei dem von uns beobachteten Fall derMinierfliege Phytomyza horticola in Blättern der Rauen Gänsedistel.

Gangmine der Mücke Phytomyza horticola in Blatt der Rauen Gänsedistel (Foto A. Winter)

Gallen der Ahorn-Gallwespe

Als wir die Bergeshöhe erreicht haben, biegen wir zunächst noch nicht links ab, sondern gehen einige Schritte weiter, um den freien Blick auf dem Gehrenberg und das Hepbach-Leimbacher Ried zu genießen. Ein vom Sturm umgebogen der junger Berg-Ahorn-Baum hat an einigen seiner Blätter eigenartige Auswüchse.

Gallen der Ahorn-Gallwespe (Pediaspis aceris) mit Inquilinen (Foto A. Winter)

Diese Gallen oder Cecidien sind pflanzliche Bildungen, die von anderen Organismen ausgelöst werden. Häufig sind dies Insekten, aber auch Milben und Pilze können für die Bildung von Pflanzengallen verantwortlich sein. Dabei sind diese Organismen nur die Impulsgeber. Die Gallen werden ganz alleine von den Pflanzen gebildet und bestehen aus Pflanzenzellen.

Die Weibchen der Ahorn-Gallwespe (Pediaspis aceris) legen im Frühjahr Eier an die Blattunterseiten oder Blattstiele von Ahorn-Arten. In der Folge bilden sich kugelige Gallen, aus denen im Juli männliche und weibliche Wespen schlüpfen (geschlechtliche Generation). Nach der Paarung legen die Weibchen Eier an Berg-Ahorn-Wurzeln, die zu ihrer Entwicklung in Wurzelgallen zwei Jahre benötigen. Aus ihnen schlüpfen wieder Weibchen, die sich ohne Befruchtung fortpflanzen (parthenogenetische Generation).

Die von uns beobachten Gallen zeigen eine eigenartig unregelmäßige Form. Das kommt daher, dass sie von Inquilinen – Untermietern – befallen wurden. In diesem Fall handelt es sich um Erzwespen der Art Dichatomus acerinus. Durch diesen Befall wird das Gewebe der Galle zu weiterem Wachstum angeregt. Mit einiger Mühe schneiden wir eine der Gallen auf. Es zeigt sich, dass sie sehr hart – richtiggehend verholzt – ist, und viele Kammern enthält, in denen winzige Larven zu erkennen sind. Vermutlich haben die Gallwespen bereits die Galle verlassen und es handelt sich um die Larven der Erzwespe.

Blick auf das Hepbach-Leimbacher Ried und den Gehrenberg

Nach diesem Blick ins Detail gehen wir noch einige Schritte weiter und haben dann einen sehr schönen Ausblick auf das Naturschutzgebiet Hepbach-Leimbacher Ried und den die Gehrenberg. In dem breiten Tal verläuft am Ende der Eiszeit eine Schmelzwasserrinne, in der teilweise Seen aufgestaut wurden. Daraus entwickelte sich das heute unter Naturschutz stehende Ried. Der 752 m hohen Gehrenberg hat deutlich andere Dimensionen als die Drumlins. Er besteht zum großen Teil nicht aus eiszeitlichen Ablagerungen sondern aus Süßwassermolasse, einem Sedimentgestein des Tertiärs.“Er ist durch Erosion während der letzten Vereisung entstanden. Nach der vorletzten Vereisung haben sich in tiefer gelegenen Gebieten Schotter abgelagert, die durch kalkhaltiges Wasser verfestigt wurden. Dieser harte eiszeitliche Nagelfluh bot bei der letzten Vereisung einen erhöhten Widerstand gegen Erosion und so kam es zur Reliefumkehr: frühere Täler wurden zu Bergen“ (Exkursionsprotokoll von 2020).

Als ornithologische Besonderheit macht uns Hans-Jürgen Walliser auf den gut hörbaren fötenden Gesang eines Pirols aufmerksam.

Hochstauden am Wegesrand

Besonders auffällig ist der große Bestand des Zwerg-Hollunders (Sambucus ebulus, auch Pferde- Hollunder oder Attich), der gerade in voller Blüte steht. Im Aussehen ähnelt die Pflanze durchaus anderen Hollunder-Arten, auch die später sich bildenden schwarzen Beeren sehen sehr ähnlich aus wie die des Schwarzen Hollunders. Allerdings handelt es sich im Gegensatz zu Schwarzem Hollunder und Trauben-Hollunder um eine krautige Pflanze, deren Sprosse im Herbst absterben und jedes Jahr neu aus dem unterirdischen Rhizom austreiben. Außerdem hat der Zwerg-Hollunder einen ausgesprochen unangenehmen Geruch – und das zu Recht, denn die ganze Pflanze ist giftig und der Verzehr der Beeren kann zu heftigen Vergiftungserscheinungen führen (Übelkeit, Erbrechen Durchfall).

Nach Wikipedia wurde der Zwerg-Hollunder bereits im Altertum und später auch im Mittelalter Mittel zum Abführen schädlicher Körpersäfte eingesetzt und sogar als Gegengift bei Schlangenbissen verwendet.

Artenliste

  • Zwerg-Hollunder (Sambucus ebulus)
  • Wiesen-Bärenklau (Heracleum sphondylium)
  • Acker-Kratzdistel (Cirsium arvense)
  • Lanzett- Kratzdistel (Cirsium vulgare)
  • Kohl-Kratzdistel (Cirsium oleraceum)
  • Schmalblättriges Weidenröschen (Epilobium angustifolium)
  • Drüsiges Springkraut (Impatiens glandulifera)
  • Nesselblättrige Glockenblume (Campanula trachelium)
  • Große Brennnessel (Urtica dioica)
  • Kanadische Goldrute (Solidago canadensis)
  • Wald-Engelwurz (Angelica sylvestris)
  • Gewöhnlicher Wasserdost  (Eupatorium cannabinum)
  • Rasen-Schmiele (Deschampsia caespitosa)
  • Riesen-Schachtelhalm (Equisetum maximum)
  • Blutweiderich (Lythrum salicaria)

Bergab durch den Buchenwald

In dem ganzen Wald auf dem Drumlin Heidengestäud haben die Unwetter der vergangenen Wochen erhebliche Schäden angerichtet. Vor allem Nadelbäume (Fichten) waren betroffen, aber hier sehen wir eine große Buche, die praktisch längs gespalten wurde. Die eine Hälfte steht noch.

Nachdem die eingeschleppte Pflanze (Neophyt) Drüsiges Springkraut uns schon auf unserem ganzen Weg begleitet hat, sehen wir hier nun auch die einzige einheimische Springkraut-Art, das Große Springkraut (Impatiens noli-tangere), eine ausgesprochene Schattenpflanze. Im Gegensatz zu dem ebenfalls hier am Wegrand stehenden Kleinen Springkraut (Impatiens parvifloa) blüht es noch nicht. Das Kleine Springkraut ist – wie die beiden anderen Arten – eine einjährige Pflanze. Es ist ursprünglich in Zentralasien vom Altai bis zum Hindukusch verbreitet und wurde ebenfalls nach Mitteleuropa eingeschleppt.

Springkräuter sind mit über 1000 Arten die wichtigste Gattung der Balsaminengewächse. Außer in Australien sind sie weltweit verbreitet mit der größten Artenvielfalt in tropisch-subtropischen Gebirgen. Die bekannte Zimmerpflanze „Fleißiges Lieschen“ ist ein Springkraut (Impatiens walleriana).

Eine weitere häufige Pflanze an schattigen Waldwegen ist das Große Hexenkraut (Circaea lutetiana), das im Gegensatz zu den beiden anderen Hexenkraut-Arten keine herzförmigen Blätter hat. Charakteristisch sind die kleinen, traubig angeordneten Klettfrüchte.

Großes Hexenkraut (Circaea lutetiana). Deutlich erkennbar sind die Guttationstropfen in den Winkeln der Blattzähne. (Foto K. u, F. Rostan)

Waldsaum mit Berberitzen

Bevor wir unseren Rundgang weiter Richtung Süden fortsetzen, folgen wir dem asphaltierten Weg ein Stück Richtung Norden am Waldrand entlang. An dieser Waldseite ist eine sehr schöner, dichter Waldsaum aus Sträuchern ausgebildet. Solcher dichter Waldrandbewuchs kann den Wald bei Unwettern vor zu starken Sturmschäden schützen. Der Hauptgrund für unseren Abstecher ist das Vorkommen von Berberitzen-Sträuchern (Berberis vulgaris). Die Gewöhnliche Berberitze, wegen ihrer sauer schmeckend Früchte auch Sauerdorn oder Essigbeere genannt, ist in Europa und Asien weit verbreitet.

Berberitze (Berberis vulgaris) mit unreifen Früchten (Foto A. Winter)

Als Zwischenwirt des Getreide-Schwarzrostes, eines gefährlichen Getreideparasiten, wurden zeitweilig versucht, dieser Pilzkrankheit durch Ausrottung der Berberitzen Herr zu werden (was aber misslang).

Ich habe auf der Exkursion fälschlicherweise erzählt, dass auch die als Superfood bekannten Goji-Beeren von Berberitzen stammen würden. Das ist falsch, Goji-Beeren sind die Früchte des Bocksdorns (Gattung Lycium), die allerdings sehr ähnlich aussehen wie Berberitzen-Früchte. Aber auch Berberitzen werden im Iran und im vorderen Orient vor allem als Zutat zu Reisgerichten und Fleischspeisen geschätzt. Bei uns kann man sie vor allem getrocknet kaufen.

Artenliste

  • Gewöhnliche Berberitze (Berberis vulgaris)
  • Blutroter Hartriegel (Cornus sanguineus)
  • Gewöhnlicher Schneeball (Viburnum opulus)
  • Gewöhnliche Waldrebe (Clematis vitalba)
  • Rote Heckenkirsche (Lonicera xylosteum)
  • Faulbaum (Frangula alnus)
  • Hunds-Rose (Rosa canina)
  • Weißdorn (Crataegus spec.)

Rückweg

Zu den beiden nordamerikanischen Baumarten Rot-Eiche (Quercus rubra) und Douglasié (Pseudotsuga menziesii) finden sich ausführlichere Angaben in dem letztjährigen Exkursions-Protokoll.

Weil der Waldweg einen relativ matschigen Eindruck macht folgen wir – anders als im letzten Jahr – dem kleinen Sträßchen am Waldrand entlang. Dabei fällt uns besonders ein gelb blühender Korbblütler auf, den ich zunächst für das Gewöhnliche Habichtskraut (Hieracium lachenalii) halte. Flora incognita schlägt das Gewöhnliche Bitterkraut, auch Habichtskraut-Bitterkraut genannt (Picris hieracioides) vor, und das erweist sich als richtig. Die Pflanze kann man ganz gut an den deutlich abstehenden Hüllblättern des Blütenköpfchens und den tatsächlich sehr bitteren Geschmack erkennen.

Gewöhnliches Bitterkraut (Picris hieracioides) (Fotos K. u. F. Rostan, W. Probst)

Am Waldrand kurz vor unserem Parkplatz ist vor einer kleinen Ruhebank ein Zierpflanzenbeet angelegt worden. Dort fallen vor allem Taglilien (Hemerocallis) mit ihren großen, leuchtend orangen Blüten auf. Dazwischen blühen Färber-Hundskamillen (Anthemis tinctoria). Auch eine Yucca (Yucca filamantosa) hat ihre Blüten gerade entfaltet. Vermutlich nicht angepflanzt blühen dazwischen zahlreiche Sprosse des Echten Seifenkrautes (Saponaria officinalis).

Wie Pflanzen funktionieren

LINK-NAME LINK-NAME

Der Artikel erschien in dem mittlerweile vergriffenen UB-Heft 355 „Struktur und Funktion bei Pflanzen“ von 2010. Diese Fassung wurde an einigen Stellen erweitert, verändert bzw. aktualisiert.

Was sind Pflanzen?

Eine leichte Frage? – Aber was könnte man darauf etwa einem Außerirdischen antworten? Vielleicht: „Pflanzen sind Nichttiere.“ Also alle Lebewesen, die keine Tiere sind, sich nicht wie diese fortbewegen, fressen, mit ihren Sinnesorganen die Umwelt wahrnehmen und auf diese Umweltreize reagieren, Lebewesen die keine Nerven und Muskeln besitzen sind Pflanzen.

Wenn man das Inhaltsverzeichnis des „Strasburger, Lehrbuch der Botanik“ – seit mehr als hundert Jahren das klassische Lehrbuch der Pflanzenkunde – aufschlägt, entspricht der Inhalt dieser Vorstellung. In dem Lehrbuch werden Bakterien, Archäen, Pilze, Schleimpilze, Algen, Moose, Farne und Samenpflanzen behandelt – auch in der 37. Auflage von 2014.  Einmal wird man bei genauerem Studium feststellen, dass die vorher aufgezählten „Vorurteile“ nicht alle aufrechterhalten werden können, zum zweiten sind die Unterschiede dieser Gruppen so groß, dass es nicht sehr sinnvoll erscheint, sie unter einem Oberbegriff zu fassen.

Vielleicht sollte man es deshalb mit einer positiven Definition versuchen: „Pflanzen sind grün“, sie enthalten Chlorophyll und sind damit zur Photosynthese in der Lage. Sie können aus Wasser und Kohlenstoffdioxid mithilfe von Lichtenergie und Mineralstoffen organische Stoffe wie Kohlehydrate, Lipide, Proteine und Nukleinsäuren aufbauen. Mit dieser Definition erreicht man, dass außer den Tieren auch die Pilze und die meisten Bakterien aus dem Pflanzenreich ausgeschlossen werden. Allerdings gibt es einige wirklich „echte Pflanzen“, die das Chlorophyll verloren haben und sich als Parasiten von anderen Pflanzen oder von Pilzen ihre Nährstoffe besorgen. Ihr Pflanzenstatus ist aber – wegen ihrer großen Ähnlichkeit zu verwandten grünen Pflanzen – kaum zu leugnen. Nicht sehr überzeugend an dieser Definition ist auch, dass damit sehr unterschiedliche Lebewesen, wie Blaugrüne Bakterien, viele chlorophyllhaltige Einzeller, mehrzellige, kugelige, fädige, flächige oder kompliziert strukturierte Algen sowie Moose, Farne und Samenpflanzen in einen Topf geworfen werden.

Deshalb erscheint es sinnvoller, als „Pflanzen“ Lebewesen zusammenzufassen, die nicht nur die Fähigkeit zur Photosynthese gemeinsam haben sondern auch noch weitere deutliche Ähnlichkeiten in Strukturen und Funktionen erkennen lassen. Solche Pflanzen haben einen dreidimensionalen Körper aus vielzelligen Geweben, der am Boden festgewachsen ist und sich in die Luft erhebt. Sie haben eine große Oberfläche, mit der sie im Stoffaustausch mit der Umgebung stehen und über die sie die für die Photosynthese nötige Lichtenergie auffangen können.

Entsprechend dem schon 1969 von Robert H. Whittaker vorgeschlagenen „Fünf-Reiche-System“ der Lebewesen  werden wir uns in diesem Heft mit „Pflanzen im engeren Sinne“, also Moosen, Farnpflanzen und Samenpflanzen beschäftigen, dabei stehen die Bedecktsamigen Samenpflanzen im Mittelpunkt. Dies erscheint gerechtfertigt, da auch nach neuesten phylogenetischenn Vorstellungen ( ADL u. a. 2005) auf molekulargenetischer Basis die whittaker´schen Plantae eine monophyletische Gruppe sind.

Aus diesen Überlegungen ergibt sich eine funktionsbestimmte Definition für typische Pflanzen:

Pflanzen sind festsitzende, nachwachsende  Lichtfänger mit Durchflusssystem

Festgewachsen in der Erde

Vom Lager zum Spross

Typisch für Pflanzen ist ein Vegetationskörper, der sich in die „Grundorgane“ Sprossachsen, Blätter und Wurzeln gliedert. Farnpflanzen und Samenpflanzen sind solche „Sprosspflanzen“ (Kormophyta). Die ursprünglichsten Pflanzen, die Moose, haben recht unterschiedliche Vegetationskörper, die jedoch in jedem Fall noch keine vollkommene Gliederung in Blätter, Sprossachsen und Wurzeln zeigen. Aber sie bilden wie Sprosspflanzen aus der befruchteten Eizelle einen von Schutzhüllen umgebenen Embryo, weshalb man beide zusammen auch als Embryophyta bezeichnet.

Abb. 1 Evolution der Pflanzen. Die für das Landleben besonders wichtigen neuen Merkmale der Sprosspflanzen sind am Beispiel von Rhynia dargestellt (Abb. teilweise aus Probst, W., Schuchardt,P. (Hrsg.): Biologie Lehrbuch für die S II, 584 S., Duden-Paetec, Berlin 2007)

Die ersten Pflanzen, die sich deutlich in den Luftraum erhoben, entstanden vor mehr als 400 Millionen Jahren,  im Silur. Diese Urfarne bestanden, wie etwa in den Gattungen Cooksonia und Rhynia, aus gabelig verzweigten Achsen, die einige Dezimeter hoch werden konnten (Bell, Hemsley 2000, Abb. 2). Bei der Differenzierung in Sprossachsen, Blätter und Wurzeln blieben die ursprünglichen Gewebe – Bildungsgewebe, Abschlussgewebe, Grundgewebe, Leitgewebe, Festigungsgewebe – erhalten. Sie sind nur entsprechend den unterschiedlichen Funktionen der verschiedenen Grundorgane jeweils anders angeordnet (Kasten Grundorgane).

Grundorgane der Sprosspflanzen

Abb. 2 Grundorgane der Sprosspflanzen

Sprossachsen

Sprossachsen ähneln in ihrem Aufbau deutlich den ursprünglichen Achsen der Urfarne. Sie dienen dazu, die Assimilations- und Transpirationsorgane, die Blätter, im Luftraum zu positionieren. Dazu benötigen sie je nach Höhe eine größere oder kleinere Biegungsstabilität, die durch besondere Festigungsgewebe und Einlagerung von Lignin in die Zellwände erreicht wird. Außerdem müssen durch Sprossenachsen Stoffe über größere Distanzen transportiert werden (Wasser- und Assimilatetransport, Transport von Mineralstoffen, Hormonen usw.). Sie wachsen über  Bildungsgewebe (Meristeme) an ihren Spitzen. Zunächst ruhende Meristeme in tiefer liegenden Bereichen (Knospen) führen, wenn sie aktiviert werden, zur Ausbildung von Seitensprossen (Zweigen).

Die Sprossachsen vieler Pflanzen sind zu sekundärem Dickenwachstum in der Lage, das von einem zylinderförmigen Bildungsgewebe, dem Kambium, ausgeht.

Blätter

Laubblätter sind Organe der Photosynthese und der Transpiration. Im Gegensatz zu Sprossachsen haben sie in aller Regel ein sehr begrenztes Spitzenwachstum, das später durch basales Wachstum ergänzt wird. Sie erreichen relativ schnell ihre endgültige Größe. Sie sind im typischen Fall in Stiel und Spreite gegliedert und zeigen eine deutliche Oben/Unten-Differenzierung der Gewebe als Angepasstheit an die Ausrichtung senkrecht zum Lichteinfall. Die Ausgestaltung der Blattorgane zeigt eine sehr große Vielfalt und viele Pflanzenarten kann man an der Form ihrer Blätter erkennen. Diese morphologische Vielfalt setzt sich in bestimmtem Umfang auch noch innerhalb einer Art und sogar innerhalb eines Individuums fort. Nicht selten kommt es zu einer großen Variationsbreite zwischen Jungendblättern und Altersblättern, Sonnenblättern und Schattenblättern usw. .          ).

Typische Bildungen der Blattepidemis sind die Spaltöffnungen, die aus zwei meist bohnenförmigen Zellen bestehen, die eine Öffnung umschließen, die je nach äußeren und inneren Bedingungen geöffnet und geschlossen werden kann. Sie erlauben den Pflanzen eine Regulation des Gasaustausches, insbesondere der Transpiration von Wasserdampf und der Aufnahme von Kohlenstoffdioxid. Entsprechend ihrer Funktion als Transpirations- und Photosyntheseorgane sind Blätter in der Regel dorsiventral organisiert und senkrecht zum Lichteinfall hin ausgerichtet. Die Epidermis der Blattoberseite enthält keine Spaltöffnungen, nach innen schließt an die obere Epidermis ein Gewebe aus zylinderförmigen, dicht gepackten Zellen an. Dieses Palisadenparenchym enthält besonders viele Chloroplasten. Zur Blattunterseite hin folgt das lockere Schwammparenchym, zwischen dessen rundlichen Zellen große Interzellularen ausgebildet sind, die direkt mit den Poren der Spaltöffnungen in der unteren Epidermis  in Verbindung stehen und so dem effektiven Gasaustausch dienen. Von diesem Grundaufbau eines Laubblattes gibt es allerdings sehr viele Abweichungen.

Wurzeln

Während Sprossachsen und Blätter in der Regel oberhalb der Bodenoberfläche gebildet werden, sind Wurzeln die im Boden liegenden Teile der Pflanzen. Neben der Stoffaufnahme dienen sie der Verankerung der Pflanzen und damit ihrer Standfestigkeit. Entsprechen dieser Funktionen tragen sie  keine Blätter und bilden auch keine Spaltöffnungen aus. Die Anordnung des mechanischen Gewebes im Zentrum stärkt die Zugfestigkeit und nicht die Biegungsstabilität. Meist handelt es sich um sehr stark verzweigte Organe, die durch diese starke Verzweigung eine große Oberfläche bilden. Diese Oberfläche wird zusätzlich an den Wurzelspitzen durch sogenannte Wurzelhaare – Auswüchse von Wurzelhaut-(Rhizodermis -)Zellen –  erhöht. Nur über diese vordersten Wurzelspitzen können die Pflanzen Wasser und Mineralstoffe aufnehmen. Bei ihrem Vordringen in den Boden werden die empfindlichen Wurzelspitzen von einer Wurzelhaube (Kalyptra) aus ständig nachwachenen Zellen geschützt.

Wie die Sprossachsen haben viele Wurzeln die Fähigkeit zum sekundären Dickenwachstum.

Sekundäres Dickenwachstum

Die kontinuierliche Verdickung der Achsenorgane ist für anhaltend wachsende große Pflanzen aus zwei Gründen wichtig:

  • zur Sicherung der Stabilität und
  • zur Gewährleistung der Transportkapazität

Im Gegensatz zu dem primären Dickenwachstum, das von den Apikalmeristemen ausgeht,  ist für das sekundäre Dickenwachstum ein zylinderförmiges Meristem im Achsenorgan, ein Kambium, verantwortlich. Es kann entweder als Restmeristem des Vegetationspunktes erhalten bleiben oder sich sekunär aus bereits differenzierten Zellen neu bilden.

Bei Einkeimblättrigen Bedecktsamern ist sekundäres Dickenwachstum selten. Die sprichwörtlich schlanken Palmenstämme sind ein Beispiel dafür, dass selbst baumförmige Pflanzen ohne sekunäres Dickenwachstum auskommen können, allerings nur mit einem sehr ausgeprägten primären Dickenwachstum. Bei den Wurzeln umgehen viele Einkeimblättrigen das Problem dadurch, dass immer wieder neue sekundäre, sprossbürtige Wurzeln gebildet werden.

Abb. 3 Auf der linken Seite der schematisch dargestellte Aufbau einer typischen Sprosspflanze mit den Grundorganen Wurzeln, Sprossachsen und Blätter, auf der rechten Seite verschiedene Sonderformen: zwei chlorophyllfreie Parasiten, eine winzige Schwimmblattpflanze, eine Unterwasserpflanze fließender Gewässer mit starker Strömung (Blütentang – Podostemaceae) sowie eine Wüstenpflanze mit maximalem Verdunstungsschutz durch kugelige Oberfläche (Blütentang nach Tulasne 1852 aus Bell 1994)

Metamorphosen

Komplexe Evolutionsschritte sind nicht umkehrbar oder wiederholbar. Dies gilt jedoch nicht für den Funktionswandel. So kennt man im Pflanzenreich sehr viele Beispiele dafür, dass sich aus Sprossachsen (erneut) flache blattähnliche Organe gebildet haben und zwar in der Regel bei Pflanzen, die vorher aus anderen evolutionären Gründen ihre Blätter verloren haben. Am häufigsten kommt es zu einem solchen Blattverlust bei Pflanzen trockener Standorte (Xerophyten), die dadurch eine Verringerung der transpirierenden Oberfläche erreichen. Wenn später unter günstigeren Bedingungen der Besitz blattähnlicher Organe wieder von Vorteil wäre, kommt es jedoch nicht zu einer „Regeneration“ der verlorenen Blätter, vielmehr bilden sich aus Sprossachsenabschnitten „neue“ Blätter (Phyllokladien). Der Weg, von gefiederten Blättern wieder zu gnzrndigen Blattern zu kommen, führt über den Verlust der Blattspreite und die Verbreitrung des Blattstiels (Phyllodien, mehrfach bei der Gattung Acacia)

Besonders charakteristische Blattmetamorphosen, auf die schon Goethe aufmerksam gemacht hat, stellen die Blütenorgane dar. Unterirdische Sprossabschnitte können Wurzeln sehr ähnlich werden. Von echten Wurzeln unterscheiden sie sich jedoch oft durch kleine Schuppenblättchen und durch die Art der Verzweigung. Viele solcher unterirdischer Sprossachsen, die wie Wurzeln aussehen, sind uns recht vertraut, etwa die Rhizome (Erdsprosse) der Quecken, des Giersch oder der Winden.

Man spricht auch von „Metamorphosen“, wenn sich Grundorgane zu „neuen Organen“ umbilden, z. B. zu Dornen oder zu Ranken. Dabei sind Spross- und Blattdornen häufig, Wurzeldornen kommen nur selten vor. Dasselbe gilt für Sprossranken und Blattranken, Wurzelranken sind selten, Haftwurzeln (Efeu!) häufiger.

Abb. 4 Metamorphosen von Grundorganen

Emergenzen, Haare, Drüsen

Neben den Sonderstrukturen aus umgebildeten Grundorganen bilden Pflanzen auf ihren Oberflächen und auch im Inneren eine Vielfalt von Spezialstrukturen aus: Im Gegensatz zu Dornen sind Stacheln  keine umgebildeten Grundorgane sondern Auswüchse oberflächennaher Gewebe. Haare entstehen aus einzelnen Oberflächenzellen, die sich jedoch mehrfch teilen können. Sie konnen rein mechanische Funktionen erfüllen, z. B. dem Verdunstungsschutz oder dem Lichtschutz dienen oder als kompakte Strukturen auch als Kletterhilfen. Besonders wirksame Fraßschutzeinrichtungen sind die Brennhaare der Brennnessel. Von manchen Haarzellen werden etherische Öle produziert (Drüsenhaare). Innere Drüsen sind oft mehrzellige Gebilde, die ihre Sekrete in interzellulare Hohlräume abscheiden. Sonderzellen in Geweben (Idioblasten) können der Stoffspeicherung oder der Ausscheidung dienen. Auch Harze und Milchsäfte können in speziellen Zellen im Inneren gebildet werden. Solche sogenannten sekundären Pflanzenstoffe sind für die Nutzung der Pflanzen als Heilkräuter oder Gewürze von Bedeutung.

Abb. 5 Emergenzen, Haare, Drüsen. 1 Papillenbildung bei Blütenblattepidermis vom Stiefmütterchen, 2 Klimmhaar des Hpfens, 3 Sternhaar einer Königskerze, 4 Brennhaar der Brennnessel mit mehrzelligem Sockel, 5 Drüsenhaar einer Minze,6 Drüsenhaar vom Lavendel, 7 Drüse vom Johanniskraut

Lichtfänger und Produzenten

Photoautotrophie

Das hervorragende gemeinsame Merkmal der Pflanzen ist, dass sie Lichtenergie zum Aufbau von organischen Bau- und Betriebsstoffen aus anorganischen Stoffen nutzen können (Photosynthese, vgl. z. B. UB 411, 328, 320, 249, 120, 35,). Sie fressen nicht, sie produzieren ihre Nährstoffe – Kohlenhydrate, Proteine, Lipide – selber und  die Energie dazu liefert das Sonnenlicht. Dabei gelingt Pflanzen nicht nur die Assimilation von anorganischen Kohlenstoff sondern auch von Nitraten, Phosphaten und Sulfaten. Ähnlich wie Photovoltaikanlagen eine möglichst große dem Licht zugewandte Oberfläche benötigen, gilt dies auch für die „Photovoltaikanlage grüne Pflanze“, ihre Panele sind die grünen Blätter.

Diese primäre Produktion von organischen Stoffen macht sie – zusammen mit Algen und vielen Prokaryoten – zu Primärproduzenten, von denen die Stoffkreisläufe und Energieflüsse in allen Ökosystemen und in der gesamten Biosphäre ausgehen.

Dabei darf man allerdings nicht unterschlagen, dass die Pflanzen – genau wie alle anderen Lebewesen – für den lebenserhaltenden Energieumsatz Nährstoffe benötigen. Sie können diese Stoffe jedoch – im Gegensatz zu Tieren und vielen anderen Lebewesen – selbst herstellen, allerdings nur in Zellen mit Chloroplasten. Einige Pflanzen haben keine chloplastenhaltigen Zellen mehr und leben als Parasiten von anderen Pflanzen oder von Pilzen. Alle Pflanzen haben viele chloroplastenfreie Zellen und Gewebe, insbesondere ist das ganze Wurzelsystem normalerweise chloroplastenfrei und muss von den grünen oberirdischen Pflanzenteilen versorgt werden.

Primärstoffwechsel und Sekundärstoffwechsel

Wichtigstes Organell des aufbauenden (anabolen) Stoffwechsels sind die Chloroplasten, wichtigstes Organell des abbauen (katabolen) Stoffwechsels die Mitochondrien. Für die Lebensfunktionen grundsätzlich wichtige Stoffwechselwege fasst man als „Primärstoffwechsel“ zusammen. Von Zwischenprodukten (Metaboliten) des Primärstoffwechsels gehen gerade bei Pflanzen eine überaus große Anzahl von Art zu Art und von Verwandtschaftsgruppe zu Verwandtschaftsgruppe unterschiedlicher Stoffwechselwege aus, die man als Sekundärstoffwechsel bezeichnet . Bis heute kann man sich keine rechte Vorstellung von der Funktion der unübersehbaren Vielfalt dabei produzierter, meist flüchtiger organischer Substanzen machen. Ein Teil dieser Substanzen wirkt als Signalstoff, ein weiterer Teil dient der Abwehr von Fressfeinden. Zum Teil handelt es sich wohl nur um Ausscheidungen überflüssiger Stoffe. Global-ökologisch spielen solche gasförmigen Ausscheidungen von Pflanzen (VOCs von „volatile organic compounds“) eine wichtige Rolle, denn sie können sekundär organische Aerosole bilden, die die Wolkenbildung fördern (Probst 2009 in UB 349).

Stofftransport  im Durchflusssystem

Voraussetzung für einen geordneten Stoffumsatz in einem Organismus ist, dass die Ausgangstoffe an den Reaktionsorten zur Verfügung stehen und dass die Endprodukte abtransportiert werden. Für die Stoffverteilung in den Pflanzen ist – anders als bei den durch ein Kreislaufsystem gekennzeichneten Tieren – der Wasserdurchfluss von den Wurzeln in die Blätter entscheidend. Auch Tiere müssen zwar ständig Wasser aufnehmen, doch im Vergleich zur im Körperkreislauf zirkulierenden Flüssigkeitsmenge ist diese Aufnahme gering – beim Menschen stehen 2-3 l täglicher Flüssigkeitsaufnahme 7000 bis 8000 l durch den Blutkreislauf bewegter Flüssigkeit gegenüber. Bei Pflanzen ist es genau umgekehrt. Auch hier gibt es in gewissem Umfang einen Kreislauf des Wassers zwischen Xylem und Phloem (Abb. 7), im Vergleich zum Wasserstrom, der vom Boden durch die Wasserleitungsbahnen bis zur Verdunstung in den Blättern führt, ist die dabei umgesetzte Menge aber sehr gering.

Abb. 6 Kreislaufsystem der Tiere und Durchflusssystem der Pflanzen

Die Notwendigkeit eines solchen Durchflusssystems hängt einmal mit der Aufnahme von Nährmineralien aus dem Boden zusammen. Für die Produktion organischer Nähr- und Baustoffe benötigen die Pflanzen außer Kohlenstoff, Wasserstoff und Sauerstoff vor allem die Elemente Stickstoff,Phosphor, Schwefel, Kalium, Calcium, Magnesium und Eisen, die als Mineralstoffionen mit der Bodenlösung aufgenommen und mit dem Wasserstrom an die Syntheseorte transportiert werden. Dies ist ein „positiver“ Grund für den Wasserdurchfluss.

Zum anderen ist die Kohlenstoffaufnahme nur über die oberirdischen Pflanzenteile aus der Luft möglich. Dabei ist das Kohlenstoffdioxid nur in sehr geringen Mengen in der Luft enthalten und um dieses wichtigste Gerüstelement aller organischen Verbindungen in ausreichender Menge aufnehmen zu können, ist eine große Oberfläche notwendig. Eine große aufnehmende Oberfläche bedeutet aber gleichzeitig eine große Oberfläche für die Wasserverdunstung. Dies ist ein „negativer“ (oder besser unvermeidlicher) Grund für den Wasserdurchfluss.

Eine große, dem Licht zugewandte Oberfläche ist – wie schon erwähnt – auch für die Photosynthese wichtig, zumal Pflanzen festgewachsen sind und dem Licht nicht hinterher laufen – höchstens ein bisschen hinterherwachsen – können. Die Verbindung mit der Wasserverdunstung ist dabei allerdings nicht ganz so eng wie bei der CO2-Aufnahme, da eine weitgehende Abdichtung der Oberflächen den Lichtfang nicht behindern würde.

Grundlage für alle Transportvorgänge in Pflanzen sind aktive oder passive Transporte durch Membranen, für Transporte über größere Entfernungen stehen spezielle Leitungsgewebe zur Verfügung.

Wasser- und Mineralstoffaufnahme in der Wurzel

Durch Diffusion bzw. Osmose wird Wasser an den Wurzelspitzen einmal in die Wurzelhaarzellen zum anderen kapillar in die Zellwände aufgenommen und osmotisch oder kapillar bis zu den Zellen der Endodermis geleitet. Dort verhindert eine Imprägnierung der seitlichen Endodermiszellwände einen weiteren kapillaren Wassertransport . Alles Wasser muss über die Membranen und das Plasma der Endodermiszellen geleitet werden. Dies gilt auch für die im Wasser gelösten Mineralstoffionen, die selektiv durch Zellmembranen aufgenommen werden, sowohl durch passiven als auch durch Stoffwechselenergie umsetzenden aktiven Transport.

Xylemtransport

Über die Endodermis gelangt das Wasser in die Leitbündel und in die bereits abgestorbenen röhrenförmigen Tracheen und Tracheiden. Treibende Kraft für den Weitertransport ist das negative Wasserpotenzial der Atmosphäre, das sich über die Spaltöffnungen, die Interzellularen der Blätter, die Kapillaren der Mesophyllzellwände und die Mesophyllzellen auf die Wassersäulen in den Leitungsbahnen auswirkt.

Dieser negative Druck kann jedoch nur zum Transport genutzt werden, wenn die Wasserfäden in den Tracheiden und Tracheen nicht abreißen. Dafür sind vor allem drei Sachverhalte entscheidend (Christian, Probst in UB 255,2010):

  1. Die Kohäsionskraft zwischen den Wassermolekülen
  2. Die Adhäsionskraft der Wassermoleküle an die Zellwände und Zellwandkapillaren
  3. Die Oberflächenspannung in den Zellwandkapillaren am Ende der Wassersäule

Dies würde im Prinzip ausreichen, um Wasser weit höher als 100 m zu transportieren. Da es sich jedoch nicht um reines Wasser handelt, kommt es in den Leitungsbahnen über kurz oder lang trotzdem zur Gasblasenbildung (Cavitation). Nach Kanduč et al. 2020 hängt dies mit wasserunlöslichem Lipiden in den Wasserleitungsbahnen zusammen. Werden solche Cavitäten zu groß, reißt die Wassersäule ab. Dadurch wird die Stärke der  theoretisch maximal tolerierbaren Unterdrücke von -1000 bar in reinem Wasser auf weniger als -100 bar reduziert..

Phloemtransport

Abb. 7 Druckstromtheorie – der kleiner Wasserkreislauf der Pflanzen

Auch für den Ferntransport der bei der Photosynthese produzierten Assimilate gibt es ein spezialisiertes Leitungssystem. Diese organischen Stoffe werden in wässriger Lösung über die Siebröhren bzw. Siebzellen des Phloems transportiert. Im Gegensatz zum Wasserstrom, der stets von den Wurzeln zu den Blättern fließt,  kann die Assimilatelösung bedarfsabhängig in beiden Richtungen fließen. Über 90% des Siebröhrensaftes besteht aus Zuckern, v.a. aus Rohrzucker (Saccharose), außerdem sind Aminosäuren, Amide, Nucleotide (viel ATP) und organische Säuren enthalten. Motor des Transports ist der hohe osmotische Wert am Ausgangspunkt. Dadurch strömt Wasser in die Siebröhre ein. Der hydrostatische Druck führt dazu, dass Wasser am Ende der Leitung ausgepresst wird und Wasser von der Seite in die Siebröhren mit der höheren Konzentration nachfließt (Druckstrommodell). Für diesen Transport sind die siebartig durchbrochenen Querwände von Bedeutung.

Normalerweise werden die Assimilate in die wachsenden Meristeme an Spross- und Wurzelspitzen und in Speicherorgane (Knollen, Rüben) transportiert,  überschüssiger Phloemsaft kann auch über besondere Drüsen (Nektarien) ausgeschieden werden. Vermutlich gehen die Nektardrüsen der Blüten auf solche Zucker-Ausscheidungsdrüsen zurück.

Blattläuse zapfen das Phloem an. Wenn sie ihre Rüssel aus den Siebröhren herausziehen, fließt der unter Druck stehende Phloemsaft noch einige Zeit nach und die überzieht die Blätter mit einem Zuckerfilm.

Durchlüftungssysteme

In den meisten pflanzlichen Gewebe schließen die Zellen nicht dicht aneinander, sie lassen vielmehr zwischen sich ein System aus Zwischenräumen (Interzellularen) frei, das letzten Endes über die oberflächlichen Spaltöffnungen mit der Außenluft in Verbindung steht. Der Stoffaustausch erfolgt über Diffusion. Dies gilt auch für Sumpf- und Wasserpflanzen und ihre unterirdischen bzw. untergetauchten Teile. Den langen Stängel der Seerosenblätter kann man als Schnorchel für das im Teichboden sitzende  Rhizom auffassen.

Beim Mikrokospieren pflanzlicher Gewebe stört häufig der Luftgehalt in der Interzellularen, weil er im Nasspräparat wegen der anderen Lichtbrechung der Luft als schwarz umrandetes Objekt sichtbar wird. Deshalb ist es sinnvoll, größere Pflanzenorgane, z. B. Blätter oder Sprossachsen, bevor man sie mikroskopiert, in einer Saugflasche zu „entlüften“.

Nachwuchs

Wachsen“ ist ein Begriff, der besonders mit Pflanzen verbunden wird, die man ja deshalb auch als „Gewächse“ bezeichnet. Wenn man Zweige abschneidet, wachsen sie nach, man kann Hecken hundertmal schneiden, Rasen tausendmal mähen  und Feldhecken alle 8 Jahre „auf den Stock setzen“. Aus Knospen treiben diese gestutzten Pflanzen immer wieder neue Sprosse. Früher waren Niederwälder so ausdauernde Brenn- und Nutzholzlieferanten, nachwachsenden Rohstoffquellen. Eiben und Buchsbäume  wurden von den Gärtnern der Barockgärten zu Skulpturen gestutzt.

Nachwuchs produzieren Pflanzen  häufig asexuell , z. B. über Ausläufer, Ableger, Brutknospen, Brutzwiebeln.  Nachwuchs kann aber auch sexuell hervorgebracht werden, bei ursprünglichen Pflanzen über einzellige Sporen, Samenpflanzen schützen ihren Nachwuchs im Samen, ähnlich wie Reptilien ihre Jungen  in Eiern mit Eihüllen.

Die Entwicklung einer Pflanze lässt sich in 3 Phasen einteilen:

  • embryonale Phase
  • Wachstums und Reifephase
  • Reproduktive Phase und Seneszenz 

Bei einjährigen Pflanzen kann dieser Lebenslauf innerhalb weniger Monate oder sogar Wochen ablaufen. Das wichtigste pflanzliche Versuchsobjekt, die Acker-Schmalwand (Arabidopsis thaliana) ist ein Beispiel dafür. Bei Bäumen wird die dritte Phase oft erst nach Jahren oder sogar Jahrzehnten erreicht und kann dann nahezu unbegrenzt anhalten.

Entwicklung des Embryos

Abb. 8 Entwicklung des Pflanzenembryos bis zur Keimung (nach Taiz, Zeiger, Physiologie der Pflanzen, Spektrum 2000)

Die ersten Entwicklungsschritte bis zur Anlage der Grundorgane laufen schon im Samen ab. Die Zygote streckt sich zunächst auf die etwa dreifache Länge, dann teilt sie sich inäqual. Aus der kleineren Zelle wird der Embryo (Keimling), die größere bildet den Suspensor, der den Embryo mit dem Nährgewebe der Samenanlage verbindet. Am Ende der Embryonalentwicklung steht das Herzstadium, in dem die Keimlingsstrukturen weitgehend festgelegt sind. An den beiden Endabschnitten der apikal-basalen Achse liegen die primären Meristeme, die als selbstregulierende Stammzellensysteme alle postembryonalen Strukturen der Pflanzen hervorbringen. Dazwischen liegen die Keimwurzel, das Hypokotyl (Sprossachse zwischen Wurzel und Keimblättern) und die Keimblätter. Die weitere Entwicklung führt im Prinzip immer wieder zu denselben Differenzierungen und damit auch zu denselben Strukturen (Wurzeln, Sprossachsen, Blätter). Diese Module können allerdings – z. B. bei der Blütenbildung (.s.u.) – erheblich variiert werden. Diese Entwicklung wird von Entwicklungsgenen gesteuert und von Umweltfaktoren und endogenen Faktoren moduliert.

Entwicklungskontrolle durch Genboxen

Alle pflanzlichen Entwicklungs- und Differenzierungsvorgänge werden von Phytohormonen gesteuert. Dazu müssen zunächst die Enzyme produziert werden, die für die Hormonsynthese notwendig sind. Gleichzeitig müssen auch Gene aktiviert werden, deren Produkte für die Empfindlichkeit einer Zelle gegenüber einem Hormon zuständig sind, z. B. die Rezeptormoleküle in der Zellmembran und die Proteine für eine mögliche Signalkette im Cytoplasma. Auch für die Steuerung der Translation im Zellkern und die anschließende Aktivierung oder Hemmung der Translationsprodukte können spezielle Genprodukte notwendig sein.

Alle Entwicklungsschritte werden dadurch möglich, dass von den Genen, die in allen Körperzellen vorhanden sind, einem genauen zeitlich–räumlichen Muster folgend immer nur ganz bestimmte Gene exprimiert werden. Dieses Muster der Entwicklung wird durch eine Hierarchie von Kontrollgenen möglich, die jeweils für Transkriptionsfaktoren codieren, die andere Gene an- oder abschalten können. Für die DNA-Bindung dieser als Transkriptionsfaktoren wirkenden Genprodukte ist eine besondere Proteindömäne verantwortlich, der einem bestimmten Genabschnitt entspricht, der als „Box“ bezeichnet wird. Bei diesen Boxen handelt es sich um sehr konservative Genabschnitte, die sich über lange Evolutionsabschnitte nicht verändert haben und die zum Teil allen Eukaryoten gemeinsam sind (Seyffert 2003, S. 699 ff)

Organidentitätsgene steuern die Bildung der Blütenorgane

Eine für Pflanzen besonders bedeutende Proteindomäne ist die MADS-Box. Mittlerweile kennt man über 100 verschiedene MADS-Box-haltige Transkriptionsfaktoren, die in allen Reichen der Lebewesen vorkommen. Der Name stellt die Anfangsbuchstaben von vier Genprodukten dar, von denen zwei bei Pflanzen, eines bei der Bäckerhefe und eines beim Menschen gefunden wurden. Erste erfolgreiche Untersuchungen zur Wirkung von Kontrollgenen bei Pflanzen wurden an MADS-Box-Genen durchgeführt, die für die Entwicklung des Blütenbereiches wichtig sind und Organidentitätsgene genannt wurden.

Als Blütenorgane bezeichnet man die wirtelig angeordneten Teile einer Blüte, die von außen (bzw. unten) nach innen (bzw. oben) als Kelchblätter, Kronblätter, Staubblätter und Fruchtblätter (meist verwachsen zum Stempel) bezeichnet werden. Schon Goethe war aufgefallen, dass es bei der Blütenbildung ab und zu „Verwechslungen“ zwischen den Blütenwirteln kommen kann, dass z. B. aus Staubblättern Kronblätter werden und „gefüllte“ Blüten entstehen.

Die Entwicklung zu einer Blüte beginnt am Vegetationspunkt einer Sprossachse. Das Meristem an der Sprossspitze bildet – induziert durch äußere oder innere Faktoren – keine Laubblattanlagen mehr, sondern Anlagen von Blütenorganen.  Dabei kann man drei Hierarchieebenen von Genen unterscheiden. Auf der untersten Ebene geht es um die Ausbildung der verschiedenen Blütenwirtel und dabei werden die Organidentitätsgene wirksam (Abb. 9):

Gen A wird in den beiden äußeren Wirteln exprimiert, die zu Kelch- und Kronblättern werden.

Gen B wird in den Wirteln zwei und drei exprimiert, die Kronblätter und Staubblätter bilden.

Gen C wird in den beiden inneren Wirteln exprimiert, aus denen Staubblätter und Fruchtblätter hervorgehen.

Die Wirkungsweise der Organidentitätsgene kann man sich so vorstellen, dass die Gene A, B und C jeweils nur für eine Untereinheit eines aus zwei Untereinheiten zusammengesetzten Transkriptionsfaktors codieren: A-A, A-B, B-C, C-C. Man kann in diesem Fall von einer kombinatorischen Genregulation sprechen. Die Zusammensetzung des Dimers entscheidet darüber, welche anderen Gene von dem Transkriptionsfaktor aktiviert werden. Besteht im Beispiel ein Dimer nur aus den beiden Untereinheiten A, werden Kelchblätter produziert, besteht es aus A und B, bilden sich Kronblätter aus, besteht es aus B und C, werden Staubblätter gebildet und besteht es aus zwei C´s, entstehen Fruchtblätter.

Wenn nun durch eine Mutation der Promotor, der normalerweise Gen C aktiviert, an Gen A gekoppelt wird, bilden sich keine Staub- und Fruchtblätter, sondern nur Kelch- und Kronblätter aus. Dieses Grundmuster wird durch weitere Organidentitätsgene noch etwas differenziert, außerdem gilt es nur für einen Teil der Bedecktsamer.

Abb. 9 Blühinduktionsgene steuern die Blütenbildung

Licht spielt als entwicklungssteuernder Faktor bei Pflanzen eine entscheidende Rolle. Lichtabhängige Entwicklungsvorgänge (Photomorphogenese) können von Blaulicht oder Rotlicht abhängen.

Keine Vorurteile gegenüber Pflanzen !

Gängige Vorurteile sprechen Pflanzen tierliche Fähigkeiten ab: Pflanzen sind bewegungslos, sie haben keine Sinnesorgane, kein Skelett und keine Muskeln, sie haben kein Nervensystem und sie können nicht Kommunizieren und Kommunikationen verarbeiten („Denken“). Gerade bei Kindern führen solche Vorstellungen dazu, dass Pflanzen nicht unbedingt als Lebewesen eingestuft werden, deshalb sollen sie etwas ausführlicher widerlegt werden.

Bewegungslos?

Wenn man die reife Frucht eines Springkrauts anfasst, spürt man eine Reaktion zwischen den Fingern, die fast an einen Muskel erinnert. Die Frucht platzt auf, indem sich die Fruchtklappen nach innen rollen und die Samen werden ausgeschleudert. Allerdings liegen dieser Bewegung keine Muskelzellen und auch kein Nervengewebe zugrunde, denn diese spezialisierten Zellen kommen bei Pflanzen nicht vor. Trotzdem sind Reaktionen auf Umweltreize und die Verarbeitung solcher Reize möglich und in einigen Fällen führt dies auch zu auffälligen und schnellen Bewegungen.

Krümmen, Klettern, Öffnen und Schließen – Wachstumsbewegungen

Viele beobachtbare Bewegungen von Pflanzen, die auch Reaktionen auf Umweltreize darstellen können, gehen auf Wachstumserscheinungen zurück. Wenn sich in der zylinderförmigen Sprossachse einer Pflanze die wachsend  Zellen auf der einen Seite stärker strecken als auf der anderen Seite, kommt es zu einer Krümmung. Wenn diese Streckungen periodisch um die Achse herum stattfinden, kommt es zu Windebewegungen. So kann das Sprossende einer Zaunwinde oder einer Bohnenpflanze kreisende Bewegungen ausführen, die wie das Suchen nach einer Unterlage aussehen. Ist diese Unterlage gefunden, wird sie relativ schnell umwunden, denn die Pflanze kann den Widerstand fühlen. Noch komplizierten wird es bei der Aufrollbewegung von Ranken. Auch hier wandert das Streckungswachstum um die Sprossachse, aber – da die Ranken am Vorder- und am Hinterende fixiert sind – muss mindestens ein Umkehrpunkt eingebaut werden. Bei der Steuerung dieser Bewegungsvorgänge von Windepflanzen spielen sowohl endogene Rhythmen als auch Umweltreize, z. B. Berührungsreize, eine wichtige Rolle.

Noch weiter verbreitet ist die Hinwendung pflanzlicher Sprossachsen zum Licht, also eine einfache Krümmungsbewegung in Richtung einer Lichtquelle. Umgekehrt zeigen Wurzeln oft eine Krümmung vom Licht weg. Solche Wachstumsbewegungen, die von einem Außenreiz ausgelöst werden, nennt man auch Tropismen und je nach Reiz spricht man von Photo-, Geo- oder Hydrotropismen, die positiv oder negativ sein können oder auch das Mittel zwischen zwei Reizeinflüssen einhalten können (Plagiotropismus), z. B. beim horizontalen Wachstum von Seitenzweigen. Nicht selten führen Pflanzenorgane richtiggehende Wachstumsprogramme durch. Die Blütenstiele von Mohnpflanzen z.B. krümmen sich vor dem Aufblühen stark ein, bei Auflühen strecken sie sich wieder. Eine ähnliche Abfolge von Krümmung und Streckung kann man bei den Blütenstände zu flach nichts beobachten.sdd

Vergleicht man solche Wachstumsbewegungen von Pflanzen mit Bewegungen von Tieren, so ergeben sich deutliche Unterschiede. Insbesondere sind diese auf Wachstumsvorgänge beruhende Bewegungen alle sehr langsam, sie können von uns nur indirekt wahrgenommen werden und sie sind eher mit den Form- und Proportionsveränderungen vergleichbar, die im Laufe der Keimesentwicklung von Tieren auftreten.

Explodieren, Schleudern, Klappen… – Turgorbewegungen

Die zweite große Gruppe pflanzlicher Bewegungen beruht auf Änderungen des Zellbinnendrucks von Pflanzenzellen, des sogenannten Zellturgors, der in der Regel durch den unterschiedlichen Wassergehalt der Zentralvakuolen der Pflanzenzellen zustande kommt. Dieser wird wiederum über den osmotischen Wert gesteuert.

Für fast alle Pflanzengruppen sind Spaltöffnungen charakteristisch. Das sind von zwei Schließzellen umgebene Poren in der Außenhaut (Epidermis), die in Abhängigkeit von äußeren und inneren Reizen geöffnet und geschlossen werden können. Ist der Turgor der bohnenförmigen Schließzellen hoch, bilden sie eine nahezu kreisförmige Gestalt, die in der Mitte einen Porus offen lässt. Ist der Turgor niedriger, sorgt der Druck des übrigen Gewebes dafür, dass die Schließzellen aneinandergepresst werden. Dies ist die klassische Bewegungsreaktion, es gibt viele Abwandlungen und Sonderformen, die durch die besondere Gestalt der Schließzellen und ihre Anordnung in der Epidermis zustande kommen. Turgorschwankungen sind aber in jedem Fall der Motor der Bewegung. Ursache für diese Turgorschwankungen sind Schwankungen im Ionengehalt, insbesondere im Kaliumionengehalt der Schließzellvakuolen und dieser Ionengehalt kann durch aktive Pumpmechanismen verändert werden. Die Regulation der Spaltöffnungsbewegung sorgt dafür, dass die Pflanzen mit der schwierigen Aufgabe zurecht kommen, in der trockenen, kohlenstoffdioxidarmen Atmosphäre weder zu verhungern noch zu verdursten.

Spektakulärer, da ohne optische Hilfsmittel sichtbar, sind andere Turgorbewegungen von Pflanzen. Da wären so auffällige Beispiele wie die „Schamhafte Mimose“ oder Sinnpflanze (Mimosa pudica) oder die Venusfliegenfalle (Dionaea muscipula) zu nennen. Die Reizreaktionen dieser Pflanzen erinnern wirklich an nerven- und muskelgesteuerte Bewegungen von Tieren. Für die Bewegungen sind nicht nur einzelne Zellen, wie bei den Spaltöffnungen, sondern ganze Gewebe verantwortlich, deren Turgor aktiv verändert werden kann. Dabei kommt die schnelle Bewegung in der Regel durch einen plötzlichen Turgorabfall zustande, die anschließende „Regeneration“, die mit einem Aufbau des alten Turgorzustanden verbunden ist, dauert etwas länger.

Ähnlich wie das Öffnen und Schließen einer Tür werden Turgorbewegungen zwar oft von Außenreizen bewirkt, sie laufen aber unabhängig von der Richtung der Reizquelle ab. Solche Bewegungen werden als Nastien bezeichnet

Neben reversiblen Turgorbewegungen kennt man irreversible. Hierzu zählt das oben angesprochene Beispiel des Springkrauts. In den schmalen zylinderförmigen Zellen der äußeren Fruchtwand wird ein hoher Turgordruck aufgebaut, der schließlich zu einem Aufreißen der Frucht an präformierten Nähten zwischen den Fruchtblättern führt. Sind die Fruchtblätter erst voneinander getrennt, können sich die zylinderförmigen Zellen ausdehnen und dadurch werden die Fruchtblätter nach Innen eingerollt. Dabei spielt allerdings auch noch die elastische Zellwand eine Rolle. Wenn sich die Zellen der Außenwand erst einmal abgerundet haben, ist eine Rückkrümmung er Fruchtklappen nicht mehr.

Verbiegen und Verdrehen  – Quellungsbewegungen

Für das Funktionieren von Pflanzen sind auch Bewegungen von Bedeutung die keine physiologischen sondern rein physikalische Ursachen haben, hierzu zählen Quellungs- und Kohäsionsbewegungen. Entscheidend für diese Bewegungen sind Zellulosestrukturen (Abb. 3). Zellulose ist aus fädigen Molekülen aufgebaut, die zu sogenannten Mizellen zusammengefasst sind. Diese Zellulosesemizellen können in unterschiedlicher Richtung in eine Zellwand eingelagert sein, ähnlich wie die Faserstrukturen im Papier. Zwischen die Mizellen kann Wasser eingelagert werden. Dies führt zu einer Ausdehnung und zwar stärker quer zur Faserrichtung als in Faserrichtung. Sind die Faserrichtungen in zellulosehaltigen Pflanzenstrukturen geordnet aber  in verschieenen Schichten unterschiedlich, so kann dies beim Quellen zu Krümmungsbewegungen führen. Bei den Schuppen von Nadelholzzapfen zum Beispiel, aber auch bei vielen Fruchtklappen oder -zähnchen sind die Zellulosemizellen außen vorwiegend quer und innen längs angeordnet. Die stärkere Außenquellung bei Wassereinlagerung führt dazu, dass sich Nadelholzzapfen bei Feuchtigkeit schließen und bei Trockenheit durch nach außen Krümmen der Schuppen wieder öffnen. Dadurch wird erreicht, dass die Samen nur bei Trockenheit ausfallen können, was für deren Windverbreitung von Vorteil ist. Weitere auffällige Beispiele für solche Quellungsbewegungen zeigen viele Öffnungsklappen von Früchten oder die Peristomzähnchen an den Kapseln von Moossporogonen.

Je nach Anordnung der Micellen kann bei diesen Bewegungen nicht nur zu Krümmungen sondern auch zu Schraubungen kommen. Besonders einrucksvoll ist die lange, wie ein Drillbohrer wirkene Fruchtklappe des Reiherschnabels.

Auch solche Quellungsbewegungen können mit dem Bruch von präformierten Nähten verbunden sein. Bei vielen Schmetterlingsblütlern öffnen sich die Hülsen nahezu explosionsartig, beim Blauregen (Wisteria sinensis) zum Beispiel mit einem richtigen Knall. Dies kommt dadurch zustande, dass bei Austrocknung sich allmählich eine Spannung aufbaut, die schließlich zum Aufreißen an präformierten Nahtstellen führt. Oft kann man dieses Aufreißen als kleinen Knall wahrnehmen (z. B. bei Lupinen, beim Blauregen oder bei der Blatterbsen-Wolfsmilch).

Bei dem Aufreißen von Farnsporangien, spielt die Köhäsion der Wassermoleküle eine wichtige Rolle. 

Von einem Ort zum andern

Pflanzen können nicht aktiv kriechen, laufen, schwimmen oder fliegen, sich zum Beispiel gerichtet auf eine Reizquelle (Taxie) zubewegen oder einer Spur folgen. Passive Ortsbewegungen sind aber möglich. So sind viele Wasserpflanzen nicht festgewachsen. Sie fluten frei an der Oberfläche oder untergetaucht im Wasserkörper und werden von Strömungen mitgetragen. Nur so konnte sich die Wasserhyazinthe (Eichhornia crassipes) – ursprünglich im Amazonasgebiet zuhause – über fast alle tropischen und subtropischen Gewässer verbreiten und die Kanadische Wasserpest (Elodea canadensis) hätte andres nicht in kurzer Zeit zu einer die Schiffahrt bedrohenden „Pest“ in  europäischen Gewässern werden können.

Einjährige  Wüsten-oder Steppenpflanzen können, wenn sie nach der Samenreife absterben, zu „Wüstenrollern“ werden, die vom Wind beträchtliche Strecken über den Steppenboden gerollt weren und dabei die Samen allmählich ausstreuen.

Dies schafft den Übergang zu den Pflanzenteilen, die auf Fortbewegung spezialisiert sind, weil sie der Ausbreitung dienen sollen. Sie werden Diasporen genannt. Diasporen können Sporen, Samen, Früchte, Teilfrüchte und vegetative Ausbreitungseinheiten wie Brutknospen, Brutzwiebeln, Spross- und Wurzelknollen oder Butkörper sein. Triebkräfte bzw.Transportmittel für die Ortsbewegung sind Wind, Wasserströmung, die Schwerkraft, Tiere und der Mensch. Dabei wird in der botanischen Literatur streng zwichen Ausbreitung, dem Fortbewegungsvorgang einer Diaspore, und der oft daraus resultierenden geografischen Verbreitung einer Pflanzenart unterschieden.

Knochenlos?

Die Bewegungen der Tiere kommten i. A. durch das Zusammenspiel von Muskeln und Skelett zustande. Dabei kann es sich um ein inneres Knochenskelett (Wirbeltiere), einen äußeren Skelettpanzer (Indsekten und andere Panzerhäuter – Ecdysozoa) oder auch ein Hydroskelett (Regenwurm und andere Würmer) handeln. Pflanzen  haben sowohl ein den Knochen entsprechendes Innenskelett, das aus Geweben mit verdickten Zellwänden besteht, als auch ein Hydroskelett.

Tierzellen haben keine Zellwände, die harten Skelettelemente bilden sich aus Abscheidungen der Zellen in den extrazellulären Raum. Demgegenüber besitzt jede Pflanzenzelle eine feste Zellwand, die vor allem aus langkettigen Polysacchariden, insbesondere aus Zellulose, besteht. Es können aber weitere Stoffe eingelagert oder aufgelagert sein, z. B. Lignin bei verholzten Zellwänden oder Siliziumdioxid bei Gräsern und Schachtelhalmen. Pflanzenzellen machen in der Regel nach ihrer Bildung eine lange Phase der Volumenzunahme durch, wobei eine starre Zellwand sehr hinderlich wäre. Deshalb sind die Polysaccharidfasern in den Zellwänden junger Pflanzenzellen noch wenig fixiert und der Volumenzunahme folgend können immer neue Fasern eingebaut werden. Erst wenn die Zelle ihre endgültige Größe erreicht hat, kommt es zu einer zunehmenden Stabilisierung und Verfestigung der Wände, die vor allem durch einen regelmäßigen Wechsel in der Textur der Zellulosefibrillen und zunehmenen Querverbindungen zwischen den Fibrillen erreicht wird.

Durch die Bildung von Zellen mit sehr dicken Zellwänden können mechanisch stark belastbare Gewebe entstehen. Dabei kann es sich um lange Zellfasern handeln, die vor allem Zug- und Dehnungsstabilität bewirken und die von der Textilindustrie auch als „Pflanzenfasern“ genutzt werden (Baumwolle, Hanf, Lein, Jute, Sisal usw.) oder um isodiametrische Steinzellen, die vor allem Druckbelastungen standhalten. Durch die kompakte Anordnung von Zellen mit stark verdickten und verholzten Zellwänden kann eine hohe Druck- und Biegungsstabilität erreicht werden.

Besonders eindrucksvoll sind die kompakten Holzkörper der großen Bäume, die allerdings zum großen Teil aus abgestorbenen Zellen bestehen. Der lebende Baum bildet nur einen hautartigen Überzug über dem toten Holzskelett. Es gibt aber auch beeindruckene Beispiele für Leichtbauweisen. Viele Pflanzenkonstruktionen zeigen, wie mit möglichst geringem Materialaufwand möglichst große Stabilität oder Festigkeit erzeugt werden kann, z. B. reißfeste Blätter, biegungsstabile Grashalme, oder tragfähige Säulenkakteen.

Typisch für Pflanzenzellen sind außerdem Vakuolen mit wässerigem Inhalt, die bei ausgewachsenen Zellen meist den größten Anteil des Zellinneren ausmachen (Zentralvakuole). Je höher der Gehalt der Vakuole an osmotisch wirksamen Substanzen, je niedriger also ihr Wasserpotenzial, desto mehr Wasser wird von außen angezogen und desto größer wird der Binnendruck des Zellkörpers gegen die Zellwand, den man auch als Turgor bezeichnet. Für die Stabilität eines Pflanzensprosses ist dieses durch den Turgor gebildete Hyroskelett von großer Bedeutung. Dies kann man daran erkennen, dass Pflanzen bei Wasserverlust „verwelken“. Sie sind dann nicht mehr in der Lage,  ihr eigenes Gewicht zu tragen: Ihre Blätter hängen schlaff herab und sie biegen sich zum Boden.

Vakuolen dienen aber auch als Stoffreservoir für die Pflanzenzellen. Hier können organische Säuren gespeichert werden, ebenso wasserlösliche Farbstoffe. Es kann auch zum Ausfallen schwer löslicher Verbindungen in Vakuolen kommen, die dann mit dem Absterben der entsprechenden Pflanzenteile, z. B. der Blätter, auf diese Weise ausgeschieden werden. Eine wichtige Funktion der Vakuolen ist auch die der Wasserspeicherung. Besonders große Vakuolen kommen in den Früchten vor und wir genießen den leckeren Vakuoleninhalt, wenn wird die saftigen Früchte essen oder die ausgepressten Fruchtsäfte trinken.

Sinnenlos?

Pflanzen haben keine richtigen Sinnesorgane wie Augen und Ohren, sie sind aber durchaus in der Lager, physikalische und chemische Umweltreize wahrzunehmen, insbesonere Licht und Schatten, Schwerkraft,  Erschütterungen und Berührungen, Wärme (bzw. Temperaturunterschiede) sowie Wasser  und bestimmte Mineralstoffe.

Für die Lichtwahrnehmung sind v.a.zwei Pigmentsysteme, das Phytochromsystem und das Phototropinsystem verantwortlich. Das Phytochrom ist – wie das Chlorophyll und das Häm – ein Tetrapyrol, das allerdings keinen Porphyrinring bildet, sondern in offenkettiger Form vorliegt. Durch die Absorption von Photonen kann es seine Konfiguration ändern. Dadurch wirkt es wie ein lichtabhängiger Schalter.  Bei Belichtung mit hellrotem Licht der Wellenlänge 665 nm wird Phytochrom  in ein Molekül umgewandelt, das dunkelrotes Licht (735 nm) absorbiert, bei Belichtung mit dunkelrotem Licht wird dieses wieder in das Hellrot-absorbierende Phytochrom zurück verwandelt. Die jeweils zuletzt eingestrahlte Lichtqualität entscheidet über die ausgelöste Entwicklung. In der Zelle ist das Phytochrom an ein Protein gebunden. Das Phytochromsystem ist z. B. für die Samenkeimung von Licht- und Dunkelkeimern und für das extreme Streckungswachstum im Dunkeln (Etiolement, Vergeilung) verantwortlich.

Für die Krümmung von Pflanzensprossen zum Licht (Photropismus) ist nur der blaue Anteil des Lichts verantwortlich. Als wahrnehmendes Pigmentsystem konnte das Chromoprotein Phototropin nachgewiesen werden. Blaulicht wird von dem Apoprotein es Phototropins, einem Flavinmononucleotid, absorbiert und dies bewirkt, dass ein Phosphat an das Phototropin angehängt wird. Das so aktivierte Phototropin setzt eine Signaltransduktionskette in Gang, die dazu führt, dass im Sprossmeristem verstärkt das Phytohormon Auxin produziert wird. Es wird zunächst auf die dunkle Seite des Vegatationskegels verlagert und dann vorwiegend über die basalen Zellmembranen weitergegeben. Dafür sind bestimmte Effluxproteine und Afflux-Carrier verantworlich.  Das Auxin verstärkt das Streckungswachstum der Zellen dadurch, dass die H+-ATP-aseaktivität und die K+-Aufnahme durch die Zellmembran verstärkt werden.

Abb. 10 Das Phytohormon Auxin verstarkt das Streckungswachstum von Zellen. Einseitig aufgetragene, Auxin-haltige Wuchsstoffpaste führt zum Krümmungswachstum eines Kalanchoe-tubilora-Sprosses.

Abb. 11 Phototropismus; Krümmung durch einseitige Auxinwirkung

Auch zur Wahrnehmung der Schwerkraft bzw. der Massenbeschleunigung haben Pflanzen sehr empfindliche Einrichtungen, die in mancher Hinsicht an Schweresinnesorgane von Tieren erinnern. Da in Schwerkraft-empfindlichen Pflanzenteilen wie Wurzelhauben, Keimscheiden und Sprossachsen auffällig assymmetrisch gelagerte Stärkekörner (in Amyloplasten) auftreten, spricht man auch von Statolithenstärke. Es wir vermutet, dass der entscheidende Reiz die partielle Dehnung der äußeren Zellmembran ist, die durch das Gewicht des Protoplasten ausgelöst wird. Die Statolithenstärke erhöht das Gewicht.

Viele Pflanzen – v.a. kletterne Sprossachsen und Ranken – können Berührungsreize wahrnehmen. Bei der fleichfessenen Venus-Fliegenfalle gibt es eine Reizwahrnehmung durch Sinnesborsten, ein Aktionspotenzial und eine Erregungsleitung . Noch ausgeprägter ist die Erregungsleitung bei der Sinnpflanze (Mimosa pudica).

Wurzelspitzen können chemische Reize wahrnehmen, z. B. Phosphationen, Wassermoleküle und Sauerstoffmoleküle. Auf diese Weise können Baumwurzeln kleinste Risse in unterirdischen Wasserleitungen aufspüren und in den Wasserleitungen dann verstopfende „Wurzelzöpfe“ bilden.

Sprachlos und gedankenlos?

Vor mehr als 35 Jahren erregte ein Buch mit dem Titel „Das geheime Leben der Pflanzen“ viel Aufsehen (Tompkins, Bird 1973). Die Autoren stellen darin „Pflanzen als Lebewesen mit Charakter und Seele und ihren Reaktionen in physischen und emotionalen Beziehungen zum Menschen“ dar. Sie schildern, wie eine ausgedehnte sprachliche Kommunikation mit Pflanzen möglich sei und wie man die Gefühle seines Gummibaumes oder seiner Palmlinie durch Zuspruch günstig oder ungünstig beeinflussen könne. Pflanzen werden in diesem Buch gewissermaßen als „bessere Menschen“ dargestellt. Von Botanikern und Pflanzenphysiologen wurde diese Veröffentlichung natürlich nicht ernst genommen und zu Recht ist es schnell still geworden um die angeblich objektiven Experimente der an Lügendetektoren und Oszilloskope angeschlossenen Pflanzen. Allerdings weiß man heute viel mehr über Signalaufnahme, Verarbeitung und Weitergabe von Pflanzen und über Formen pflanzlicher Kommunikation als vor 30 oder 40 Jahren und dabei wurden durchaus erstaunliche Fähigkeiten entdeckt. So besitzen Pflanzen ein großes Repertoire an Signalstoffen, die sie in Abhängigkeit von Umwelteinflüssen einsetzen können, um im eigenen Pflanzenkörper oder auch bei Nachbarpflanzen und sogar bei Tieren Reaktionen hervorzurufen.

Signalstoffe, die steuernd und regelnd in die inneren Entwicklungs- und Stoffwechselprozesse einer Pflanze eingreifen, werden in Analogie zu tierlichen Hormonen als Phytohormone bezeichnet. Phytohormone sind relativ kleine Moleküle, die Informationen von ihrem Bildungsort zu Zielzellen und Zielgeweben übertragen. In der Regel setzen sie in den Zielzellen eine Signaltransduktionskette in Gang, die zu einer Reaktion der Zelle führt . Diese Reaktion kann direkt im Cytoplasma stattfinden, sie kann aber auch über  Transkriptionsfaktoren zum An- oder Abschalten von Genen führen. Dabei spielen Rezeptoren in der Zellmembran, verschiedene Proteine (G-Proteine, Proteinkinasen, phosphorylierte Proteine als Transkriptionsfaktoren) und kleine, als sog. sekundäre Botschafter (second messenger) wirkende Moleküle und Ionen wie Ca++, und cyclisches Adenin-  bzw. Guanin-Monophosphat  (cAMP, cGMP) eine Rolle (Tab. Phytohormone).

Viele Pflanzen produzieren chemische Abwehrstoffe, mit denen Fressfeinde oder Krankheitserreger abgewehrt werden können. Oft werden solche Stoffe erst produziert, wenn die Pflanzen von pflanzenfressenden Insekten oder anderen Herbivoren angeknabbert werden. Die Konzentrationen von Limonen und anderen Monoterpenen im Gewebe von Fichten und Lärchen zum Beispiel erhöhen sich als Reaktion auf Verletzungen. Limonen hat eine starke toxische Wirkung auf Borkenkäfer. Auch das Alkaloid Nikotin, das z. B. in Tabakpflanzen vorkommt, ist ein hochwirksamen Insektengift. In beschädigten Blättern erreicht es eine bis zu 10fach höhere Konzentration als in unbeschädigten.

Bestimmte durch Fraßfeinde hervorgerufene Verletzungen können Pflanzen dazu veranlassen, Stoffe wie Jasmonate  als Signalstoffe an die Umgebung abzugeben. Diese Pheromone regen dann auch bei Nachbarpflanzen die Produktion von Abwehrstoffen an. Die Pheromonwirkung ist nicht nur auf Pflanzen derselben Art beschränkt. Manche Pflanzenarten setzen als Reaktion auf Herbivorenbefall sogar Substanzen frei, die die Parasiten dieser Pflanzenfresser anlocken. Maispflanzen, die durch den Fraß von Raupen der Zuckerrübeneule beschädigt wurden, produzierten unterschiedlich flüchtige Terpenoide, die nachweislich als Lockstoff für die auf den Raupen parasitierende Schlupfwespen (Cortesia marginiventris) wirken. . Die Signalketten, die von der Vielfalt flüchtiger Pflanzensubstanzen an ihren Zielen ausgelöst werden können, sind bisher zum großen Teil unbekannt, aber es gibt auch schon viele erforschte Beispiele (Abb. 10).

Besonders vielfältig ist der Signalaustausch der Pflanzen mit ihren Bestäubern, sowohl über optische als auch über chemische Signale

Abb. 12 Signalstoffe bei Pflanzen

Ebenso wie bei der tierlichen Kommunikation spielt auch bei Pflanzen die Täuschung eine Rolle (Kasten Duftmimikry bei Orchideen).

Interesse wecken für das Andere? –  Pflanzenkunde unterrichten

Pflanzen sind für Kinder und Jugendliche i.d.R. weniger faszinierend als Tiere. Dies belegen mehrere empirische Studien (z. B. Hesse 2000). Während schon Kleinkinder von Tieren begeistert sind und ihnen ihre ganze Aufmerksamkeit zuwenden, sind Pflanzen selbst für Kinder im Grundschulalter in der Regel gar keine richtigen Lebewesen. Pflanzen, Nicht-Tiere, reagieren nicht, wenn man sie anspricht oder streichelt, sie bewegen sich nicht von der Stelle, sie bellen, brüllen oder zwitschern nicht und sie lassen keinen Schmerz erkennen. Die große Bedeutung, die Pflanzen für das Landschaftsbild haben, ist für Kinder ebenfalls nicht wichtig, da sich Interesse und  Gefühle für Landschaftsästhetik erst später entwickeln. Allerdings gibt es durchaus animierende Gefühle zu Pflanzen, die mit Ästhetik, Abenteuerlust oder Freude an technischen Funktionen zu tun haben:

  • Aus Pflanzen etwas gestalten: Blumenstrauß-Pflücken, Kränze und Blumenketten binden…
  • Aus Pflanzenteilen etwas konstruieren: Weidenpfeifen und Panflöten bauen, Wasser durch Löwenzahnstängel leiten, aus einem Schilfblatt ein Segelschiffchen bauen, einen Haselzweig zum Flitzebogen machen…
  • Pflanzenumgebungen für Abenteuer nutzen: auf Bäume klettern und Baumhäuser bauen, an einer Liane schaukeln, Baumstämme als Wippe nutzen, im Maisfeld Verstecken spielen, sich in Laubhaufen vergraben…

Auch das Phänomen der Samenkeimung und des Wachstums oder das Ableger Großziehen kann Kinder und Jugendliche faszinieren.

Pflanzenkunde-Unterricht muss an solche Erfahrungen und Vorstellungen anknüpfen. Entsprechende Versuche hat es in der Biologiedidaktik immer wieder gegeben: UB 184 „Kreative Botanik“, UB 275 „Pflanzen züchten und vermehren“, UB 286 „Außergewöhnliche Pflanzen“,  „Pflanzen stellen sich vor“, „Gärten zum Leben und Lernen“  usw.

Im Rahmen des Modellversuches „Praxis integrierter naturwissenschaftlicher Grundbildung“ (PING) des Landes Schleswig-Holstein wurde für den 5/6. Jahrgang eine UE „Ich und die Pflanzen“ entwickelt, bei der der lebensweltliche Bezug der einzelnen Themen besonders wichtig genommen wird. Dabei wird allerdings in Kauf genommen,  dass es oft nicht eigentlich um „Pflanzenkunde“ sondern um Selbsterfahrung („Phantasiereise zur blauen Blume“) oder um irgendwelche Nutzungen von Pflanzen oder pflanzlichen Produkten geht („Wie energiesparend kann ich mit Holz kochen“). Dabei ist der Ansatz sicherlich richtig, bei der Pflanzenkunde verstärkt von eigenen Erfahrungen oder Erfahrungen mit Tieren auszugehen, z. B. durch Fragestellungen wie „Können Pflanzen sehen?“, „Können Pflanzen atmen?“, „Können Pflanzen fühlen?“, „Können Pflanzen laufen, schwimmen, fliegen, klettern…?“ oder „Können Pflanzen um Hilfe rufen?“ . Dabei könnte von der eigenen Erfahrung  (Wie klettere ich? Welche Hilfsmittel nutze ich zum Klettern?) die Funktion des Kletterns bei Pflanzen und dann der Bau (Pflanzenlösung des Funktionsproblems) behandelt werden. Ästhetische Erlebnisse mit schönen Blüten oder bizarren Blattmustern können der Ausgangspunkt für Fragen nach der biologischen Funktion und der physikalischen Grundlage der Phänomene sein – z. B. leuchtende Blütenfarben durch Totalreflexion an Interzellularen, Fettglanz durch Reflexion an Stärkeschichten, Samteffekt durch Lichtabsorbtion an feinen Papillen usw.

Gerade weil Kinder Pflanzen zunächst als keine echten Lebewesen oder Mitgeschöpfe ansehen,  ist der Überraschungseffekt groß, wenn sie an Pflanzen tierliche Fähigkeiten entdecken können, z. B. rasche Bewegungsreaktionen auf Reize oder das „Fleischfressen“. Dabei kann sich die Lehrkraft Charles Darwin zum Vorbild nehmen. In seiner Autobiografie schreibt er: „Es hat mir immer große Freude bereitet, die Pflanzen in der Stufenleiter organisierter Wesen zu erhöhen. Ich empfand daher ein besonderes Vergnügen, als ich zeigen konnte, wie viele und wie wunderbar schön angepasste Bewegungen die Spitze einer Wurzel besitzt“ (Darwin, Erinnerungen…1876-1881, Aulis,Köln 1982, S.159).

Für unmittelbare Erfahrungen, Beobachtungen und Experimente am lebenden Objekt sind Pflanzen besonders gut geeignet., da die Untersuchungsobjekte i. d. R. leicht zu beschaffen sind , und  auch,  weil ethische Probleme, wie sie beim Experimentieren mit Tieren auftreten können, hier keine Rolle spielen. Schließlich stehen Pflanzen beim „Biologieunterricht im Freien“, bei Geländepraktika, Exkursionen, Schulgartenprojekten und  Klassenfahrten schon deshalb im Vordergrund, weil sie die Struktur einer Lebensgemeinschaft maßgebend prägen, weil sie als leicht zugängliche Zeigerorganismen dienen können und weil man  über Pflanzenarten viele ökologische Zusammenhänge erschließen kann.  Auch wenn bei der Freilandbiologie ökologische Fragestellungen im Vordergrund stehen, kann man gerade auf Exkursionen auch viele Form-  und Funktionszusammenhänge beobachten, erleben und verstehen.

Der richtige Weg einer zwar „humanzentrierten Pflanzenkunde“, der aber dazu führt, dass die Lernenden auch die Pflanze selbst und nicht nur ihre Beziehung zu derselben als interessant begreifen, bleibt das schwer erreichbare aber lohnende Ziel.

Quellen

Adl, S., M. u. a.( 2005) :The New Higher Level Classification of Eukaryotes with Emphasis on the Taxonomy of Protists. J. Eukaryot. Microbiol., 52(5), 2005 pp. 399–451 http://myweb.dal.ca/asimpso2/sopclass.htm

Bell, A.D. (1994): Illustrierte Morphologie der Blütenpflanzen, 335 S.. Stuttgart: Ulmer

Bell, P.R., Hemsley, A.R. (20002): Green plants. Their origin and diversity. Cambridge Univ. Press

Bildungsserver Hessen http://lernarchiv.bildung.hessen.de/sek_i/biologie/themen/botanik/index.html

Braune, W., Leman A., Taubert, H. (20028): Pflanzenanatomisches Praktikum I. Spektrum, Heidelberg/Berlin: Spektrum

Darwin, C. (1982): Erinnerungen an die Entwicklung meines Geistes und Charakters…Urania Leipzig 1982, Lizenzausgabe; Köln:  Aulis

Frey, W., Lösch, R. (20103): Lehrbuch der Geobotanik. München: Elsevier

Goethe, J.-W. von: Die Metamorphose der Pflanzen http://www.zeno.org/Literatur/M/Goethe,+Johann+Wolfgang/Naturwissenschaftliche+Schriften

Heldt, H.-W (20033).: Pflanzenbiochemie. Heidelberg/Berlin: Spektrum

Hesse, M. (2000): Erinnerungen an die Schulzeit – Ein Rückblick auf den erlebten Biologieunterricht junger Erwachsener. Zeitschrift für Didaktik der Naturwissenschaften 6, 187-201

Institut für Qualitätssicherung Schleswig-Holstein (IQSH): PING–Material (2006):

Ich und die Pflanze http://ping.lernnetz.de/pages/n350_DE.html

Kanduč, M. et al. (2020): Cavitation in lipid bilayers poses strict negativ pressure tability limit in biological liquids. PNAS, vol.117,pp.1033-1039

Lüttge, U., Kluge, M., Thiel, G. (2010): Botanik. Weinheim:  Wiley-VCH

Martin, K. (2002): Ökologie der Biozönosen. Berlin/Heidelberg: Springer

Munk, K. Hrsg (2009): Botanik. Taschenlehrbuch Biologie, 573 S., Stuttgart: Thieme

Nabors, M. W. (2007): Botanik.  München:. Pearson Deutschland

Preitschopf, W.: Sekundärstoffe http://infowis.de/kapitel/sekundae.html

Probst, W. (1999): Halme und Stängel. In: Deutsche Gartenbaugesellschaft/G. Hütten (Hrsg.): Wege zur Naturerziehung, S. 116-133

Probst, W., Hrsg.(1998-2001): Gärten zum Leben und Lernen. Seelze: Kallmeyer   (16 Hefte)

Probst, W. (20072): Pflanzen stellen sich vor. Köln:  Aulis

Probst, W. (2009): Stoffkreisläufe. Basisartikel in UB 349 (33.Jg), S.2-11. Seelze: Friedrich

Probst, W., Schuchardt,P., Hrsg. (20205): Basiswissen Biologie, Abitur. Berlin: BI-Duden

Purves, W. K. u. a. (201910): Biologie. München: Elsevier

Kadereit, J. W. u.a.(201437): Lehrbuch der Botanik (Ersthrsg. E. Strasburger)  Heidelberg: Spektrum

Seyffert, W.: Lehrbuch der Genetik. Spektrum, Heidelberg/Berlin 20032

Taiz, L., Zeiger, L., Møller, I., M., Murphy, A. (2018): Plant Physiology and Development. Oxford: Sinauer

Urry, L. A. u.a. (201911): Campbell Biologie. München:. Pearson Deutschland

Whittaker, R. (1969): New concepts of kingdoms or organisms. Evolutionary relations are better represented by new classifications than by the traditional two kingdoms.. Science 163: pp. 150–160 doi:10.1126/science.163.3863.150. PMID 5762760.

Das Schloss

Das Berliner Stadtschloss – korrekt Königliches Schloss – steht nun wieder, zumindest seine Fassade. Innerlich hat es sich erneuert. Das Humboldt-Forum soll Weltoffenheit repräsentieren: „Neben dem Ethnologischen Museum Berlin und dem Museum für Asiatische Kunst der Staatlichen Museen wird es auch die Berlin-Ausstellung des Stadtmuseums und das Humboldt-Labor der Humboldt-Universität beheimaten“ (Wikipedia). Doch Schlossbau und Schlossinhalt sind nach wie vor sehr umstritten. Die Wellen in den Kulturspalten der Zeitungen und in den Kommentaren der Medien und sozialen Netze schlagen hoch.

Bevor das Schloss nach dem Muster des alten Preußenschlosses wieder aufgebaut wurde und nachdem der Palast der Republik abgerissen war, habe ich hier auf meiner Homepage einen Vorschlag für die Gestaltung dieses Freiraumes gemacht. Aus aktuellem Anlass stelle ich ihn noch einmal ein, weil ich nach wie vor meine, so eine „Pyramide für Berlin“ wäre eine schöne Alternative gewesen. Nun ist es natürlich zu spät, aber in der Zukunft wird es um ähnliche Entscheidungen gehen. Ich hoffe, man wird sich dann erinnern und zukunftsweisendere und nachhaltigere Lösungen suchen, anstatt alte Fassaden wieder zuerrichten.

Eine Pyramide für Berlin

Das Stadtschloss von Berlin stand mit seinen ältesten Teilen etwa 500 Jahre lang, der Palast der Republik gerade 30 Jahre. An dem Platz, an dem diese Monumentalbauten das Zentrum eines jeweils nicht unumstrittenen Staatswesens markierten, dehnt sich heute eine Rasenfläche. Mitten im betriebigen Zentrum Berlins lädt sie zum Picknick machen und Ausruhen ein. Nachdem das Stadtschloss mit seiner 60 m hohen Kuppel im Zweiten Weltkrieg zerbombt und von den DDR- Sozialisten später vollends abgerissen wurde, und nach dem auch der Palast der Republik aus ideologischen und bautechnischen Gründen (Asbest!) der Abrissbirne zum Opfer fiel, soll das Schloss in seiner alten äußeren Form wieder aufgebaut werden.

Die Wiese am 16. Juni 2010

Zunächst frage ich mich natürlich: Warum nicht viel Geld sparen und diese gegenwärtige, bürgerfreundliche Situation auf sich beruhen lassen, überdauern lassen? Einen Rasen kann man nicht abreißen und auch mit Bomben nur schwer zerstören, man kann ihn höchstens wachsen lassen. Wenn ihn niemand mehr mäht und niemand mehr abweidet, kann es sein, dass mit der Zeit ein Wald aus ihm wird. Dann könnte man immerhin wieder mit einer Motorsäge größere Veränderungen bewirken. Aber die Entscheidung darüber würde frühestens in einigen Jahrzehnten nötig.

Das wäre zu einfach, meinen Sie? Berlins Mitte erfordere eine aufwändigere architektonische Lösung, es müsse ein neues Zentrum her, ein Ziel für die Prachtstraße „Unter den Linden“, ein markanter Ort, ein Wahrzeichen für die Stadt? Nun – da würde ich den Bau einer Pyramide vorschlagen. Die ältesten Monumentalbauten der Menschheit, die Pyramiden von Gizeh, stehen heute, etwa 6500 Jahre nach ihrem Bau, immer noch – immerhin schon 13 mal so lang wie das Schloss und über 200 mal so lang wie der Palast. Ich stelle mir allerdings keine Steinpyramide vor, sondern eine Graspyramide. Man könnte sie allmählich wachsen lassen mit dem Aushub von Baugruben, U-Bahn-Bauten, unterirdischen Bahnhöfen, Abwasserleitungen und anderweitig anfallendem Aushub- und Abraummaterial. Mit der Pyramidenform würde man einer uralten menschlichen Bau- und Konstruktionsidee folgen, der grüne Bewuchs wäre Symbol für die Symbiose von Kultur und Natur. Je nach zur Verfügung stehenden Mitteln wäre es überdies ein leichtes, Gebäude und andere Konstruktionen in die Pyramide zu integrieren. Außer einem Spazierweg zur Pyramidenspitze könnte man sich allerhand andere Einrichtungen vorstellen, wie Rutschbahnen, Seilbahnen, Mountainbikestrecken und Ähnliches. In der Mitte der Pyramide würde, durch einen Tunnel erreichbar, ein Aufzug für Rollstuhlfahrer und Gehbehinderte eingebaut.

Die grüne Pyramide würde sich allmählich verändern, Büsche würden Wachsen, später auch Bäume …

Eine Fahne auf der Pyramidenspitze könnte verschiedenen Zwecken dienen, zum Beispiel könnte man damit anzeigen, dass der Bundespräsident in der Stadt ist. Durch entsprechende Nationalitätenflaggen könnte man über Staatsbesuche informieren, aber auch Feste und Gedenktage könnten durch fantasievolle Beflaggung signalisiert werden.

Wäre das nicht schöner als ein nachgemachter Prachtbau, der vielleicht noch ins 19. Jahrhundert passte? Schade, die Entscheidung ist wohl gefallen – einzige Chance für die Idee: das Geld geht aus!

Leider ist es nicht ausgegangen!

Botanischer Spaziergang am 12.09.2020 in den Weißenauer Wald bei Appenweiler

LINK-NAME LINK-NAME

Ankündigung

Tourist-Information

St.-Martin-Platz 9, 88094 Oberteuringen

Tel. 07546 299-25

Die Tourist-Information und der Arbeitskreis Tourismus laden Feriengäste und Einheimische ein:

Botanischer Spaziergang

mit Prof. Dr. Wilfried Probst

Samstag, 12.09.2020, 10:00 Uhr

Treffpunkt: Wanderparkplatz bei Appenweiler an der Straße zwischen Appenweiler und Brochenzell, links der Straße etwa 300 m hinter Appenweiler.

Ziel ist das Waldgebiet am westlichen Abhang des Schussensbeckens, an dieser Stelle als Weißenauer Wald bezeichnet. Es zeichnet sich durch einen sehr abwechslungsreichen Baumbestand aus. Auf unserer kleinen Runde werden wir uns besonders mit den Pflanzen an den feuchten Wegrändern und Gräben befassen. Vielleicht finden wir auch einige Pilze.

Bitte beachten Sie die bekannten Hygiene- und Schutzmaßnahmen sowie den Mindestabstand von 1,5 m.​ Die Teilnehmer sind verpflichtet, ihre Kontaktdaten zu hinterlassen.

Dauer ca. 2,5 Stunden. Die Veranstaltung ist kostenlos.

Teilnahme auf eigene Gefahr.

Weg von Oberteuringen zum Exkursionsgebiet. Ausschnitt aus den Topographischen Karten 1: 25.000 Markdorf 8222 und Ravensburg 8223
Appenweiler mit Treffpunkt im Luftbild (Google Earth)

Wälder am Rand des Schussenbeckens

Größere zusammenhängende Waldgebiete sind im heutigen Oberschwaben ziemlich selten. Im Laufe der mehrtausendjährigen Siedlungsgeschichte ist die typische kleinräumige Landschaft aus Feldern – heute vielfach Obstplantagen -, Wiesen und kleinen Waldstücken entstanden. Das größte Waldgebiet, der Altdorfer Wald  etwa zwischen Vogt und Wolpertswende gelegen, hat immerhin eine Längsausdehnung von ca. 17 km. Dagegen ist das Waldgebiet , das sich am westlichen Rand des Schussenbeckens etwa von Ravensburg bis Meckenbeuren erstreckt, mit knapp 8 km deutlich kleiner. Die geplante Umgehungsstraße für Meckenbeuren könnte es noch weiter verkleinern. Trotzdem kann man in diesem Wald stundenlang wandern. Mehrere Bäche entwässern das Gebiet zur Schussen hin. Sie haben sich zum Teil ziemlich tief in die Jungmöräne eingeschnitten.

Die Artenzusammensetzung des Baumbestandes ist recht abwechslungsreich. Neben Buchen, Eichen und anderen Laubbäumen finden sich auch Tannen, Fichten und  Kiefern, bachbegleitend  Eschen und Erlen. Typische Waldgesellschaft ist ein Buchen-Tannen-Wimpernseggenwald. Aber der Untergrund ist recht abwechslungsreich und dies wirkt sich auch auf die Vegetation aus.

Mit dem Bodenseebecken wird das untere Schussental im Allgemeinen zum Landschaftsraum Bodensee-Schussen-Becken zusammengefasst, der am Ende der Würmeiszeit durch den Rheingletscher geprägt wurde. Das aus Satellitenaufnahmen errechnete digitale Geländemodell zeigt sehr gut die Ausdehnung der Vereisung am Ende der letzten Eiszeit. KS markiert den Gletscherrand zur Zeit des sogenannten Konstanzstadiums vor etwa 15.000 Jahren.

Vereisungsgebiet des Rheingletschers im Bereich des Bodensees. Schwarze Linie: Schussen; weiß punktiert (IWEM): Innere Würmendmoräne; weiß gestrichelt (KS): Gletscherrand des Konstanzer Stadiums (vor ca. 15.000 J); dünne weiße Linien: Moränenrelikte innerhalb der Endmoräne des Konstanzer Stadiums; Beschriftung von West nach Ost: KON Konstanz; ÜBE Überlingen; SAL Salem; MAR Markdorf; GEH Gehrenberg; FRI Friedrichshafen; TET Tettnang; RAV Ravensburg.
Quelle: Beckenbach, E., Müller, T., Seyfried, H., Simon, T. (2014): Potential of a high-resolution DTM with a large spatial coverage for visualization, identification and interpretation of young (Würmian) glacial morphology. Quarterny Science Journal 63 (2),pp. 107-129.
Zahlreiche ähnliche Abbildungen finden sich in Seyfried, H., Simon, T., Beckenbach, E., Müller, T. (2019): Der Südwesten im digitalen Geländemodell. Wie LitDAR-Daten unsere Sicht auf die Welt verändern. Sonderbände der Gesellschaft für Naturkunde in Württemberg e.V. Bd. 4, Verlagsdruckerei Schmidt, 914 13 Neustadt an der Aisch

Das Waldgebiet ist von einem relativ dichten Wegenetz durchzogen. . Diese Wege dienen vor allem der forstlichen Bearbeitung. Oft sind sie von Entwässerungsgräben begleitet, denn in der Jugendmoräne sind immer wieder Lehmschichten eingelagert, die zu Staunässe und Quellhorizonten führen. Deshalb ist die wegbegleitende Vegetation recht vielseitig. Besonders auffällig ist das an vielen Stellen sehr feuchtigkeitsbedürftige Pflanzen gedeihen.

Der Spaziergang

 8223 Ravensburg
Exkursionsweg. Ausschnitt aus der Topographischen Karte 1: 25.000 Ravensburg 8223

Wir beschäftigen uns zunächst mit dem hochgewachsenen Maisfeld gegenüber dem Wanderparkplatz am Waldrand. Die Kulturen dieses sehr wuchskräftigen Grases haben im letzten Jahrzehnt sehr stark zugenommen. Die Pflanzen werden vor allem zur Herstellung von Silagefutter und zur Biogasproduktion genutzt. Sie erfordern hohen Dünger-und Pestizideinsatz. Vor allem vor dem Auflaufen im Frühjahr (Anfang Mai) werden die Unkräuter mit Herbiziden zurückgehalten. Der Rand dieses Maisfeldes ist aber trotzdem sehr unkrautreich.

Wir beobachten drei sehr charakteristische Gräser:

Grüne Borstenhirse (Setaria viridis),

Hühnerhirse (Eragrostis crus-galli) und

Blut-Fingerhirse (Digitaria sanguinalis

Borstenhirse, Hühnerhirse und Fingerhirse im Maisfeld (Foto W. Probst,13.9.2020)

Weitere Arten:

Ampfer-Knöterich (Persicaria lapathifolia)

Weißer Gänsefuß (Chenopodium album)

Stumpfblättiger Ampfer (Rumex obtusifolius)

Kohl-Gänsedistel (Sonchus oleraceus)

Kleinblütiges Knopfkraut bzw. Franzosenkraut (Galinsoga parviflora)

Gänse-Fingerkraut (Potentilla anserina)

Löwenzahn (Taraxacum officinale agg.)

Echte Zaunwinde (Calystegia sepium)

Spitz-Wegerich (Plantago lanceolata)

Breitblättriger Wegerich (Plantago major)

Große Brennnessel (Urtica dioica)

Wiesen-Bärenklau (Heracleum sphondylium)

Steifer Sauerklee (Oxalis stricta)

Acker-Minze (Mentha arvensis)

Als Besonderheit wächst hier an mehreren Stellen die aus China stammende Quirl- oder Gemüse-Malve (Malva verticillata), deren Blätter in China seit mehr als 2500 Jahren als Gemüse genutzt werden. Die Pflanze findet sich seit einiger Zeit in den Blühstreifen an Ackerrändern, da sie teilweise Bestandteil der dafür vorgesehenen Saatmischungen ist.

Quirl- oder Gemüse-Malve (Malva verticillata) an Maisfeld bei Appenweiler (Fotos S. und W.Probst, 13.9.2020)

Nun folgen wir in langsamem Botanikertempo dem Weg in den Wald hinein. Alle Teilnehmer* innen erhalten Kärtchen mit Namen von Baum-und Straucharten, die in diesem Waldteil zu finden sind. Gefunden werden:

Bäume

Blattstiel der Zitterpapel

Zitter-Pappel,Espe (Populus tremula) – seitlich abgeflachte Blattstiele erleichtern das Zittern –

Gewöhnliche Esche (Fraxinus excelsior) –  Blätter und Seitenzweige gegenständig –

Vogelbeere, Eberesche (Sorbus aucuparia) – Blätter und Seitenzweige wechselständig –

Stiel-Eiche (Quercus robur) – Früchte lang gestielt, die der Trauben-Eiche fast sitzend –

Rot-Buche (Fagus sylvatica) – glatte Rinde, keine Borkenbildung –

Schwarz-Erle (Alnus nigra) – Blätter stumpf, ohne Blattspitze –

Berg-Ahorn (Acer pseudoplatanus)

Winter-Linde (Tilia platyphyllos) – im Gegensatz zur Sommer-Linde mit bräunlichen Härchen in den Winkeln der Blattadern auf der Blattunterseite –

Wald-Kiefer (Pinus sylvestris)

Rot-Fichte (Picea abies)

Weiß-Tanne (Abies alba)

Sträucher:

Weißdorn (Crataegus spec.) – es gibt mehrere sehr ähnliche Arten –

Gewöhnliche Hasel, Haselstrauch (Corylus avellana) – die Kätzchen für das nächste Jahr sind schon angelegt –

Schlehe, Schwarzdorn (Prunus spinosa) – viele blaue Steinfrüchte, die Seitenzweige laufen fast in einem rechten Winkel ab, dadurch ist Schlehengebüsch besonders undurchdringlich –

Schwarzer Hollunder (Sambucus nigra)

Echter Schneeball (Viburnum ebulus) – die roten Beeren sind leicht giftig –

Blutroter Hartriegel (Cornus sanguinea) – „blutrot“ bezieht sich auf die Herbstfärbung –

Faulbaum, Pulverholz (Rhamnus frangula) – der Name bezieht sich auf den leichten Fäulnisgeruch der Rinde, die als starkes Abführmittel gilt; die hochwertige Holzkohle wurde früher bevorzugt zur Schwarzpulverherstellung verwendet; Futterpflanze für die Raupen des Zitronenfalters –

Unterschiede von Fichte und Tanne (aus: Probst, W. (2007): Pflanzen stellen sich vor. Köln: Aulis)

An einer Wegkreuzung steht eine hohe Weiß-Tanne, die im oberen Kronenbereich zahlreiche Tannen-Misteln trägt. Diese Mistel ist eine Unterart (Viscum album subsp. abietis), die nur an Tannen vorkommt. Misteln sind Halbschmarotzer, die ihrem Wirt Wasser und Mineralstoffe entziehen, aber selbst über Photosynthese Nährstoffe produzieren. Ihre weißlichen Beerenfrüchte enthalten einen sehr klebrigen Schleiml, aus dem man früher Vogelheim hergestellt hat. Sie werden gerne von Drosseln gefressen (daher der Name der Mistel-Drossel) „Turdus ipse sibi cacat mortem“ –„Die Drossel scheißt sich selbst den Tod“ (römisches Sprichwort).

Neben der Tanne steht eine Rot-Fichte. Unterschiede zwischen Fichte und Tanne werden besprochen.

Weiß-Tanne (Foto W. Probst,13.9.2020)
Rot-Fichte (Foto W- Probst 13.9.2020)

Wir folgen dem Weg bis zur Kreuzung mit einem Betonsträßchen, auf das wir dann nach links abbiegen. Der Weg ist von einem mehr oder weniger tiefen Graben begleitet, deshalb finden sich in der wegbegleitenden Vegetation häufig besonders feuchtigkeitsliebenden Pflanzen:

Pfeifengras, Benthalm (Molinia caerulea) – die langen knotenlosen Stiele des Blütenstandes wurden früher zum Pfeifen reinigen verwendet; typisches Gras der Pfeifengraswiesen –

Steife Segge (Carex elata)

Zittergras-Segge (Carex brizoides)

Hänge-Segge (Carex pendula)

Flatter-Binse (Juncus effusus) – das Tragblatt des Blütenstandes sieht wie eine Fortsetzung der Sprossachse aus –

Gilbweiderich (Lysimachia vulgaris) – Knoten meistens mit drei Blättern, seltener auch zwei oder vier –

Blutweiderich (Lythrum salicaria) – nicht näher mit dem Gilbweiderich verwandt, „-weiderich“ bezieht sich auf die weidenartigen Blätter beider Pflanzenarten –

Echtes Mädesüß (Filipendula ulmaria) – die süßlich duftenden Blüten wurden früher zur Aromatisierung von Bier und Wein verwendet, Name eventuell von „ Met-Süße“; die ganze Pflanze aber besonders der Wurzelstock enthält Methylsalicylat, das wegen seiner desinfizierenden Wirkung zum Beispiel Zahnpasta und Kaugummis beigefügt wird; der Name „Aspirin“ leitet sich von der früheren Bezeichnung „Spiraea ulmaria“ und dem A von Acetylsalicylsäure ab.

Gewöhnliches Hexenkraut (Circaea lutetiana)

Lippenblütler:

Wasser-Minze (Mentha aquatica) – eine der drei Stammarten der Pfeffer-Minze (Mentha x piperita, x für Hybridart)

Ross- Minze (Mentha longifolia) – weitere Stammart der Pfefferminze –

Ufer-Wolfstrapp (Lycopus europaeus) – die tief gesägten, gegenständigen Blätter erinnern an ein Wolfseisen –

Wald-Ziest (Stachys sylvatica) – starker, etwas unangenehmer Geruch –

Gewöhnliche Braunelle (Prunella vulgaris) – typische Rasenpflanze –

Doldenblütler:

Wiesen-Bärenklau (Heracleum sphondylium) – nicht zu verwechseln mit dem wesentlich größeren, aus dem Himalaja eingeschleppten Riesen-Bärenklau, der wegen des Kontaktgiftes in seinen Blättern gefürchtet wird. Das Gift wirkt vor allem zusammen mit UV-Licht. „Ist der Stängel kantig rau, heißt die Pflanze Bärenklau“  –

Wald-Engelwurz (Angelica sylvestris) – mehrfach zusammengesetzte, sehr große Blätter und auffällig große Blattscheiden –

Wald-Sanikel (Sanicula europaea)

Gewöhnliche Bibernelle (Pimpinella saxifraga) – zur gleichen Gattung gehört Anis (Pimpinella anisum) aus dem Balkan

nur Blätter sehen wir vom

Wiesen-Kerbel (Anthriscus sylvestris),

Giersch (Aegopodium podagraria) und

Behaarter Kälberkropf (Chaerophyllum hirsutum)

Da nun schon mehr als die Hälfte der Zeit um ist, die wir uns für unseren Spaziergang vorgenommen haben legen wir den Weg auf dem Betonsträßchen etwas schneller zurück. Besondere Beachtung schenken wir einem wassergefüllten Graben mit fruchtendem Breitblätterigen Rohrkolben (Typha latifolia). Das Betonsträßchen endet an einer Wegkreuzung, in deren Nachbarschaft sich ein pilzförmiger Unterstand befindet. Im grasigen Wegrand blühen einige Herbst-Zeitlosen (Colchicum autumnale) . Diese in allen Teilen hochgiftige Art ist die einzige ihrer Gattung in Mitteleuropa. Verbreitungsschwerpunkt der Gattung sind die Trocken- und Halbtrockengebiete Vorder- und Westasiens, an deren Klimabedingungen die Arten mit ihrer unterirdischen Speicherknolle besonders gut angepasst sind. Das enthaltene Gift Colchicin verhindert die Ausbildung korrekter Mitosespindeln und damit eine geordnete Zellteilung.

Unser weiterer Spaziergang folgt nun nach links einem kleineren Waldweg.

Wir besprechen, wie man mit einem Zollstock, einem Bindfaden und eventuell noch einem Maßband das Holzvolumen eines Baumes und damit auch den von ihm gespeicherten Kohlenstoff abschätzen kann. Die einzelnen stehenden Stämme von Kiefern und Tannen auf einer großen Lichtung, die vermutlich durch Borkenkäfer verursachten Kahlschlag entstanden ist, bieten sich zwar für diese Untersuchung an. Angesichts der fortgeschrittenen Zeit entschließen wir uns aber, auf die praktische Ausführung zu verzichten.

Abschätzung der in einem Baum gespeicherten Kohlenstoffmenge

Entlang des Weges zieht sich eine feuchte Niederung mit dichtem Seggenbestand (vermutlich die lange Ausläufer bildende Schlank-Segge (Carex acuta). Außerdem beachten wir die großen, spIrrigen Blütenstände der Wald-Simse (Scirpus silvaticus).

Leider haben wir auf unserem Spaziergang keine Pilze gefunden. Aber als ich einen Tag später mit meiner Frau noch einmal in dem Gebiet war, sahen wir Graue Lärchenröhrlinge (Suillus viscidus), brauchbare Speisepilze.

Scan des Grauen Lärchenröhrlings (Suillus viscidus) ; Hutdurchmesser 5,5 cm (W. Probst, 13.9.2020)

Botanischer Spaziergang am 8.8.2020 zum Drumlin Heidengestäud bei Raderach

LINK-NAME LINK-NAME

Tourist-Information

St.-Martin-Platz 9

88094 Oberteuringen Tel. 07546 299-25

Die Tourist-Information und der Arbeitskreis Tourismus laden Feriengäste und Einheimische ein:

Botanischer Spaziergang

mit Prof. Dr. Wilfried Probst

Samstag, 08.08.2020, 10:00 Uhr

Ersatztermin bei schlechtem Wetter: 15.08.2020

Treffpunkt: Wanderparkplatz westlich von Raderach am Drumlin Heidengestäud.

This image has an empty alt attribute; its file name is Raderach-2-698x1024.jpg
Kopie aus den Topografischen Karten 1:25 000 Markdorf 8222 und Friedrichshafen 8322 des Landesvermessungsamtes Baden-Württemberg

Unser Spaziergang führt uns in die Raderacher Drumlinlandschaft. Rund um den Drumlin „Heidengestäud“, auf dessen Gipfel sich ein möglicherweise prähistorischer Ringwall befindet, bietet der Weg einen sehr schönen Ausblick auf das Hepbach-Leimbacher Ried. Auf unserer kleinen Runde achten wir besonders auf die sehr artenreiche Flora der Wegränder. Wir werden aber auch eine neue Kulturpflanze kennenlernen.

Für empfindliche Personen empfiehlt sich die Mitnahme eines Mückenschutzmittels.

Bitte beachten Sie die bekannten Hygiene- und Schutzmaßnahmen sowie den Mindestabstand von 1,5 m.​ Die Teilnehmer sind verpflichtet, ihre Kontaktdaten zu hinterlassen.

Dauer jeweils ca. 2,5 Stunden. Die Veranstaltung ist kostenlos.

Teilnahme auf eigene Gefahr.

Drumlins

This image has an empty alt attribute; its file name is Drumlins-b.Raderach-1024x345.jpg
Raderacher Drumlinlandschaft, 22.6.2013 (Foto W. Probst)

Die Landschaft um Raderach ist gekennzeichnet durch viele langgestreckte Hügel, die im Profil etwa wie ein umgekehrter Löffel aussehen, mit einer etwas steileren und einer länger ausgezogenen Seite. Diese in der letzten Eiszeit entstandenen Formen werden mit einem irischen Ausdruck als Drumlin bezeichnet (von irisch „Druim“ „schmaler Rücken“). Ihre Ausrichtung entspricht der Fließrichtung des Gletschers (Abbildung). Über ihre Entstehung gibt es unterschiedliche Theorien. Wenn man annimmt, dass der Gletscher über ein plastisches Grundmoränenmaterial aus alten Sedimenten fließt, kann man sich gut vorstellen, dass kleine Erhebungen im Untergrund zu einem Aufstau führen. Größe und Form hängen dann vom Material, von der Fließrichtung des Gletschers und von der Geschwindigkeit des Abtauens ab. Häufiges auftreten von Drumlinfeldern – wie in der Umgebung von Raderach – gilt als Indiz für ein rasches Abtauen.

This image has an empty alt attribute; its file name is Drumlin-1024x467.jpg
Entstehung eines Drumlins

Im Google-Earth-Bild kann man das Raderacher Drumlinfeld sehr gut erkennen, da die Hügel im Gegensatz zum Umland bewaldet sind

Heidengestäud

Der kleine Berg, um den uns unser Spaziergang herumführen wird, ist in der topographischen Karte 1: 25.000 TK 8222 Markdorf als „Heidengestäud“ bezeichnet. In der Liste von Burgen und Schlössern in Baden-Württemberg wird die Wallanlage unter Heidengestied genannt. Dass solche Bergkuppen und speziell auch Drumlins für Befestigungsanlagen genutzt wurden, ist nicht ungewöhnlich. Ob es sich bei diesem Rest einer Wallanlage tatsächlich um eine alte keltische Viereckschanze handelt, ist nicht unumstritten. In diesem Fall wäre sie mindestens 2500 Jahre alt. Möglicherweise wurde das Bauwerk aber auch erst später im Mittelalter errichtet.

This image has an empty alt attribute; its file name is heidengestied.jpg

Foto aus der Liste von Burgen und Schlössern in Baden-Württemberg

Auch der Ort Raderach wurde auf einem Drumlin erbaut, und zwar an einer Stelle, an der im 13. Jahrhundert eine Burg errichtet worden war. Die Steine der Burg wurden zum Teil für den Bau des heutigen Gasthofs Krone verwendet.

Der Spaziergang

This image has an empty alt attribute; its file name is heidengestäud-780x1024.jpg
Der Exkursionsweg (Auschnitt aus TK 8222 Markdorf)

Wir folgen zunächst dem Weg am Waldrand entlang. Die Wiese rechts vom Weg wurde leider gerade gemäht, der zweite Schnitt in diesem Jahr. Von den Wiesenpflanzen sieht man deswegen nur noch wenig an den Wegrändern. Die auffälligste Wiesenpflanzen, die kurz vor dem Schnitt den Aspekt der Wiese bestimmt hat, ist aber auch am Wegrand reichlich vorhanden: Wiesen-Bärenklau (Heracleum sphondylium). Sie kommt vor dem ersten Schnitt normalerweise nicht zum Blühen, treibt dann aber danach noch einmal aus und wird vor dem zweiten Schnitt die höchste Pflanze der Wiese. Empfindliche Leute können mit einer leichten Hautallergie auf die Berührung mit Wiesen-Bärenklau reagieren (Wiesen-Dermatitis), kein Vergleich allerdings mit den heftigen Reaktionen auf den Riesen-Bärenklau (Heracleum mantegazzianum).

Weitere Arten von Wiesen- und Wegrand: Scharfer Hahnenfuß, Gewöhnliche Schafgarbe, Weiße Taubnessel, Gefleckte Taubnessel, Wirbeldost, Gewöhnliches Johanniskraut, Nesselblättrige Glockenblume, Gewöhnlicher Rainkohl, Kleiner Pippau, Wolliges Honiggras.

This image has an empty alt attribute; its file name is DSCN0497-768x1024.jpg
Die Durchwahsenblättrige Silphie ist eine neue Nutzpflanze in Mitteleuropa, die vor allem der Biomasseproduktion dient

Bei 1 kommen wir an ein Feld mit sehr hohen, gelb blühenden Pflanzen. Die Blüten sehen ein bisschen wie kleine Sonnenblumen aus. Es handelt sich um die Durchwachsenblättrige Silphie (Silphium perfoliatum), ein aus Nordamerika stammender Korbblütler. Die Pflanze wird seit einigen Jahren als ergiebiger Biomasseproduzent in Mitteleuropa angebaut. Sie lässt sich auch als Futter- und Silagepflanze und als Bienenweide nutzen.

This image has an empty alt attribute; its file name is DSCN1962-225x300.jpg
Das besondere Merkmal der bis 3 m hoch wachsenden, mehrjährigen Pflanze sind die gegenständigen, am Stängel zu Paaren verwachsenen Blätter, die einen Becher bilden. Der im englischen gebräuchliche Name „cup plant“ wurde deshalb auch ins Deutsche übernommen: Becherpflanze.
(Foto J.Probst, 8.8.2020)

Die Silphie kann zehn Jahre lang am gleichen Standort geerntet werden und produziert ab dem zweiten Jahr mit 13-20 t Trockenmasse pro Hektar sogar eher mehr als Mais (http://bizz-energy.com/biogasbranche_wirbt_f%C3%BCr_us_pflanze) . Dass sie sich gegenüber Mais bisher trotzdem noch nicht durchgesetzt hat liegt vor allem daran, dass die Kosten im ersten Anbaujahr verhältnismäßig hoch sind. Im ersten Jahr bilden sich nur grundständige Rosetten, die schnell von Unkraut überwuchert werden und dieses Unkraut kann weitgehend nur mechanisch bekämpft werden. Ab dem zweiten Jahr ist jedoch die Beschattung des Bodens so stark, dass Unkräuter zurückgehalten werden. Eine kostengünstige Lösung wäre es deshalb, im ersten Jahr eine Mischkultur mit Mais anzulegen. Dadurch, dass die Kulturen über mehrere Jahre bestehen bleiben können, ist auch die Bodenerosion gering.

Zwei Stammarten von Kulturpflanzen

This image has an empty alt attribute; its file name is Lactuca-serriola-200x300.jpg
Kompass-Lattich (Lactuca serriola) (Foto W. Probst, 2016)

Der Weg geht nun steiler bergauf, am Hang zum kleinen Drumlin rechts ist ein großes Silphienfeld zu sehen. Links am Wegrand fällt uns eine Pflanze mit fast senkrecht stehenden, tief gebuchten und etwas bestachelten Blättern auf, die eine reich verzweigten rispigen Blütenstand mit vielen kleinen Korbblüten entwickelt hat. Der Kompass-Lattich oder Stachel-Lattich (Lactuca serriola) hat seinen Namen daher, dass er an sonnigen Standorten seine Blätter senkrecht und weitgehend in Nord-Süd-Richtung ausrichtet, wodurch sie vor der starken Sonneneinstrahlung geschützt werden. Er gilt als die Stammpflanze des Grünen Salates (Lactuca sativa). Die genetische Ähnlichkeit der beiden Arten ist so groß, dass man heute davon ausgeht, dass eine Aufspaltung in zwei Arten nicht gerechtfertigt ist.

This image has an empty alt attribute; its file name is Cichorium-intybus-8.8.20-238x300.jpg
Wegwarte (Cichorium intybus)
(Foto J.Probst 8.8.2020)

Die zweite Art, ebenfalls ein Korbblütler, hat schöne hellblaue Blütenköpfe in lockeren Blütenständen. Der deutsche Name „Wegwarte“ (Cichorium intybus) bezeichnet ihren typischen Standort an Wegrändern. Die Wildpflanze, nach ihrem wissenschaftlichen Namen auch „Zichorie“ genannt, wird bis heute in einigen Gegenden des Mittelmeergebietes als Salat oder Gemüse verwendet. Sie ist auch eine traditionelle Heilpflanze zur Appetitanregung und Stimulierung von Verdauungssäften. Als Wurzelzichorie hat man aus ihren gerösteten Pfahlwurzeln Kaffeeersatz hergestellt (Zichorien-Kaffee). Erst im 19. Jahrhundert wurde aus Zichorien der Chicoréesalat gezüchtet : „Nach einer Überlieferung zog der Chefgartenbauer am Botanischen Garten in Brüssel, Bresier, 1846 die ersten Chicoréesprossen. Die Wurzeln ließ er zwar noch im Freiland wachsen, zum Sprossen verhüllte er sie jedoch lichtdicht, so dass sie möglichst wenig Bitterstoffe entwickelten. Nach einer anderen Version soll diese Art des Treibens auf eine zufällige Beobachtung zurückgehen: Als belgische Bauern 1870 ihre Zichorienwurzeln infolge ungewöhnlich hoher Ernte im Gewächshaus einschlugen, entdeckten sie während des Winters die kräftigen Knospen.“ (Wikipedia, 12.8.2020).

Auch der Endiviensalat gehört zur Gattung der Wegwarten oder Zichorien. Die Heimat von Cichorium endivia ist das Mittelmeergebiet. Heute werden weltweit zahlreiche Endiviensalatsorten angebaut.

Bei 2 erreichen wir einen schönen Aussichtspunkt mit Blick auf den Gehrenberg, die Orte Hepbach und Leimbach und das davor liegende Naturschutzgebiet Hepbach-Leimbacher Ried, das von einer Heckrinder-Herde beweidet wird. Bei dem mit gut 750 m ü.NN hohen Gehrenberg handelt es sich um keinen Drumlin. Er ist durch Erosion während der letzten Vereisung entstanden. Nach der vorletzten Vereisung haben sich in tiefer gelegenen Gebieten Schotter abgelagert, die durch kalkhaltiges Wasser verfestigt wurden. Dieser harte eiszeitliche Nagelfluh bot bei der letzten Vereisung einen erhöhten Widerstand gegen Erosion und so kam es zur Reliefumkehr: frühere Täler wurden zu Bergen.

This image has an empty alt attribute; its file name is 27.4.2012-1024x466.jpg
Blick aufs Hepbach-Leimbacher Ried am 27.4.2012 (Foto W. Probst)

Die Panoramakarte zeigt ein Landschaftsbild, bei dem sich der Gletscher etwa auf eine Linie vom Schussenbecken bei Ravensburg bis Markdorf zurückgezogen hat. Dabei hat sich im Bereich des heutigen Hepbacher-Leimbacher Rieds ein Eisstausee gebildet, aus dem sich das Ried mit seinen bis 10 m mächtigen Torfschichten entwickelt hat. Heute liegt dort die Quelle der Brunnisach.

This image has an empty alt attribute; its file name is Eiszeit-bei-Markdorf-909x1024.jpg
Autor: Thommi Gitter, entnommen aus: Markdorf, Geschichte und Gegenwart, 1990
This image has an empty alt attribute; its file name is DSCN1979-225x300.jpg
Wegränder mit Hochstauden

Wir gehen dann ein kleines Stück zurück und folgen dem Weg in den Wald hinein, der hier von relativ jungen Bäumen mit einem hohen Anteil an Berg-Ahorn gebildet wird. Der Weg wird gesäumt von einer breiten Hochstaudenflur 3. Bemerkenswerte, besonders große Stauden sind der giftige Pferde-Hollunder (Sambucus ebulus), im Gegensatz zu seinen Schwesterarten Schwarzer Hollunder und Trauben-Hollunder kein Gehölz sondern eine krautige Pflanze; Wald-Engelwuz (Angelica sylvestris), Behaarte Karde (Dipsacus pilosus), außerdem Acker-Kratzdistel (Cirsium arvense), Lanzett-Kratzdistel (Cirsium vulgare), Kohl-Kratzdistel (Cirsium oleraceum), Indisches Springkraut (Impatiens glandulifera), Wiesen-Bäremnklau (Heracleum sphondylium), Große Brennnessel (Urtica dioica), Nesselblättrige Glockenblume (Campanula trachelium) und Zottiges Weidenröschen (Epilobium hirsutum).

Auf der linken Seite es Weges ist die Vegetation teilweise weniger üppig. An dem Grabenrand entdecken wir Echtes Tausendgüldenkraut (Centaurium erythrophyllum).

Weitere Arten sind Taumel-Kälberkropf (Chaerophyllum temulum), Gewöhnlicher Dost oder Oregano (Origanum vulgare), Kanadische Goldrute (Solidago canadensis). Die Rasen-Schmiele (Deschampsia cespitosa) deutet auf einen Quellhorizont hin. Auch einzelne Bulte des Pfeifengrases (Molinia caerulea) und Wasserdost (Eupatorium cannabinum) zeigen feuchten Untergrund an.

This image has an empty alt attribute; its file name is Kaisermantel-auf-Behaarte-Karde-8.8.20-1024x768.jpg
Kaisermantel auf dem Blütenstand einer Behaarten Karde (Foto J. Probst, 8.8.2020)

Der Weg führt nun wieder bergab in einen schönen Buchen-Hochwald (Waldmeister-Buchenwald). Die übrigen Hochstauden erhalten hier nicht mehr genügend Licht aber einen Bestand von Hexenkraut (Circaea lutetiana) und Kleinblütigem Springkraut (Impatiens parviflora) reicht das Licht aus.

This image has an empty alt attribute; its file name is Schmeißfliege-auf-Kanadischer-Goldrute8.8.20-779x1024.jpg
Fliege (cf. Mesembrina maridiana) auf Kanadischer Goldrute (Solidago canadensis)
Foto: J. Probst, 8..8.2020

Am Hangfuß mündet unser Weg in einen breiteren Weg 4. Hier stehen wegnah sehr große Exemplare der amerikanischen Rot-Eiche (Quercus rubra) . Ihre spitz ausgezogenen Blattlappen kennzeichnen sie als „Spitzeiche“. Diese artenreiche Gruppe der Eichen (Sektion Lobatae) ist ursprünglich auf Amerika beschränkt, einige Arten werden aber heute an vielen anderen Orten angebaut. Die Rot-Eichen hier zeigen eine sehr üppige Naturverjüngung. Im Gegensatz zu unseren einheimischen Eichenarten benötigen die Eicheln der Rot-Eiche zum Reifen zwei Jahre.

Ein zweiter nordamerikanischer Baum, der seit dem 19. Jahrhundert auch in Mitteleuropa forstlich genutzt wird, ist die Douglasie oder Douglastanne (Pseudotsuga menziesii). Ob er wirklich die durch Klimawandel bedrohten Fichten als Forstbaum ersetzen kann, ist umstritten. Unbestritten ist seine große Wuchskraft. Der höchste Baum Deutschlands ist eine über 100 Jahre alte Douglasie im Arboretum Freiburg-Günterstal:  „Waltraut vom Mühlwald“ ist über 100 Jahre alt und derzeit etwa 65 m hoch (https://www.waldhilfe.de/baumrekorde/?gclid=EAIaIQobChMIyaG0ztKY6wIVArp3Ch3YPwhKEAAYASAAEgJMZPD_BwE).

This image has an empty alt attribute; its file name is Pseudotsuga-menziesii-216.1.88-1024x667.jpg
Douglasienzweig (Pseudotsuga mentziesii) mit typischen Zapfen. Im Unterschied zu Fichtenzapfen haben die Zapfen von Pseudotsuga sehr lange Deckschuppen, die aus den Zapfen heraushängen (Foto: W. Probst 1988)

Wir biegen dann wieder in eine halb links aufwärts führenden Waldweg ab. Von dort (5) folgen einige Teilnehmer*innen einem Trampelpfad bergauf, in der Hoffnung, auf den Ringwall zu stoßen. Wie die Rückkehrer berichten, konnten die Schanzenreste aber nicht eindeutig identifiziert werden. Am Wegrand wachsen zahlreiche Wald-Frauenfarne (Athyrium filix-femina). An einer Stelle kann man den zarteren Fiederschnitt ihrer Wedel mit einem Echten Wurmfarn (Dryopteris filix-mas) vergleichen. Die wissenschaftlichen Namen und die deutsche Bezeichnung „Frauenfarn“ weisen darauf hin, dass die beiden Arten früher für Männchen und Weibchen einer Art gehalten wurden.

Bei dem Silphienfeld stoßen wir wieder auf unseren alten Weg, der uns in wenigen Schritten zum Parkplatz zurückführt.

This image has an empty alt attribute; its file name is Kolkrabe8.8.20-1024x769.jpg
Während unseres ganzen Spazierganges durch den Wald hören wir die Rufe des Kolkrabe. Zum Schluss sehen wir ihn auf einer abgestorbenen Lärche sitzend (Foto: J. Probst, 8.8.2020)

Liste der demonstrierten Pflanzenarten in chronologischer Reiherfolge

zusammengestellt von der Exkursionsteilnehmerin Kim Hackenberg

Wiesen-Bärenklau (Heracleum sphondylium)

Gewöhnlicher Rainkohl (Lapsana communis)

Gewöhnliche Schafgarbe (Achillea millefolium)

Wiesen-/Rot-Klee (Trifolium pratense)

Echtes Seifenkraut (Saponaria officinalis)

Kleinblütiges Franzosen-/Knopfkraut (Galinsoga parviflora)

Wolliges Honiggras (Holcus lanatus)

Spitz-Wegerich (Plantago lanceolata)

Breitblättriger Wegerich (Plantago major)

Weiße Taubnessel (Lamium album)

Gefleckte Taubnessel (Lamium maculatum)

Stumpfblättriger Ampfer (Rumex obtusifolius)

Zypressen-Wolfsmilch (Euphorbia cyparissias)

Durchwachsene Silphie (Silphium perfoliatium)

Zaunwinde (Calystegia sepium)

Gewöhnlicher Wirbeldost (Clinopodium vulgare)

Nesselblättrige Glockenblume (Companula trachelium)

 KompassLattich (Lactuca serriola)

Großes Hexenkraut (Circaea lutetiana)

Waldmeister (Galium odoratum)

Echter/Gewöhnlicher Dost (Origanum vulgare)

Wiesen-Labkraut (Galium mollugo)

Vierblütige Weißwurz (Polygonatum multiflorum)

Gemeine Wegwarte (Cichorium intybus)

RiesenSchachtelhalm (Equisetum telmateia)

(Einjähriger)Feinstrahl/Berufkraut (Eigeron annuus)

Pferde-Holunder, Zwerg-Holunder, Attich (Sambucus ebulus)

Echtes Tausendgüldenkraut (Centaurium erythraea)

Wald-Engelwurz (Angelica sylvestris)

Rasen-Schmiele (Deschampiosa cespitosa)

Rohrglanzgras/Havelmilitz (Phalaris arundinacea)

Taumel-/Hecken-Kälberkropf (Chaerophyllum temulum)

Gewöhnliche Braunellle (Prunella vulgaris)

Kleiner/Kleinköpfiger Pippau (Crepis capillaris)

Kanadische Goldrute (Solidago canadensis)

Acker-Kratzdistel (Cirsium arvense)

Gewöhnliche Kratzdistel (Cirsium vulgare)

Sal-Weide (Salix caprea)

Kleinblütiges Springkraut (Impatiens parviflora)

Behaarte Karde (Dipsacus pilosus)

Rot-Eiche (Quercus rubra)

Gewöhnliche Douglasie (Pseudotsuga menziesii)

Frauenfarn (Athyrium filix-femina)

Gewöhnlicher Wurmfarn (Dryopteris filix-mas)

Im Griff von SARS CoV 2

LINK-NAME LINK-NAME

„Mir ist die Anwesenheit von Anhängern der sozialistischen Sekte in unserer Provinz gemeldet worden, welche, mit geheimnisvollen Mixturen und übelriechenden Salben versehen, unsere arbeitsame Bevölkerung infizieren. Mit winzig kleinen und äußerst zerbrechlichen Ampullen ausgestattet, haben dieselben in Favara bereits eine starke und weit verbreitete Grippe ausgelöst (… …), und zwar mittels der Verbreitung von Keimen, die eine Mundschwamm-Epidemie auslösen können. Ich mache Sie darauf aufmerksam, daß diese Keime überaus leicht erkennbar sind: sie sind von leuchtend roter Farbe, jeder von ihnen besitzt 2.402 Füßchen. Für ihre Vernichtung muß Sorge getragen werden, weil sie sich außerordentlich schnell vermehren. In der Gewißheit, daß Sie sich der Gefahr bewußt sind und alle Maßnahmen für ein Einschreiten treffen, fordere ich Sie auf: gehen Sie ans Werk! S. E. der Präfekt (Vittorio Marascianno)“

Das schrieb der sizilianische Schriftsteller und Regisseur Andrea Camilleri in seinem 1998 erschienenen Roman „La concessione del telefono“; in deutscher Übersetzung 1999 beim Klaus Wagenbach Verlag mit dem Titel „Der unschickliche Antrag“ herausgegeben. Man könnte fast meinen, Camilleri hätte dabei an die Coronaviren gedacht. Das ist nicht ganz unmöglich, denn man kennt sie seit 1960. Der Roman allerdings spielt im Sizilien des ausgehenden 19. Jahrhunderts.

Allerdings konnte Camilleri nicht ahnen, dass die Corona Pandemie gute 20 Jahre später die Weltöffentlichkeit beherrschen würde, wie keine Epidemie, ja wie kein katastrophales Ereignis zuvor. Selbst die Klimakrise tritt dagegen zurück. Sie hat bisher bei weitem nicht so viele gleichlaufende Reaktionen in fast allen Ländern der Erde bewirkt, obwohl die Folgen vermutlich deutlich katastrophaler sein werden.

Coronaviren

Coronaviren haben einen Durchmesser von ca. 125 nm. Sie sind von einer mit zahlreichen Fortsätzen (Spikes) besetzten Proteinlipidmembran umgeben, an denen die Andockstellen für die entsprechenden Proteine der Wirtszellen liegen. Das genetische Material ist eine einsträngige RNA.

Coronaviren, kugeligen Gebilde mit den vielen Fortsätzen (Spikes), die sie im elektronenmikroskopischen Bild wie eine Sonne mit Corona erscheinen lassen, sind seit den 1960er Jahren als Erreger von Tierkrankheiten aus Großbritannien und den USA bekannt. 1968 erhielten sie ihren Namen. Aber erst 2003 wurde mit der SARS-Epidemie (severe acute respiratory syndrom) deutlich, dass sie auch für Menschen wirklich gefährlich werden können.

Unter den für menschliche Krankheiten verantwortlichen Viren gehören Coronaviren mit ihren 125 nm Durchmesser zu den größten. Mit 30.000 Nukleotiden ist ihre einsträngige RNA auch länger als die anderer RNA-Viren. Ein besonderer Reparaturmechanismus schützt diese lange RNA-Kette vor zu vielen falschen Replikationen.

Von Fledermäusen oder von Schuppentieren?

Wie andere Viren können Corona-Viren rekombinieren, wenn unterschiedliche Viren in einer Wirtszelle zusammentreffen. Aber eine Besonderheit der Corona-Viren, die sie besonders gefährlich macht ist, dass es nicht selten vorkommt, dass auch sehr unterschiedliche, genetisch weit voneinander entfernte Corona-Viren in einer Zelle zusammenkommen können und dass dann sehr gefährliche Rekombinanten entstehen. Besonders berüchtigt als Quelle solcher neuen Mischungen sind Fledermäuse, bei denen in einer Art bis zu zwölf verschiedene Coronaviren nachgewiesen werden konnten (Luis et.al 2013 nach Cyranoski 2020). Dabei haben die Fledermäuse offensichtlich einen Mechanismus entwickelt, der sie vor dem Ausbruch durch diese Viren hervorgerufener gefährlicher Krankheiten schützt.

Die zwei bisher aufgetretenen für den Menschen wirklich gefährlichen Coronaviren – SARS-CoV und MERS-CoV (middle east respiratory syndrom) – kommen beide von Fledermäusen. Deshalb liegt die Vermutung nahe, dass auch SARS-CoV2, der Erreger der derzeitigen Pandemie, von Fledermäusen abstammt, zumal es zwischen einem Fledermausvirus und SARS-CoV2 eine 96-%ige genetische Übereinstimmung gibt. Diese naheliegende Vermutung hat jedoch einen Haken: den Coronaviren in Fledermäusen fehlt allen an ihren Spikes eine besondere Proteineinheit (s.u.!), welche den Eintritt in menschliche Schleimhautzellen extrem erleichtert. Diese Proteinstruktur kommt aber bei Coronaviren von Schuppentiere (Fam. Manidae) vor. Die genetische Übereinstimmung des Schuppentier-Virus mit SARS-CoV2 beträgt jedoch nur 90 %. Neuere Arbeiten legen die Vermutung nahe, dass die virulenten Erreger schon vor 140 Jahren von Fledermäusen auf Schuppentiere wechselten. Während sie bei den Fledermäusen die gefährliche Proteinstruktur verloren haben, blieb diese beim Schuppentier erhalten (Cyranoski 2020).

Die unterschiedlichen Krankheitsbilder von  Covid 19

SARS-CoV Viren infizieren die Schleimhäute von Nasenraum und Rachen als auch die des tieferen Lungengewebes. Im ersten Fall kommt es zu leichten bis mittelschweren Erkältungserscheinungen, im zweiten Fall kann die Erkrankung tödlich verlaufen. Auch Patienten,  die zunächst an der leichten Form erkranken, können später noch eine gefährliche Lungeninfektion bekommen, und zwar dann, wenn ihr Immunsystem nicht bei der ersten Infektion Abwehrmechanismen entwickelt, die eine weitere Infektion verhindern. SARS-CoV und MERS-CoV können Rachen- und Nasenschleimhäute nicht infizieren. Mit der Infektion von Nasen- und Rachenschleimhäuten hängt auch zusammen, dass SARS-CoV2 Viren so leicht durch Tröpfcheninfektion übertragen werden können.

Die Speicheltröpfchen sind in Wirklichkeit – zum größten Teil – viel kleiner.

In den Speicheltröpfchen Infizierter befinden sich SARS CoV2-Viren

Ein besonderer Türöffner

Neben der leichten Übertragung durch Tröpfcheninfektion aus den oberen Atemwegen einer infizierten Person macht die Viren besonders gefährlich, dass sie die Membran der Schleimhautzellen sehr leicht überwinden und ihren Inhalt in diese Zellen befördern können. Dafür verantwortlich ist einmal die 8-10 mal höhere Affinität der Spikes zu der Andockstelle (Angiotensin converting enzym 2 ACE2, Wrapp et al. 2020), zum anderen eine besondere Proteinstruktur auf den Spikes, die nicht nur – wie bei den anderen Coronaviren – ein Andocken an bestimmte Proteine der Zellmembranen ermöglicht, sondern auch mit einem weiteren weitverbreiteten Enzym der Zelloberflächen von Epithelzellen, dem Furin, reagiert. Diese Protease spaltet den Kopf der Spikes von der restlichen Struktur ab und ermöglicht dadurch die Freisetzung von Fusionspeptiden, mit deren Hilfe die Proteinlipidmembranen von Virus und Epithelzelle verbunden werden. Ist das Virus erst einmal an eine Zelle angedockt, so ist es sehr wahrscheinlich, dass es auch seinem Inhalt in die Zelle transportieren kann. Wie diese Fusion auf molekularer Ebene genau funktioniert, ist allerdings noch nicht bekannt.

Nach Andocken des Virus an die Wirtszelle spalten Furine den Kopf der Spikes ab und setzen dadurch Fusionspolypeptide frei.
Die Fusionspeptide bewirken eine Verbindung von Virushülle und Wirtszellmembran.
Durch die Verbindung von Virus und Wirtszelle wird die Virus-RNA übertragen.

Mithilfe der Syntheseapparate der Wirtzelle werden die Bestandteile des Virus gebildet und zu neuen Viruspartikeln zusammengesetzt, welche die Wirtszelle verlassen und neue Zellen inizieren können.

Thrombosen und Organschädigungen

Studien aus den Niederlanden und Frankreich weisen darauf hin, dass 20-30 % der anCovid19 erkrankten Patienten Thrombosen entwickeln. Dabei handelt es sich zum Teil um sehr kleindimensionierte Thrombosen in Kapillaren. Eine mögliche Erklärung wäre, dass die Viren Zellen des Gefäßepithels befallen, die auf ihrer Zellmembran ebenfalls ACE2 und Furin tragen. Dadurch könnten die Gefäßinnenwände rauer werden und dies könnte die Bildung von Blutklümpchen begünstigen. Aber auch Effekte der Viren auf das Immunsystem könnten für die Thrombosen verantwortlich sein. Nachgewiesen ist, dass die Corvid19 Viren das Komplementsystem, also die unspezifische Immunantwort, in Gang setzen. Schädigungen von Organen wie Nieren, Leber, Herz und Nervensystem, die ebenfalls mit Corvid19 Infektionen in Verbindung gebracht werden, könnten auch eine Folge solcher Gefäßschädigungen sein.

Impfungen

Als der Erreger der Covid 19 Erkrankung zu Beginn des Jahres 2020 als SARS-CoV 2 identifiziert wurde, begann sofort an vielen verschiedenen Stellen die Entwicklung von und die Suche nach geeigneten Impfstoffen. Nach der Weltgesundheitsorganisation gibt es derzeit (2.Juni 2020) 148 solcher Impfstoffprojekte.

Aktive Schutzimpfung

  • Impfung mit inaktivierten (attenuierten) SARS-CoV-2 Viren
  • Impfung mit gentechnisch modifizierten Viren, die bereits für andere bewährte Impfstoffe verwendet wurden und bei denen man deswegen unerwünschte Nebenwirkungen ausschließen kann, zum Beispiel Vaccinia-Viren (bisher in Impfstoffen gegen Pocken),  humane Adeno-Viren oder Masernviren.
  • Impfung mit aus ausgewählten Genen des Virus in Form von mRNA oder DNA. Nach Injektion in Körperzellen sollen sie diese zur Bildung von ungefährlichen Virusproteinen anregen, die dann den Aufbau des körpereigenen Immunschutzes bewirken. So enthält mRNA-1273  die Erbinformation für einen Bestandteil des Spike-Proteins von SARS-CoV-2. Der Impfstoff bewirkt in Körperzellen die Biosynthese von diesem Protein, das als Antigen wirkt und das körpereigene Immunsystem zur Bildung von Antikörpern gegen das Virus anregt .

Passive Schutzimpfung

Impfung mit Immunglobulinkonzentraten von Personen, die eine Covid 19 Erkrankung überstanden haben. Werden die aus dem Serum isolierten und gereinigten Antikörper einem anderen Coronapatienten injiziert, so erhält er eine „passive Immunisierung“. Diese Impfung wird deshalb teilweise auch als Serum-Therapie bezeichnet. Die übertragenen Antikörper können dabei sofort gegen die Krankheitserreger wirksam werden.

Die Serum-Therapie hat bei der Bekämpfung der Ebola-Epidemie bereits gute Dienste geleistet. Durch ihren Einsatz konnte die Sterblichkeitsrate bei dem Ebolaausbruch im August 2018 in der Demokratischen Republik Kongo um 30 % reduziert werden.

Die passive Schutzimpfung mit Antikörpern aus genesenen Corona-Patienten kommt vor allem für Risikogruppen und für schwer erkrankte Patienten infrage. Sie ist kein Ersatz für eine langfristig wirkende aktive Schutzimpfung, denn sie wirkt in der Regel nur wenige Wochen bis Monate. Es entsteht keine bleibende Immunität gegen den Erreger, da die künstlich zugeführten Antikörper innerhalb von etwa 30 Tagen wieder abgebaut werden.

Spekulationen

Der besonderer Türöffner an den Spikes von SARS-CoV2 ist ein Grund dafür, dass immer wieder spekuliert wird, der besonders gefährliche Keim wäre in einem Labor gezielt hergestellt und absichtlich oder unabsichtlich freigesetzt worden. Dafür gibt es allerdings bisher keinerlei Anhaltspunkte. Aber alleine die Tatsache, dass in Wuhan, der chinesischen Millionenstadt, von der die Epidemie ihren Ausgang nahm, am Wuhan Institute of Virologie seit der SARS-Epedemie von 2003 intesiv an Coronaviren georscht wird, genügt Verschwörungstheoretikern, um hier einen Zusammenhang herzustellen.

Dabei wird auch dem Microsoft-Milliardär Bill Gates, der schon lange vor dem möglichen Ausbruch einer weltumspannenden Pandemie gewarnt hat, eine besonders finstere Rolle zugedacht. Schon vor zehn Jahre kommentierte Gates den überstandenen H1N1-Ausbruch von 2009 mit den Worten: „Wir hatten Glück, dass es nicht schlimmer kam. Denn wir waren fast komplett unvorbereitet.“ Im folgenden wies er in Reden und Artikeln immer wieder auf die Pandemie-Gefahr hin: „Wenn irgendetwas in den nächsten Jahrzehnten mehr als zehn Millionen Menschen tötet, ist das wahrscheinlich ein Virus und nicht ein Krieg“.(2015; nach NZZ 11.04.2020). Diese weise Voraussicht, die sich im Nachhinein als richtig erwies, dient nun Verschwörungstheoretiker dazu, Gates finstere Komplotte zur Errichtung einer Weltdiktatur zu unterstellen. Hat er gar mit chinesischen Virologen zusammengearbeitet mit dem Ziel, als Folge der Maßnahmen gegen die Pandemie eine totale Kontrolle über die Menschheit zu gewinnen? Auch seine Unterstützung der World Health Organisation – nach Ausscheiden der USA mittlerweile der größte Einzelunterstützer – wird in diese Richtung interpretiert.

Im Prinzip ist es tatsächlich problematisch, wenn internationale und nationale staatliche Aufgaben zunehmend von der Unterstützung einzelner Milliardäre abhängig werden. Deshalb ist es sehr schade, dass US-Präsident Trump die Vereinigten Staaten aus der WHO herausnehmen und diese Organisation nicht mehr unterstützen will. Bedenklich ist auch, dass er dies mit ähnlichen Argumenten begründet, wie die Verschwörungstheoretiker: Nachdem er die Maßnahmen Chinas gegen die Coronaepidemie zunächst gelobt hatte, bezichtigt er China nun einer bewussten Täuschung der Weltöffentlichkeit. Der WHO wirft er eine chinafreundliche Politik vor, wohl vor allem, um damit Fehler der eigenen Politik in Sachen Corona zu vertuschen.

Andere Spekulationen, die von allen möglichen „Weltverbesserern“ und Ideologen aufgestellt werden, sind noch wesentlich abstruser. In der TAZ schreibt Arno Frank dazu: „Gefährlich und grotesk wird es, wenn das blinde Huhn beim Stochern drei Körner findet und daraus ein Vollkornbrot backen will:“ (TAZ 23./24.5.2020, S.3).

Weltweite Kooperation

Auch wenn die unter den Begriff „Lock Down“ in vielen Ländern der Erde getroffenen Maßnahmen zur Minderung der Infektionsgefahr nicht immer sinnvoll und manchmal auch überzogen erscheinen mögen, so zeigen sie doch, dass die Menschheit angesichts drohender Gefahren zu gleichsinnigem Handeln in der Lage ist. Es besteht deshalb eine gewisse Hoffnung, dass diese Erfahrungen sich auch auf die Handlungsfähigkeit Hinblick auf den Klimawandel positiv auswirken könnten. Eine erste Chance ergibt sich hier schon bei den gezielten Maßnahmen zur Wirtschaftsförderung. Im Hinblick auf Klimaziele geforderten Veränderungen der Wirtschaftssysteme könnten in der gegenwärtigen Situation durch gerichtete Förderung leichter in Angriff genommen werden.

Quellen

Cyranoski, D. (2020): Profile of a killer virus. Nature 581, pp. 22-26

Cyranoski, D. (2020): Mystery deepens over animal source of coronavirus. Nature 26.2.2020

Cyranoski, D. (2020): The biggest mystery: what it will take to trace the coronavirus source. Nature 5.6.2020

Probst, W., Schuchardt, P. (Hrsg., 2020): Basiswissen Schule Biologie – Abitur. 5. Auflage. Berlin: Duden

Willyard, C. (2020): Coronavirus blood-clot mystery intensifies. Research begins to pick apart the mechanisms behind a deadly COVID-19 complication. Nature 581, p. 250

Wrapp, D. et al. (2020): Cryo-EM structure of the 2019-nCoV spike in the prefusion conformation.Science 367 (6483), pp.1260-1263

3-D Modell des Coronavirus https://insidecorona.net/de/wie-sieht-das-coronavirus-aus/

https://www.merkur.de/welt/corona-symptome-ansteckungsgefahr-inkubationszeit-fakten-definition-lungenkrankheit-covid-19-erklaerung-13591846.html

https://www.bundesgesundheitsministerium.de/coronavirus.html

https://www.lungenaerzte-im-netz.de/krankheiten/covid-19/was-ist-covid-19/

https://de.wikipedia.org/wiki/COVID-19

https://www.fr.de/politik/corona-krise-bill-gates-virus-verbindungen-who-verschwoerung-13759001.html

https://www.nzz.ch/wirtschaft/coronavirus-bill-gates-der-mann-der-die-pandemie-kommen-sah-ld.1551317

https://www.aerzteblatt.de/nachrichten/112990/SARS-CoV-2-Erster-Impfstoff-erzeugt-neutralisierende-Antikoerper-in-Phase-1-Studie

https://www.vfa.de/de/arzneimittel-forschung/woran-wir-forschen/impfstoffe-zum-schutz-vor-jetzt zwei Auto ,coronavirus-2019-ncov

https://www.dw.com/de/mit-medikamenten-aus-antik%C3%B6rpern-gegen-corona/a-52804320

https://www.aerzteblatt.de/nachrichten/112990/SARS-CoV-2-Erster-Impfstoff-erzeugt-neutralisierende-Antikoerper-in-Phase-1-Studie

https://www.vfa.de/de/arzneimittel-forschung/woran-wir-forschen/impfstoffe-zum-schutz-vor-jetzt zwei Auto ,coronavirus-2019-ncov

https://www.dw.com/de/mit-medikamenten-aus-antik%C3%B6rpern-gegen-corona/a-52804320

https://www.aerzteblatt.de/nachrichten/112990/SARS-CoV-2-Erster-Impfstoff-erzeugt-neutralisierende-Antikoerper-in-Phase-1-Studie

https://www.vfa.de/de/arzneimittel-forschung/woran-wir-forschen/impfstoffe-zum-schutz-vor-jetzt zwei Auto ,coronavirus-2019-ncov

https://www.dw.com/de/mit-medikamenten-aus-antik%C3%B6rpern-gegen-corona/a-52804320

https://www.dw.com/de/mit-medikamenten-aus-antik%C3%B6rpern-gegen-corona/a-52804320

https://lehrermarktplatz.de/material/164254/vom-gesprach-zur-pandemie-wie-es-zur-infektion-mit-coronaviren-kommen-kann

Der grüne Pelz

LINK-NAME LINK-NAME

Entstehung

Die Erde bildete sich vor etwa 4,6 Mrd. Jahren. 0,5 bis 1 Mrd. Jahre später traten die ersten Lebewesen auf und schon vor ca.3,5 Mrd. Jahren entwickelten sich die ersten Cyanobakterien, die mithilfe von Sonnenlicht aus Wasser und  Kohlenstoffdioxid Kohlenhydrate und Sauerstoff herstellen konnten. Der Sauerstoff oxidierte Mineralien und löste sich in den Ozeanen. Erst nach etwa 1 Mrd. Jahren waren diese Oxidationsprozesse abgeschlossen und der O2-Gehalt der Atmosphäre begann stark anzusteigen – mit tödlichen Folgen für obligate Anaerobier aber mit einem großen Vorteil für Lebewesen, die zur aeroben Atmung mit Sauerstoff in der Lage waren. Mit Photosynthese und Atmung war die Grundlage für effektive chemische Kreisläufe in der Biosphäre geschaffen.

Seither hat sich die Stoffproduktion durch Photosynthese stetig vermehrt, auch wenn es immer wieder kleinere oder größere Rückschritte gab. Vor etwa 400 Mio J. begann die Besiedelung des Festlandes durch grüne Pflanzen und dieser grüne Pelz überzog von Feuchtgebieten ausgehend immer größere Flächen der Kontinente. Der Pelz wurde auch immer dichter und höher. Die höchsten Bäume können über 100 m  hoch werden und die Pflanzendecke ist vielfach geschichtet. Die Pflanzen wurden durch natürliche Selektion  an immer extremere Lebensbedingungen angepasst, sodass immer trockenere und immer kältere Gebiete  einen grünen Pelz bekamen.

Beschädigungen

Waren in der früheren Erdgeschichte  vor allem  plattentektonisch bedingte Veränderungen der Kontinente, Vulkanausbrüche und Asteroideneinschläge aber auch biogene Veränderungen des CO2-Gehalts der Atmosphäre für Rückschritte bei dieser Entwicklung verantwortlich, so ist es heute die menschliche Zivilisation, durch die der grüne Pelz des Bioplaneten Erde beschädigt wird. Diese Beschädigungen haben mittlerweile ein Stadium  erreicht, das für die menschliche Zivilisation und für die derzeitigen Ökosysteme gefährlich wird. Denn angesichts der großen Populationsdichte der Menschen und des Zivilisationsgrads wird der grüne Pelz der Erde verringert und in seiner Wirksamkeit beeinträchtigt.77% der Landfläche (ohne Antarctica) und 87 % der Meere sind derzeit durch menschliche Aktivitäten verändert worden (Watson, Allen u.a.2018).

  • Städte werden immer größer, Verkehrsnetze immer dichter, Agrarflächen, die mit ihren Monokulturen eine deutlich geringere regulatorische Wirkung haben als natürliche Vegetation, dehnen sich immer weiter aus und lassen das grüne Fell der Erde räudig werden.
  • Die Kapazität des grünen Pelzes wird im Hinblick auf eine ausgeglichene Stoffbilanz des Bioplaneten Erde dadurch überschritten, dass fossile Energieträger zur Energiebereitstellung verbrannt und zur (Kunst-)Stoffproduktion genutzt werden. Besonders die starke Zunahme des Treibhausgases CO2 führt zu einer deutlichen Klimaerwärmung.
  • Der Eingriff in den Stickstoffkreislauf durch anthropogene Umwandlung des Luftstickstoffs (N2) in reaktionsfreudige Stickstoffverbindungen kann sich über verminderte Biodiversität und Veränderung der Atmosphäre (Verringerung der UV-Licht filternden Ozonschicht) negativ auswirken.

Diese Veränderungen stellen für den Bioplaneten keine existentielle Gefahr dar, das Leben auf der Erde wird diese Veränderungen ebenso überstehen, wie es andere oft noch viel drastischere Ereignisse im Laufe der Erdgeschichte überstanden hat. Für die menschliche Zivilisation in ihrer heutigen Form stellen sie aber eine existentielle Bedrohung dar. Für eine nachhaltige Entwicklung des Bioplaneten als Lebensraum für die Menschen ist der Erhalt des grünen Pelzes deshalb von entscheidender Bedeutung.

Städte

Sao Paulo,12,3 Mio Einwohner (Quelle: pixibay, joelfotos)

Mit der zunehmenden Bevölkerung werden Städte immer größer und  überdecken immer größere Flächen (Liu u.a.2020). Herkömmliche Städte sind nicht grün, sie haben Oberflächen, die vorwiegend aus Beton, Steinen, Glas und Asphalt bestehen. Die photosynthetische Stoffproduktion ist niedrig, die CO2-Produktion ist viel höher als der CO2-Verbrauch, C-Speicherug in Vegetation und Boden ist gering. Ebenso gering im Vergleich zu natürlichen Ökosystemen ist das Rückhaltevermögen für Regenwasser, sodass es bei den durch Klimawandel vermehrten Starkregen immer häufiger zu Überschwemmungen kommt. Pflanzliche Oberflächen verdunsten Wasser und produzieren Verdunstungskälte. Steine und Beton speichern Wärme. Beides führt dazu, dass  das Stadtklima wärmer ist als das Klima in der Umgebung. Dabei spielt auch eine Rolle, dass der Luftaustausch mit der Umgebung durch die Gebäude behindert wird.

Mögliche Verbesserungen:

Stichworte

Grüne Stadt: Dächer; Fassaden; Boden; Schichten: Kraut, Strauch, Baum

Blaue Stadt: Teiche; Zisternen; Überflutungsflächen; veränderte (entrohrte, mäandrierende) Fließgewässer

Vernetzung: Grünschneisen; Verbund begrünter Dachflächen

Eine Stadt mit großen Grünanlagen wie Parks und Gärten bietet zwar eine hohe Lebensqualität und eine bessere Ökobilanz. Dies geht aber insofern auf Kosten der Umgebung, als sie mehr Fläche für denselben umbauten Raum benötigt. Wenn die Umgebung aus intensiv bewirtschafteten Ackerflächen besteht, kann deren Umwandlung in gartenreiche Wohngebiete trotzdem Vorteile bieten (Reichholf 2018). Für die heutigen, von dicht stehenden Hochhäusern dominierten Großstädte ist das aber keine realistische Alternative, da die benötigten Flächen viel zu groß wären. Eine Erfolg versprechende Möglichkeit für dicht bebaute Großstädte ist die Integration von Bauwerken und Grünanlagen.

Schon lange zählt es zu Attributen ökologischer Bauweise, Dächer zu begrünen. Die Etablierung und Ausgestaltung solcher Dachgärten und Wiesen ist aber noch sehr stark ausbaufähig, wie man auf Luftbildern von Städten leicht erkennen kann. Neben der Flächenvergrößerung könnte auch die Ausgestaltung verbessert werden. Dickere Bodenschichten verbessern die Stoffbilanz, die Wasser- und Kohlenstoff-Speicherung.  Zisternensysteme können für die Bewässerung während Trockenperioden genutzt werden und den Wasserabfluss bei Starkregen mindern.

Begrünte Dachflächen könntemn durch Brücken verbunden werden.

Vernetzte Dachgärten (Entwurf W. Probst, 2020)

Auch begrünte Fassaden gibt es schon lange, aber eher an alten Bauernhäuser auf dem Land als an mehrgeschossigen Stadthäusern, Bankhochhäusern und Industrieanlagen. Für diese traditionelle  Fassadenbegrünung sind vor allem Lianen wie Efeu oder Wilder Wein (Parthenocissus) verantwortlich, die sich mit besonderen Haftorganen an den Fassaden festhalten – ein Grund dafür, dass sich viele Hausbesitzer wegen der dadurch erschwerten Fassadenrenovierung davon abhalten lassen, eine solche  Wandbegrünung zu erlauben. Auch die Furcht vor Beschädigungen durch die wuchernden, oft auch in Risse und Öffnungen eindringenden Lianen spielt dabei eine Rolle. Diese Probleme können durch vorgebaute Rankgerüste teilweise vermindert werden. Eine staatlich finanzierte Förderung der Fassadenbegrünung, wie sie ähnlich bei Fassadendämmungen sehr erfolgreich angewendet wird, könnten ein wirkungsvoller Anschub sein. Besonders wirkungsvoll könnte eine solche Förderung werden, wenn flächenhafte Begrünungsmodule zur Verfügung stünden, die mit einfachen Mitteln an Fassaden angebracht werden könnten und die durch Anschluss an eine Bewässerungsanlage wartungsarm wären. Die Elemente könnten aus einem Gerüst bestehen, an dem mehrere auswechselbare Pflanzgefäße aufgehängt werden.

Eine weitere Möglichkeit der vertikalen Begrünung, die in wenigen Beispielen schon verwirklicht ist, wäre die Ausgestaltung von Pflanzbalkonen mit Sträuchern und Bäumen. Große Gebäudekomplexe könnten durch grüne Brücken vernetzt werden. Verkehrswege, insbesondere Straßen und Schienenverkehr, könnten wie U-Bahnen unter die Oberfläche verlegt werden, wodurch Platz für bodenständige Grünanlagen aber auch Rad- und Fußwege gewonnen würde, So könnten schließlich Städte entstehen, die ganz in einem grünen Pelz eingehüllt sind und die sich fast übergangslos in die umgebende Landschaft einfügen (vgl. Jean Nouvel 2014, Stefano Boeri 2015).

Verkehrswege

Verkehrswege, insbesondere Straßen für den KFZ-Verkehr, tragen einmal durch Versiegelung zur Reduktion des grünen Pelzes bei, zum anderen  zerschneiden sie Ökosysteme, führen zur Verinselung und  darüber insbesondere zur Schädigung von Tierpopulationen und damit zur Verringerung der Biodiversität. Schließlich belasten die Abgase der Kraftfahrzeuge die Luft.

Autobahn (Quelle: pixabay: Alexas_Fotos)

Mögliche Verbesserungen:

Stichworte

  • Zerschneidungseffekte minimieren (Brücken über wertvolle Landschaftsteile, grüne Brücken zur Minderung von Zerschneidungseffekten, Tunnel),
  • Begleitgrün verbessern (Straßenränder, Randstreifen,Verkehrsinseln),
  • nicht mehr benötigte Verkehrsflächen entsiegeln,
  • Verkehrsflächen unter die Erde verlegen; nicht nur Hindernisse (Berge, Gewässer) sondern auch besonders schützenswerte Landschaften untertunneln,
  • emissionsarme Verkehrsmittel nutzen.

Je dichter die Besiedelung, desto dichter sind nicht nur Städte, Siedlungen  und Industrieanlagen, desto dichter ist auch das Netz von Verkehrswegen, insbesondere Straßen und Autobahnen (in Deutschland  derzeit nach Erhebung des Umweltbundesamt knapp 20000 km², das entspricht rund 5,5% der  Landesfläche). Das wirkt sich aber nicht nur über den Flächenverbrauch sondern vor allem über den Zerschneidungseffekt nachteilig auf die Funktion von Ökosystemen aus. Mehr noch als Pflanzenarten sind Tierpopulationen durch die dadurch bedingte Verinselung betroffen. Auch die direkte Tötung von Tieren durch den Verkehr spielt eine Rolle. Indirekt wirkt sich dies über die Bestäuber und die Verbreitung von Früchten und Samen auf die Vegetation aus.

Eine Verbesserung kann einmal durch geeignetes Straßenbegleitgrün erreicht werden (Kühne/Freier 2012). Vor allem aber kann die trennende Wirkung von Verkehrsflächen durch Brücken, sowohl Brücken über schützenswerte Landschaftsteile als auch verbindende Grünbrücken, und Tunnel erreicht werden. Schutzgräben oder Zäune können in Kombination mit kleinen Tunneln insbesondere  Amphibien bei ihren Laichwanderungen schützen (Krötenzaun, Krötentunnel).   

Eine Grünbrücke über die A50 bei Woeste Hoeve in den Niederlanden.. (Quelle: Wikipedia, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=618784)

Natürlich ist das Hauptproblem die hohe Verkehrsdichte und die Emissionen der Verkehrsmittel. Sie wird einmal durch den Individualverkehr, zum anderen durch den Güterverkehr verursacht. Beide haben in den letzten Jahrzehnten ständig zugenommen. Eine größere Verlagerung dieses Verkehrs auf die Bahn wird schon lange als Ziel formuliert, ließ sich aber bisher politisch nicht durchsetzen. Auch eine Förderung dezentraler Produktion könnte der ständigen Zunahme des Güterverkehrs entgegenwirken.                              

Landwirtschaft/Nahrungsmittelerzeugung

Moderne Landbewirtschaftung hat zwar zu immer höheren Erträgen pro genutzter Fläche geführt, die Gesamtstoffbilanz, in die man den Verbrauch von fossilen Energieträgern einrechnet, ist aber immer schlechter geworden. Nach Smil (2019) wird heute pro Ackerfläche 10x soviel produziert wie vor 100 Jahren aber dafür wird 90x soviel Energiezufuhr benötigt.

Riesige Monokulturen, Pestizid- und Düngemitteleinsatz erhöhen zwar die landwirtschaftliche Produktion, vermindern aber insgesamt die Leistungsfähigkeit des grünen Pelzes und schädigen Böden und ihre Kohlenstoff-Speicherfähigkeit. Artenarme, mit Pestiziden behandelte Agrarflächen sind die Hauptursache für den starken Rückgang der biologischen Vielfalt. Die Massentierhaltung ist nicht nur ein ökologisches sondern auch ein ethisches Problem.

Weizenfeld nach der Ernte (Quelle: pixabay: ulleo)

Mögliche Verbesserungen:

Stichworte

  • Beachtung ökologischer  Zusammenhänge (Kreislaufwirtschaft, integrierter Pflanzenschutz)
  • artgerechte Nutztierhaltung
  • Vernetzung durch Feldhecken und Randstreifen
  • Feldgehölze und andere artenreiche Biotope als ökologische Inseln
  • Agroforestry
  • Vertical Farming
  • Landwirtschaft 4.0 (KI)

Das gewichtigste Argument für eine immer stärkere Rationalisierung und Industrialisierung der Landwirtschaft ist, dass nur dieser Weg für die ständig steigenden Bedürfnisse der wachsenden Erdbevölkerung die notwendigen Nahrungsmittel und weiteren Rohstoffe liefern kann. Dieses Argument greift aber insofern nicht, als die derzeitige Landbewirtschaftung auf irreversiblem Verbrauch basiert, Verbrauch von fossilen Energieträgern, Verbrauch von Wasser, Verbrauch von nicht regenerierbaren Düngemitteln (insbesondere Phosphat, Greuling 2011), Verbrauch von Böden, Verbrauch von selbstregulierenden Ökosystemen wie z.B. Regenwäldern.

Systeme, die auf Verbrauch basieren, sind aber nur nachhaltig, das heißt, für längere Zeit funktionsfähig, wenn die verbrauchten Ressourcen ständig regeneriert werden können, Dies ist gegenwärtig eindeutig nicht der Fall. Deshalb ist eine Veränderung  vorhersehbar. Sie kann nur ohne Katastrophen stattfinden, wenn sie  basierend auf wissenschaftlichen Erkenntnissen der Ökologie vorgenommen wird.

Das kann natürlich nicht bedeuten, dass man zu Methoden des Neolithikums zurückkehrt. Eine den Produktionserfordernissen der Gegenwart genügende Landbewirtschaftung, die gleichzeitig nachhaltig ist, bedeutet nicht weniger Technik sonder mehr Technik, genauer gesagt mehr intelligente Technik.

Sehr große, von Monokulturen bestandene Flächen erlauben den Einsatz von riesigen Maschinen und  haben dazu geführt, dass mit wenigen menschlichen Arbeitskräften große Stoffmengen produziert werden können. Gleichzeitig werden dadurch aber lebenswichtige Ressourcen, Artenvielfalt, Böden, Dünger und Energie liefernde Stoffe „verbraucht“ und andere Ökosysteme durch Eintrag von Düngemitteln und Schadstoffen geschädigt.

Das Grüne Band Deutschland bezeichnet einen Geländestreifen entlang der ehemaligen innerdeutschen Grenze, der als arten- und biotopreicher Grüngürtel erhalten bleiben soll und der zudem wertvolle Biotope miteinander verbindet. Wenn von diesem grünen Band weitere Grüngürtel ausgehen würden, könnte es Ausgangspunkt für eine landesweite oder sogar europaweite Netzstruktur werden.

Würden die Monokulturen durch ein Netz naturnaher linearer Elemente wie Feldhecken und Wildpflanzenstreifen unterbrochen, könnte dieser Verbrauch zwar gemindert werden, gleichzeitig wäre aber eine Bewirtschaftung mit den derzeit üblichen Methoden nicht möglich oder viel aufwändiger. Mit kleineren, intelligenten Maschinen, wie sie in einfacher Form  heute schon allgemein zum Staubsaugen oder Rasenmähen eingesetzt werden, wäre das aber durchaus denkbar. Solche intelligenten, lernfähigen Roboter könnten – mit Luftbildern von Drohnen oder auch Satelliten versorgt – sehr gezielt arbeiten. Zusammen mit der  Roboter eigenen  Sensorik würde eine gezielte und damit sparsamere Unkrautvernichtung, Schädlingsbekämpfung, Düngung und Bewässerung möglich. Statt flächendeckender Düngung könnten gezielt nur solche Teilbereiche gedüngt werden, die tatsächlich unterversorgt sind. Pestizide könnten nur auf tatsächlich befallene Pflanzen  gesprüht werden, dasselbe gilt für die Bekämpfung von Unkräutern. Statt  Riesentraktoren und Megamaschinen würden dann viele kleine Roboter die Ackerflächen bearbeiten. Eine solche von künstlicher Intelligenz bestimmte Agrarwirtschaft wird auch als Landwirtschaft 4.0 bezeichnet.

Alternative, Ressourcen schonendere Formen der Landbewirtschaftung wie Mischkulturen und  Agroforestry,  spielen heute nur in Nischen und Subsistenzwirtschaften eine Rolle, da sie sehr arbeitsintensiv sind. Durch Einsatz intelligenter Technik könnten manuelle Tätigkeiten durch Roboter und Regelsysteme ersetzt und damit solche nachhaltigen Wirtschaftsformen rentabler werden.

Eine weitere zukunftsweisende Form zur Produktion von Nahrungsmitteln und anderen nachwachsenden Rohstoffen wird mit dem Begriff „Vertical Farming“  bezeichnet. Dadurch könnte der Flächenverbrauch der Produktion stark verringert werden. Schon auf der Internationalen Gartenschau in Wien 1964 wurde ein von dem Maschinenbauingenieur Othmar Ruthner konstruiertes Turmgewächshaus gezeigt. Weitere Verbreitung dieser Idee sorgte der New Yorker Professor für Umweltgesundheit und Mikrobiologie Dickson Despommier, der mit seinen Studenten ab 1999 entsprechende Ideen  zunächst für die Nahrungsmittelversorgung der 50000 Einwohner Manhattans entwickelte. Ausgangspunkt waren Überlegungen zum möglichen Gemüseanbau auf Dachflächen. In der Weiterentwicklung  wurden Hochhäuser geplant, die insgesamt der Pflanzenkultur dienen sollen. In jedem Stockwerk eines solchen  Hochhauses sollen Pflanzen auf optimale Weise automatisch gesteuert und reguliert kultiviert werden. Gleichzeitig sind diese Kulturen in  Kreislaufsysteme, insbesondere der  Wasserwiederverwendung und Abwasseraufbereitung, eingebunden (Despommier 2011).

Das Prinzip „Wachsen lassen“

Wenn  die möglichst optimale Förderung der Vegetation als wichtigstes Naturschutzziel im Sinne einer für die menschliche Zivilisation nachhaltigen Entwicklung des Bioplaneten anerkannt wird, müssen Pflanzenwachstum und Vegetationsentwicklung so gut wie möglich gefördert werden. Das bedeutet, dass man Pflanzen überall dort wachsen lässt, wo sie nicht wichtige Funktionsabläufe stören.

Die Bearbeitung von Kulturflächen ist in vielen Fällen notwendig. Wenn man eine Wiese in Mitteleuropa nie mehr mäht, wird daraus in ein, zwei Jahrzehnten ein Gebüsch und in einem Jahrhundert ein Hochwald. Einen Acker muss man regelmäßig bestellen, abernten, düngen und auch spritzen, um ernten zu können.  Aber wie sieht es mit den Rändern und den Grenzen zwischen den verschiedenen Nutzungsflächen aus? Hier besteht für den Naturschutz ein riesiges Potenzial, das für den Naturhaushalt vermutlich ergiebiger ist, als die in ihrem Flächenanteil sehr beschränkten Naturschutzgebiete. Außerdem hilft der Randschutz, verinselte naturnahe Flächen zu vernetzen. Eine vielversprechende Initiative, welche diese Idee verfolgt, ist das „Konzept der Ehda-Flächen“. Initiator und Träger dieses Projektes ist das Institut für Agrarökologie des Landes Rheinland-Platz (IfA). In den  Stadtkernen betrifft dies Parkanlagen, aufgegebene Verkehrsflächen, Brachflächen, die vorübergehend nicht bebaut sind, Randstreifen  und Verkehrsinseln, die man zeitweilig der Spontanvegetation überlassen kann. Auch die Grünflächen um öffentliche Gebäude wie Krankenhäuser, Verwaltungs- und Regierungsgebäude liefern große, bisher nicht sinnvoll genutzte Flächen.

Ein besonders großes Potenzial stellen Privatgärten dar, die meist in den Randbereichen der Städte in  Vierteln mit Einfamilien- und Reihenhäusern konzentriert sind. Hier gilt meist das Prinzip, dass nur wachsen darf , was gepflanzt wurde. „Un“kraut jäten ist deshalb  neben Rasen mähen und Hecken schneiden die häufigste Beschäftigung des Hobbygärtners. Um das Unkraut ohne zu viel manuelle Tätigkeit fern zu halten, hat sich schon vor einigen Jahrzehnten verbreitet, die Beete mit einer Schicht aus keimungs- und wachstumshemmendem Rindenmulch zu bedecken.Seit einigen Jahren wird eine noch pflanzenfeindlichere Methode, das Auskiesen von Gartenflächen, immer beliebter.

Durch solche Maßnahmen gehen sehr viele potenzielle Flächen für einen ökologisch wirkungsvollen „grünen Pelz“ verloren.

Einige Regeln, die helfen können, aus einem Garten eine ökologisch wertvolle Grünfläche zu machen:

  • Zierpflanzen, die gut gedeihen, fördern, auf solche, die schlecht wachsen oder sehr viel Pflege benötigen, verzichten,
  • auf Pestizide verzichten oder sie nur sehr gezielt bei einzelnen befallenen Pflanzen einsetzen,
  • Wildpflanzen nur entfernen, wenn sie gewünschte Zier- oder Nutzpflanzen schädigen oder verdrängen,
  • Wildpfanzen unter Hecken oder Sträuchern wachsen lassen,
  • Rasenflächen, die rein ornamentale Funktion haben, zu mageren (nicht gedüngten), höchstens zweimal im Jahr gemähten Wiesen umwandeln,
  • Abstellflächen (z.B. Autostellplätze) nicht pflastern oder asphaltieren, sondern als Schotterrasen gestalten,
  • Einfahrten mit unterbrochenen Pflastersteinen befestigen, die Bewuchs und Wasserversickerung ermöglichen,
  • abgeblühte Blütenstände und abgestorbene  Fruchtstände wenigstens teilweise stehen lassen, auch über Herbst und Winter (Überwinterungsplätze für Insekten)
  • Gartenabfälle vor Ort kompostieren,
  • aus Strauch- und Baumschnitt Reisighaufen anlegen,
  • Gartenmauern als Trockenmauern anlegen, Mauerritzen können zur schnelleren Begrünung mit passenden Pflanzen geimpft werden (Zimbelkraut, Mauerraute, Schöllkraut, Polster von Mauermoosen wie Drehzahnmoos, Kissenmoos)
  • Abwechslungsreiche Besiedelungsflächen schaffen (Sandflächen, Lehmböden, humusreiche Böden, Stein- bzw. Bauschutthaufen),
  • Regenwasser vom Dach (und versiegelten Flächen) in Zisterne sammeln und als Gießwasser (ggf. auch für Teich /Bachlauf) nutzen.
Wildwuchs an der Gartengrenze
Wildwuchs an der Gartengrenze (Großblutige Königskerze – Verbascun densiflorum)

Quellen

Blanc.P. (2009): Vertikale Gärten, Die Natur in der Stadt. Stuttgart: Ulmer

Boeri, S. (2015): A vertical Forest. Milano: Editione Mantova

Delwiche, C., F., Cooper, E., D. (2015): The evolutionary origin of terrestrial flora. Current Biology25, S. R899 – R919

Dasgupta,  P. (2020): Interim Report – The Dasgupta Review: Independent Review on the Economics of Biodiversity. Crown copyright. https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/882222/The_Economics_of_Biodiversity_The_Dasgupta_Review_Interim_Report.pdf

Despommier, D. (2011): The vertical  farm: Feeding the world in the 21th century. Picador (Nachdruck der Ausgabe von 2010)

Glatron, S., Granchamp, L. (eds. , 2018) : The urban garden city. Springer

Greuling, H. (2011): Am Phosphor hängt das Schicksal der Menschheit. Die Welt bewegen. Berlin: Axel Springer SE https://www.welt.de/dieweltbewegen/article13585089/Am-Phosphor-haengt-das-Schicksal-der-Menschheit.html

Haft, J. (2.A. 2019): Die Wiese – Lockruf in eine geheimnisvolle Welt. München: Pengiun

Hendershot, J., N. u.a. (2020): Intensive farming drives long-term shifts in avian comunity composition. Nature 579, p.393-396

Kühne, S./Freier, B. (2012): Saumbiotope und ihre Bedeutung für Artenvielfalt und biologischen Pflanzenschutz. Workshop „Biological Diversity in Agricultural
Landscapes“ – February 09-10, 2012, Berlin-Dahlem

Liu, Xiaoping et al. (2020): High spatiotemporal resolution mapping of global urban change from 1985 to 2015: Nature Sustainability. DOI: 10.1038/s41893-020-0521-x

Probst, W. ,Hrsg. (2017): Saumbiotope – Grenzen und Übergänge. Unterricht Biologie 425. Seelze: Friedrich

Reichholf, J. H. (2018): Schmetterlinge: Warum sie verschwinden und was das für uns bedeutet. München: Hanser

Schilk, D. (2019): Die Wiederbegrünung der Welt. Klein Jasedow: Drachen-Verlag

Smil, V. (2019): Growth – From microorganismes to megacities. Cambridge MA.: MIT-Press

Watson, J. E. M., Allen, J. A. U:A: (2018): Protect the last of the wild. Nature 563, pp. 27-30

http://pub.jki.bund.de/index.php/JKA/article/view/2201/2585

https://umwelt.hessen.de/s/default/files/media/hmuelv/ackerrandstreifen.pdf

https://mashable.com/article/green-cities-china/?europe=true

https://www.floornature.de/jean-nouvel-und-die-gruenen-apartments-one-central-park-in-sidney-11253/

Botanische Spaziergänge 2019

Tourist-Information, St.-Martin-Platz 9, 88094 Oberteuringen, Tel. 07546 299-25

Botanische Spaziergänge mit Prof. Dr. Wilfried Probst

Wegen schlechtem Wetter findet der Spaziergang am Ersatztermin, nächsten Samstag, dem 11.05.2019, 10:00 h, statt.

Treffpunkt: Oberteuringen, St.-Martin-Platz (Rathaus/Kirche)

Schuppenwurz und Gelbe Anemone an der Rotach bei Oberteuringen

Oberteuringen liegt an der Rotach, etwa in der Mitte ihres knapp 40 km langen Laufes vom Pfrunger-Burgweiler Ried bis zum Bodensee bei Friedrichhafen.  Auf einem Frühlingsspaziergang entlang dieses Baches lernen wir Bäume, Sträucher und einige typische Frühlingsblumen kennen, die den Bachlauf begleiten.

Es wird auch gesammelt, sortiert, gefühlt und geschnuppert.

Samstag, 01.06.2019, 10:00 Uhr 

Ersatztermin bei schlechtem Wetter: 08.06.2019

Treffpunkt: Oberteuringen, Wanderparkplatz Altweiherwiesen (Richtung Bibruck), hinter der Straßen-Unterführung unter der L329

Breitblättriges Knabenkraut, NSG Altweiherwiese bei Oberteuringen

Der zweite Botanische Spaziergang führt uns vorbei an Oberteuringens Naturschutzgebiet Altweiherwiesen mit seinen Feuchtwiesen und Rieden bis zum Weiler Wammeratswatt. An den Wegrändern wachsen viele weitverbreitete Kräuter und Stauden, im Ried hoffen wir auf Knabenkräuter und Sibirische Schwertlilien und einige andere Besonderheiten.

Samstag, 10.08.2019, 10:00 Uhr 

muss wegen Krankheit ausfallen

Ersatztermin bei schlechtem Wetter: 17.8.2019

Treffpunkt: Wanderparkplatz an der Kreisstraße K 7742 zwischen Raderach und Riedheim (am Fuß des Drumlins „Franzenberg“)

Im NSG Hepbach-Leimbacher Ried

Der Spaziergang führt in das Umfeld des Naturschutzgebietes Hepbacher-Leimbacher Ried. Der abwechslungsreiche Weg durch den Wald und vorbei an Feuchtgebieten und Gewässern verspricht nicht nur viele verschiedene Pflanzenarten sondern auch interessante Vogelbeobachtungen.

Samstag, 21.09.2019, 10:00 Uhr 

muss wegen Krankheit ausfallen

Treffpunkt: Wanderparkplatz im Brochenzeller Wald an der Landstraße L 329 zwischen Ettenkirch und Brochenzell, von Oberteuringen kommend links, kurz vor dem Kreisverkehr am Ortseingang von Brochenzell

Im Wald bei Brochenzell



        

Auf diesem Spaziergang gehen wir eine kleine Runde durch dieses schöne Waldgebiet mit abwechslungsreichem Baumbestand. Besonders interessieren uns die Pflanzen an den feuchten Wegrändern und Gräben. Vielleicht finden wir auch einige Pilze.

Dauer jeweils ca. 2,5 Stunden. Die Veranstaltung ist kostenlos.

Teilnahme auf eigene Gefahr.                  

De Vriesentopf – Spontanvegetation im Blumentopf in Erinnerung an De Vries‘ Sanctuarium

LINK-NAME LINK-NAME

Kunstfrevel

Beim Pragsattel in Stuttgart – eine der verkehrsreichsten Stellen der Stadt – war bis vor kurzem eine landschaftsarchitektonische Installation des niederländischen Konzeptkünstlers Herman de Vries zu sehen. Der Künstler hatte sein „Sanctuarium“ anlässlich der Internationalen Gartenbauausstellung 1993 Stuttgart auf den Weg gebracht. Es handelt sich um ein knapp 100 m² großes, von einem stählernen Staketenzaun mit vergoldenen Pfeilspitzen umgebenes Rondell. Die Idee des Künstlers: diese Fläche sollte völlig frei von menschlichem Einfluss bleiben. „Die Kunst ist aber nicht an erster Stelle im Entwurf des Stahlzauns und seiner Ausführung zu sehen. Das ist der Rahmen. Das wichtigste findet innerhalb dieses Zaunes statt. Es sind die Pflanzen, die sich da ansiedeln, …“ (de Vries 1995 nach Wikipedia).

1993 wurde diese Kunstaktion in der Öffentlichkeit durchaus kritisch wahrgenommen – was sollte sich hier schon entwickeln außer „Unkraut“? Tatsächlich hat sich aber im Laufe der Jahrzehnte ein durchaus hübsch anzusehendes, dichtes, kleines Gehölz entwickelt, mit Rotem Hartriegel und anderen Sträuchern, Hunds-Rosen und alles umrankenden Waldreben, eine wirkliche Oase in der Verkehrslandschaft. Im März vergangenen Jahres wurde die Vegetation vom Garten-, Friedhofs- und Forstamt (GFF) der Stadt Stuttgart mit der Begründung entfernt, dass „die Entwicklung zum Wald durch regelmäßiges Zurückschneiden der Spontanvegetation auf das Ausgangsstadium verhindert werden soll“ (Zitat von der Pressestelle der Stadt Stuttgart nach Stuttgarter Nachrichten vom 25. März 2018).

Diese Rodung konnte man allerdings nicht als Rückschnitt bezeichnen, denn die Pflanzen wurden wirklich bis auf den Wurzelansatz vollständig entfernt.

Der Künstler hat gegen diese Abholzaktion der Stadt Stuttgart protestiert und viele Aktivisten haben sich dem Protest angeschlossen und sogar Anzeige „wegen Vandalismus“ gegen das Gartenamt erstattet. Da es sich dabei um die Beseitigung eines offiziell akzeptierten und vom Künstler genau beschriebenen Kunstwerkes handelt, erscheint dies berechtigt und hat durchaus Aussicht auf Erfolg.

Naturfrevel

Der Kunstfrevel ist eine Sache. Ich finde allerdings noch bedenklicher, dass es erst einer spektakulären Kunstinstallation bedarf, um Protest gegen die Vernichtung von Spontanvegetation hervorzurufen. Gerade die Ämter, die für das Grün in der Stadt zuständig sind, sollten überall dafür sorgen, dass Natur eingeschaltet und nicht ausgeschaltet wird. Wildwuchs sollte nur dort beschnitten, zurückgedrängt oder vernichtet werden, wo dies aus funktionalen Gründen – und nicht aus einer falsch verstandenen Ordnungsliebe heraus – notwendig ist (vgl. In diesem Zusammenhang auch das sogenannte „Konzept der Ehda-Flächen“ das Ende 2018 als offizielles Projekt der UN Dekade biologische Vielfalt ausgezeichnet wurde) . Das Stuttgarter Sanctuarium ist im Übrigen ein gutes Beispiel dafür, dass sich in den Städten für Klima und Naturhaushalt wertvolle Vegetation mit sehr geringem Kostenaufwand etablieren lassen würde. Statt aufwändiger Pflanzaktionen könnte man einfach kleine Areale sich selbst überlassen, dann würde sich dort mit der Zeit eine Gehölzvegetation einstellen, die dem Standort angepasst ist und keiner besonderen Pflege bedarf. Um zu verhindern, dass ein flächendeckender „Urwald“ entsteht, könnte man die Grenzen solcher Ökoinseln genau festlegen – ohne aufwändige und sicher relativ teure Umzäunungen.

Das Stuttgarter Sanctuarium wurde 25 Jahre alt. Hätte man der Entwicklung ohne weiteren Eingriff weitere 25 Jahre zugeschaut, wären vermutlich tatsächlich relativ hohe Bäume entstanden von denen irgendwann möglicherweise eine Verkehrsgefährdung hätte ausgehen können – wie dies bei allen Bäumen an Wegen, Straßen und in Siedlungen vorkommen kann. Auch nicht vertretbare Sichtbehinderungen für die Verkehrsteilnehmer wären denkbar. In solchen Fällen müsste ein Eingriff natürlich jederzeit möglich sein.

De Vriesentöpfe

Um das Bewusstsein für Regenerationsfähigkeit der Natur zu stärken und das Konzept des „Wachsen lassens“ in Siedlungsräumen und Kulturlandschaften weiter zu verbreiten, möchte ich zu einem Experiment anregen, das man nach der Aktion des Künstlers und Gärtners Hermann de Vries als „De Vriesentopf“ bezeichnen könnte.

Ende Februar 2017 haben wir auf unserer Terrasse – wie schon die Jahre zuvor – einen großen Blumentopf mit Garten- und Komposterde gefüllt und mit Gartenkresse eingesät und dann etwa zwei Monate lang Kresse geerntet. Dann waren die Kressepflanzen trotz regelmäßigen Abzupfens schon zur Blüte und Frucht gekommen und nicht mehr so gut für die Küche geeignet. Zwischen den gerupften Kressestängeln begannen andere Pflanzen zu wachsen. Zunächst waren das vor allem – ebenfalls essbare – Vogel-Sternmieren und Persischer Ehrenpreis. Wir haben den Topf dann einfach stehen lassen und Anfang August hatte sich eine sehr vielseitige Pflanzengemeinschaft entwickelt.

Spontanvegetation im Blumentopf am 2. August 2017 mit Weiß-Klee, Behaartem Knopfkraut, Kriechendem Fingerkraut, Steifem Sauerklee, Hopfen-Schneckenklee, Kanadischem Berufkraut, Zypergras-Segge und Ruten-Hirse
Spontanvegetation im Blumentopf am 6. Oktober 2017. Besonders hübsch an diesem Herbstaspekt sind die zarten Fruchtstände der Ruten-Hirse

Wir haben dann in die weitere Entwicklung den ganzen Winter nicht eingegriffen und im nächsten Jahr 2018 mit seinem sehr trockenen und warmen Sommer ebenfalls nur gegossen aber keine anderen Eingriffe vorgenommen. Die Fotos dokumentieren die Entwicklung unseres De Vriesentopfes bis zum Januar 2019 .

Spontanvegetation im Blumentopf am 5. April 2018. Man sieht vor allem die Blätter vom Weiß-Klee, außerdem beginnen zwei Seggenarten zu treiben.

Im April und im Mai wachsen in dem Topf schnell verschiedene Pflanzenarten empor. Die meisten finden sich irgendwo in unserem Garten aber nicht alle. Vor allem mit einer Segge kann ich zunächst – bevor sich die Blütenstände zeigen – nichts anfangen. Dann stellte sich heraus, dass es sich um die Hasenpfoten-Segge handelt, die ich in unserem Garten noch nie gesehen habe und die mir auch in der weiteren Umgebung bisher nicht aufgefallen ist.

Spontanvegetation im Blumentopf am 10. Mai 2018. Außer den Margeriten sieht man die gerade sich öffnenden Blütenstände von zwei Seggenarten (Hasenpfoten-Segge hinten und Cypergas-Segge direkt davor) und vorne die Grundblätter der Großblütigen Königskerze. Bei den Blättern der Königskerze kann man das erste Gehölz erkennen, ein Hartriegel, vermutlich Cornus mas, die KornelKirsche:

Am 21. Juni 2018 kann ich folgende Arten registrieren:

Kleinblütige Königskerze – Verbacum thapsus

Großblütige Königskerze – Verbacum densiflorum

Feinstrahl, Einjähriges Berufkraut – Erigeron annuus

Zypergras-Segge – Carex pseudocyperus

Hasenpfoen-Segge – Carex leporina

Große Brennnessel – Urtica dioica

Weiß-Klee – Trifolium repens

Hopfen-Schneckenklee – Medicago lupulina

Weiße Taubnessel – Lamium album

Steifer Sauerklee – Oxalis strictum

Margerite, Wiesen-Wucherblume – Leucanthemum vulgare

Kriechendes Fingerkraut – Potentilla reptans

Spontanvegetation im Blumentopf am 19. Juni 2018

Mit den hochgewachsenen Königskerzen und dem Feinstrahl sieht unser Blumentopf nun richtig imposant aus. Die Nachbarin bewundert ihn. Allerdings sind einige Pflanzen auch schon fast verschwunden, zum Beispiel der Steife Sauerklee, die Margeriten sind längst verblüht. Einige Einjährige vom ersten Jahr – wie Ruten-Hirse, Kanadisches Berufkraut und Behaartes Knopfkraut – sind dieses Jahr gar nicht mehr erschienen.

Besonders beeindruckt bin ich von der Hasenpfoten-Segge. Ich habe bisher nicht gewusst, dass sie auch ausgesprochen schöne und sehr dauerhafte vegetative Triebe bildet, an denen man die dreizeilige Beblätterung sehr gut erkennen kann.

Vegetativeve Triebe der Hasenpfoten-Segge am 2. September 2018

Im Herbst fangen die meisten großen Pflanzen dann an zu vertrocknen. Der Feinstrahl bildet aber noch bis zum Dezember neue Blüten. In der niedrig stehenden Nachmittagssonne sieht unser De Vriesentopf immer noch sehr schön aus

Spontanvegetation im Blumentopf am 20.12.2018

Mittlerweile wurde unser Topf – zum ersten Mal diesen Winter – eingeschneit. Nun sind wir sehr gespannt, welche Pflanzen sich im nächsten Jahr entwickeln werden.

Die Bilder sollen anregen, selbst einen solchen Versuch mit spontaner Vegetation zu starten. Es reicht ein Blumentopf oder ein Blumenkasten. Natürlich wird die Zusammensetzung der Arten sehr stark von den äußeren Bedingungen, zum Beispiel von der Besonnung, der Wasserversorgung und vor allem dem Boden abhängen. Aber auch die umgebende Vegetation dürfte wichtig sein. Durch Variation dieser Bedingungen kann man Einfluss nehmen aber die Entwicklung nicht wirklich vorherbestimmen. Ein gewisser Überraschungseffekt wird immer bleiben und das ist das Spannende an dem De Vriesentopf.

De Vriesentopf nach dem ersten Schnee am 6.Januar 2019


16.7.2019 – mit Hasenpfoten-Segge (Carex leporina) und Großblütiger Königskerze (Verbascum densiflorum)
15. März 2020
21. Juni 2020
1.Mai 2020,Hasenpfoten-Segge und Zypergras-Segge nehmen viel Platz in Anspruch. Weitere Arten v.l.n.r.: Hopfen-Schneckenklee, Kriechendes Fingerkraut, Großblütige Königskerze, Große Brennnessel, Feinstrahl und als einziges Gehölz Blutroter Hartriegel
Juni 2020. Zypergras-Segge und Hasenpfotensegge haben Fruchtstände angesetzt. Sie sind nun die dominietrenden Pflanzen.
21. Juni 2020 . Auch der Hopfen-Schneckenklee hat sich gut entwickelt, aber vor allem außerhalb des Topfes.

So wie es jetzt aussieht, dürfte die Anzahl der Arten in der nächsten Vegetationsperiode weiter zurückgehen. Noch gibt es einen blühenden Feinstrahl, sehr mickriges Kriechendes Fingerkraut, sehr kleine „Große“ Brennnesseln, die Grundrosette einer Großblütigen Königskerze und einen sehr in die Enge getriebenen Blutroten Hartriegel. Neuansiedlungen von außerhalb scheinen nun endgültig nicht mehr möglich zu sein.

15.12.2020
18.01.2021
In kurzer Zeit sind über 50 cm Schnee gefallen
3.3.2021

Der Schnee war schnell wieder geschmolzen. Aber dann habe ich mich zu einem Eingriff entschlossen, der bewirken soll, dass die auskeimenden Pflanzen nicht zu sehr beschattet werden. Die abgestorbenen Pflanzenreste – vor allem von den Seggenarten – wurden abgeschnitten.

3.3.2021 – nach dem Stutzen
1.5.2021

Am 1. Mai sieht alles wieder schön grün aus, aber die Artenanzahl scheint etwas reduziert zu sein. Auf der noch freien Fläche hat sich vor allem das Kriechende Fingerkraut ausgebreitet. Der Hartriegel setzt sich durch.

26.8.2021

Die Hasenpfoten-Segge dominiert, der Hartriegel hatte einen Wachstumsschub, das Kriechende Fingerkraut hat lange Ausläufer gebildet, die über den Terrasseboden kriechen.Auch mehrere Feinstral-Pflanzen haben sich zunächst gut entwickelt, wurden aber dann stark von der Spanischen Wegschnecke abgefressen, Von der Großen Brennnessel haben sich nur zwei oder drei sehr kümmerliche Triebe entwickelt. Vom Gewöhnlichen Hornkraut sind verdorrte Fruchtstände zu erkennen.

17.1.2022
19.4.2022

Anfang März haben wir wieder – wie im vergangenen Jahr – trockene Blätter und Stängel entfernt. Der Aspekt ähnelt nun sehr stark dem Vorjahr. Außer Seggen ist vor allem das Kriechende Fingerkraut zu erkennen.

6.6.2022

Im 5. Jahr geht die Artenvielfalt deutlich zurück. Es dominiert ganz stark die Hasenpfoten-Segge, von der Zypergras-Segge sind nur noch wenige Halme übrig geblieben. Gut gehalten hat sich das Kriechende Fingerkraut. An weiteren Kräutern kann man bis jetzt nur wenige Pflänzchen des Gewöhnlichen Hornkrauts erkennen. Der Rote Hartriegel hat erheblich an Biomasse zugelegt.

3.10.2022

Das Foto zeigt die erfolgreiche Auswanderung des Kriechenden Fingerkrauts.

14.05.2023

Der Hartriegel blüht zum ersten Mal. Außer Hasenpfoten-Segge und Fingerkraut ist eine Schmalblättrige Wicke (Vicia angustifolia) zum Blühen gekommen.

Ich werde den Versuch weiterführen.

Chicken Wings und Chiasamen – auf Entdeckungsreise im Supermarkt

LINK-NAME
Überlegungen zu einem geplanten Schüler-Kompakt von Unterricht Biologie

Die Frage der richtigen und gesunden Ernährung ist in unserer Überflussgesellschaft ein wichtiges und von Medien und Öffentlichkeit viel diskutiertes Problem. Sie ist wirklich ein Problem, aber nicht zuletzt ein Überflussproblem. Kurz gesagt scheint die Lösung einfach:

Esst wenig Zucker, Fett, Fleisch und viel Salat, Obst, Gemüse

Mit dieser einfachen Richtlinie ließen sich viele Ernährungsprobleme lösen. Aber das große Angebot macht die Realität für den Konsumenten ziemlich komplex und wenn man Schülerinnen und Schüler im Unterricht auf diese komplexe Wirklichkeit vorbereiten will, kommt man nicht umhin, die Frage nach der gesunden und nachhaltigen Ernährung auch in einer gewissen Komplexität zu bearbeiten. In der Sprache der zeitgemäßen Didaktik formuliert: Es gelingt sonst nicht, dass Schülerinnen und Schüler die Kompetenz entwickeln, sich gesund, umweltverträglich und nachhaltig zu ernähren.

Wie kann man SchülerInnen motivieren, sich einen Überblick über diese Vielfalt des Nahrungsmittelangebots in den Verbrauchermärkten zu  verschaffen und vernünftige, auf Fachkenntnissen beruhende Kaufentscheidungen zu treffen? Das Ziel: Die SchülerInnen sollen Verbraucherkompetenz entwickeln. Die Gefahr: Der deutlich erhobene Zeigefinger wirkt so, dass der Unterricht nicht ernst genommen wird bzw. langweilt. Eine motivierende Möglichkeit könnten Exkursionen in Kauflandschaften sein, bei denen die Entdeckungen von neuen Angeboten und unbekannten Produkten zu weiteren Recherchen und Informationen führen. Deshalb sollen die Beispiele in dem geplanten Kompakt von Unterricht Biologie insbesondere neuere Angebote und Werbestrategien in den Blick nehmen.

Konsumenten und Produzenten

Versuchen wir uns die komplexe Situation vorzustellen:

Produzent und Konsument

Ein Problem für den Konsumenten ist  die Vielfalt des Angebotes und die Vielfalt der (Werbe-)Informationen, denen er sich gegenüber sieht. Wie kann man SchülerInnen motivieren, sich einen Überblick über diese Vielfalt  zu verschaffen und sich um vernünftige, auf Fachkenntnissen beruhende Entscheidungen zu treffen?

Wenn der Verbraucher eine Kaufentscheidung für ein bestimmtes Nahrungsmittel im Supermarkt trifft, denkt er zunächst einmal daran, ob ihm das zu Kaufende schmecken wird, also an seinen Genusswert. Bei der Produktion des Nahrungsmittel hat der Produzent dieses natürlich auch im Blick, aber der entscheidende Gesichtspunkt für den Produzenten ist die Frage, ob er mit einem bestimmten Produkt auch Gewinn machen kann. Dabei spielt die Werbung eine entscheidende Rolle, also zum Beispiel die Verpackung, die Aufschriften usw.  (Motto: Mehr scheinen als sein).

Die Tendenz, möglichst billig zu produzieren, wird durch gesetzliche Bestimmungen beschränkt. Dabei kommt es immer wieder zu Übertretungen und die Medien berichten gerne von solchen Lebensmittelskandalen. Verbraucherorganisationen sind bestrebt, den Gesetzgeber dazu zu bringen, gesetzliche Vorschriften strenger zu fassen. Dabei können Ihnen die  Konsumenten  als Wähler helfen. Umgekehrt versucht die Lobby der Lebensmittelhersteller den Gesetzgeber so zu beeinflussen, dass diese Vorschriften nicht zu streng ausfallen.

Zwar hat der Verbraucher durchaus eine gewisse Macht. Seine Kaufentscheidung kann dazu beitragen, dass gesündere, auf sozial und ethisch verträglichere Weise produzierte Lebensmittel angeboten werden. Die Vielfalt des Angebots und die Vielfalt der Werbeinformationen und Berichte in den Medien über Gesundheit oder Schädlichkeit von Nahrungsmitteln ist jedoch oft schwer durchschaubar.

Qualitätsmerkmale aus Verbrauchersicht

Wenden wir uns nun noch einmal den Qualitätsmerkmalen zu, auf die ein Verbraucher bei einem Nahrungsmittel schauen könnte oder sollte.

Der Genusswert umfasst alle Eigenschaften, die man beim Essen mit den Sinnen wahrnehmen kann, also Aussehen, Geruch, Geschmack und Konsistenz, zum Beispiel die Reife einer Frucht oder die Frische eines Gemüses. Er wird aber auch von subjektiven Empfindungen bestimmt.

Der Gesundheitswert wird auch als ernährungsphysiologischer Wert bezeichnet. Er wird einerseits durch den Gehalt an Nährstoffen, Vitaminen, Mineralstoffen und Ballaststoffen bestimmt, andererseits von enthaltenen gesundheitsgefährdenden oder gefährlichen Stoffen und Keimen. Die Gesundheit von Nahrungsmitteln wird besonders intensiv für die Werbung genutzt. Es wird zum Beispiel versucht, den gesundheitsbewussten Konsumenten durch Nahrungsmittel mit speziellen Zusatzstoffen zu locken (Functional Food).Für eine gesunde Zusammensetzung der Nahrung gibt es zahlreiche Empfehlungen, zum Beispiel den sogenannten Ernährungskreis.

Der Gebrauchswert ergibt sich zum Beispiel aus Haltbarkeit, Zeitaufwand für die Zubereitung und Preis. So soll etwa durch  vorgefertigte Nahrungsmittel – Convenience Food –  der Gebrauchswert verbessert werden, indem die Nahrungszubereitung vereinfacht wird.

Um die Qualität eines Nahrungsmittel zu beurteilen spielt außerdem seine Herstellungsweise eine wichtige Rolle. Sie hat einmal Auswirkungen auf die innere Struktur. Zum anderen sind damit ökologische und gesellschaftliche Aspekte verbunden. Dazu formulierte die Bundesverband Verbraucherzentralen (V ZB V) folgende Fragen, die sich der Konsument stellen sollte:

  • Wie wirkt sich mein Konsumverhalten auf Klima und Umweltschutz aus?
  • Wie trage ich zum Energiesparen und zur Schonung der Ressourcen bei?
  • Was ist fairer Handel?
  • Wie sind die Arbeitsbedingungen in fernen Ländern?

Früher sei es eine Kernaufgabe von Eltern und Großeltern gewesen, solches Alltagswissen an nachfolgende Generationen weiterzugeben. „Doch das funktioniert heute in der Komplexität der Märkte und der Innovationen nicht mehr“, so der VZBV. Deshalb seien die Schulen hier gefordert. Konsequent wurde im Bundesland Schleswig-Holstein das das Schulfach Verbraucherbildung eingeführt. Dies wird der Tatsache gerecht, dass der genannte Fragenkatalog Bereiche ganz verschiedener klassischer Fächer berührt.

Aber auch die Behandlung im Biologieunterricht ist zu rechtfertigen.

  • Die menschliche Ernährung ist eng verknüpft mit dem klassischen biologischen Thema des menschlichen Stoffwechsels und der Funktion der Verdauungsorgane.
  • Nahrungsmittel werden aus Pflanzen und Tieren hergestellt und dabei geht es um grundlegende biologische Sachverhalte.
  • Nahrungsmittelproduktion hinterlässt deutliche „ökologische Fußspuren“, sie hat großen Einfluss auf die Ökosysteme und den Naturhaushalt.
  • Klassische und moderne Züchtung bzw. Herstellung von Nutzpflanzen und Nutztieren fußen auf Erkenntnissen und Gesetzmäßigkeiten der Genetik und der Molekularbiologie.
  • Die Kritik der modernen Massentierhaltung und die Forderung nach artgerechter Tierhaltung beruht auf Kenntnissen des tierlichen Verhaltens

Einige Beispiele sollen zeigen, wie eine vertiefte Behandlung des Themas „Nahrungsmittelqualität“ aussehen könnte.

Chicken Wings und die industrielle Fleischproduktion

In früheren Zeiten –zu Zeiten von Max und Moritz – war Geflügel ein Festessen. Brathähnchen, wie sie zum Beispiel auf dem Cannstatter Volksfest in Stuttgart angeboten wurden, „Göckele“, waren etwas ganz besonderes. Ein halbes Hähnchen kostete allerdings in meiner Jugend noch mindestens fünfmal so viel wie eine Bratwurst und für das Geld konnte man sicher mit 10 Karussellen fahren.

Damals, in den 1950 er Jahren, wurden die Hühner bei uns noch in relativ kleinen Hühnerfarmen gehalten. Ein paar hundert Tiere waren schon viel.

Aber der Hunger nach dem leckeren Hühnerfleisch war groß, die Hühnerfarmen wurden größer und größer, die Angebote immer günstiger und aus dem seltenen Festtagsbraten wurde ein immer populäreres  und schließlich auch immer billigeres Fleischgericht („Am Sonntag bleibt die Küche kalt, wir gehen in den Wienerwald“). Heute ist ein Kilo Hähnchen manchmal kaum teurer als ein Kilo Kartoffeln und oft billiger als ein Kilo Auberginen.

Ursache dieses Preisverfalls ist die industrielle Fleischproduktion. Ihre Anfänge gehen zurück bis zu den Schlachthöfen von Chicago zu Beginn des 20. Jahrhunderts, die literarisch zum Beispiel einen Niederschlag fanden in den Werken von Upton Sinclair (The Jungle) und Bert Brecht (Die heilige Johanna der Schlachthöfe). Über die gegenwärtige industrielle Fleischproduktion gibt es unzählige kritische Bücher, Berichte, Videos und Dokumentationen, zum Beispiel von PETA (People for the Ethical Treatment of Animals). In Deutschland besonders skandalbelastet sind die Schweineproduktion und die Geflügelproduktion.

Für die sechs  Hühner der Witwe Bolte, die ihr Leben bis zu Max und Moritz „lebensfroh im Sande scharrend“ verbringen konnten, bot sich nur das Braten am Stück an. Auch in den ersten Jahrzehnten nach dem Zweiten Weltkrieg wurden Hähnchen bzw. Hühner vor allem ganz gekauft und gegessen.

Mit zunehmender Industrialisierung der Hühnerfleischproduktion wurden nicht nur die Stückzahlen der gehaltenen Hühner immer größer, es gab auch eine immer weitergehende Spezialisierung  in

  • Zuchtbetriebe für Großeltern- und Elterntiere,
  • Vermehrungsbetriebe zur Produktion von Bruteiern,
  • Brütereien,
  • Mästereien und schließlich
  • Schlachtereien, in denen die Hühner am Fließband geschlachtet und die einzelnen Hühnerteile getrennt verarbeitet werden.

Parallel mit dieser Spezialisierung (als Folge oder als Voraussetzung?) entwickelte sich die Massentierhaltung mit immer größerem Tierbesatz und allen damit zusammenhängenden Scheußlichkeiten. Die industrielle Schlachtung und Weiterverarbeitung erlaubte eine Einzelvermarktung der verschiedenen Hühnerteile.

Zunächst gewann insbesondere die schnell, einfach und ohne Abfall zuzubereitende Hähnchenbrust an Bedeutung. Hühner wurden vor allem produziert, um Hühnerbrüste zu verkaufen, sodass die Produzenten einen Überschuss an allen anderen Hühnerteilen wie Keulen und Flügeln hatten. Entsprechend preiswert mussten diese Teile verkauft werden. Da war die „Erfindung“ der Chicken Wings als Kultgericht ein besonderer Glücksfall für die Geflügelproduzenten. 

Denn diese Hühnerteile gehören heute zu den beliebtesten Fast Food Gerichten, die man in Restaurants und Imbissbuden sehr preiswert serviert bekommt. Die handlichen Stücke lassen sich als Fingerfood verzehren und sie erfreuen sich vor allem bei Jugendlichen großer Beliebtheit. In Supermärkten werden sie in unterschiedlichen Varianten angeboten, schon vollständig vorgefertigt (Convenience Food) oder tiefgekühlt und schon fertig gewürzt  oder auch ohne Würzung zum selber  Frittieren oder Grillen.

Im Gegensatz zu vielen Gerichten der Alltagskultur haben die oft auch als „Buffalo Wings“ angebotenen Hühnerteile einen bekannten Ursprung: die Anchor Bar in Buffalo im Staat New York. Dort wurden sie erstmals am 30. Oktober 1964 serviert.

Die entscheidende Ausbreitung erfolgte in den 1990 er Jahren. Die weltweit agierenden Fast Food Ketten Pizza Hut und Domino‘s nahmen Chicken Wings in ihre Speisekarten auf. 1994 führten sie das Gericht zur American Football Saison landesweit ein. Domino‘s gab 32 Millionen US $ für Werbespots aus. Der Flügelkonsum ist seither besonders eng mit dem sogenannten Super Bowl verbunden. 2017 wurden am Super Bowl Wochenende 1,33 Milliarden Chicken Wings verzehrt.

Mittlerweile ist es deshalb so, dass die starke Nachfrage nach Hühnerflügeln ein Überangebot an anderen Teilen des Huhnes geschaffen hat. Und auch vom Flügel wird nicht alles benötigt. Die Flügelspitzen werden nach Asien, insbesondere nach China, exportiert und dort für die beliebten Geflügelsuppen verwendet.

Bei einer Qualitätsbewertung werden die Wings und die Nuggets beim Genusswert vermutlich ziemlich gut abschneiden, wegen des niedrigen Preises und der leichten Zubereitung sicherlich auch beim Gebrauchswert. Beim Gesundheitswert  ist der hohe Protein- und Fettgehalt zu beachten. Ökologie, Nachhaltigkeit, Tierschutz und Arbeitsbedingungen bei der „Produktion“ werden jedoch ein sehr schlechtes Zeugnis bekommen.

Chiasamen und andere Superfoods

Chia-Samen

Seit einigen Jahren trifft man in den Supermarktregalen immer häufiger auf einen neuen Namen: „Chia“. Es gibt Chia Müsli, Chia-Brot, Chia-Öl, Chia-Mehl oder auch ganze Packungen mit Chia-Samen.

Was steckt hinter diesem Chia?

Das Wort Chia ist aus der Sprache der ursprünglich in Kalifornien lebenden Nhuatl-Indianer abgeleitet, dort bedeutet chian so viel wie ölig . Es wird für zwei meist einjährige Salbei-Arten mit öligen Samen verwendet, die von den Indianerstämmen des heutigen Kaliforniens und Mexikos zu medizinischen Zwecken und als Speisezusatz verwendet wurden. Die nun bei uns im Handel befindlichen Samen stammen von Salvia hispanica. Der wissenschaftliche Name ist nicht ganz passend, denn dieser Salbei stammt ursprünglich aus Mexiko, weshalb er auch Mexikanischer Salbei genannt wird. Aber die Spanier brachten die Pflanze nach Europa und deshalb verwendete Linné, der die Pflanze schon kannte, das nicht ganz passende Epitheton. Die Pflanzen werden bis zu 2 m hoch. Sie blühen – ähnlich wie unser Wiesen-Salbei – blau violett. Die andere bisher als Superfood weniger genutzte Chiapflanze ist Salvia columbariae (Kalifornischer Salbei), deutlich kleiner und ziemlich xeromorph, die in den Halbwüsten Kaliforniens vorkommt.

Wie bei allen Lippenblütlern werden die Samen in Schließfrüchten gebildet. Bei der Reife zerfallen diese in vier Teilfrüchte („Klausen“), die jeweils einen Samen enthalten. Bei Mayas und Azteken genossen die Salbeisamen wegen ihrer sättigenden und gesundheitsfördernden Wirkung hohes Ansehen. Sie gaben die Samen ihren Botschafter mit – ihre sättigende Wirkung sollte ihnen helfen, lange Wegstrecken zu meistern.

Chia-Samen enthalten bis zu 38 % Öl, 18-23 % Proteine und etwa 40 % Kohlenhydrate, die zum größten Teil aus quellfälligen und unverdaulichen Polysacchariden bestehen („Ballaststoffe“). Die Konzentration von B-Vitaminen (Thiamin,Niacin, Riboflavin, Folsäure) und β-Carotin (Provitamin A) ist vergleichsweise hoch. Auch der Gehalt an Antioxidantien  (Tocopherole,Vitamin E) sowie ernährungsphysiologisch wichtigen Mineralstoffen ist beachtlich – dies gilt insbesondere für die Elemente Calcium, Kalium, Phosphor, Zink und Kupfer. Das Chia-Öl hat mit etwa 90 % einen besonders hohen Anteil an ungesättigten Fettsäuren, insbesondere der dreifach ungesättigten α-Linolensäure (55%).

http://www.apotheken-umschau.de/Ernaehrung/Chia-Samen-Wirklich-ein-Superfood-491003.html

Um besonders gesundheitsbewusste Verbraucher zu locken, lassen sich Lebensmittelindustrie und insbesondere Naturkostläden immer wieder neue Produkte einfallen. Oft handelt es sich – wie bei Chia – um exotische Naturprodukte, die traditionell in entfernten Kulturen eine wichtige Rolle gespielt haben. Zu nennen wären zum Beispiel Quinoa (Chenopodium quinoa), Urdbohnen (Vigna mungo), Goji-Beeren (Lycium barbarum, L.chinense), Acai- (Euterpe oleracea, Kohlpalme) Moringa- Pulver (Moringa oleifera, Meerretichbaum) oder Spirulina-Pulver aus Blaugrünen Bakterien („Blaualgen“). Sie werden als Neuentdeckungen angepriesen, als Superfood, unwahrscheinlich gesund. Dies rechtfertigt einen verhältnismäßig hohen Preis und entsprechend hohe Gewinnspannen. Dabei ist unbestritten, dass solche exotischen Nahrungsmittel oft der Gesundheit förderlich sind und zum Teil sogar heilende Wirkungen haben. Aufgrund der Werbung wird der gesundheitliche Wert jedoch meist überschätzt, vor allem ist es nicht unbedingt einsichtig, warum diese neuen Nahrungsmittel traditionellen Produkten deutlich überlegen wären. Der Chia-Hipe ist dafür ein gutes Beispiel.

Das Enfant terrible der Lebensmittelchemiker, Udo Pollmer, hat im Deutschlandradio Kultur einen sehr kritischen Kommentar dazu abgegeben:

„Die Wiederentdeckung verdanken wir der Futtermittelwirtschaft, die vor 15 Jahren versuchsweise Hühner mit Chia fütterte. Als die aber Eier mit kleinerem Dotter legten, schwand das Interesse. Und was macht der kluge Händler, wenn seine Ware nicht für den Futternapf taugt? Er kippt das Vogelfutter ins Müsli und annonciert es als „Superfood“. … Dort wo die Chia heimisch ist, wird sie gewöhnlich als trübes Erfrischungsgetränk mit etwas Fruchtsaft genossen, eine unbedenkliche Zubereitung. Ihre Fähigkeit Unmengen Wasser zu binden, weckte inzwischen auch die Neugier der Lebensmittelindustrie. Mit derart potenten Quellstoffen lassen sich kalorienreduzierte Produkte herstellen, aufgrund ihrer emulgierenden Eigenschaften ersetzt der Schleim in Kuchenteigen die Eier, in Speiseeis die Sahne. Es ist nicht gerade ein Superfood, aber als Superschleim können es die Samen noch weit bringen.“

Was ist nun wirklich dran an dem Wunder-Chia? Vergleicht man die Inhaltsstoffe von Chiasamen mit traditionelleren Samen wie Leinsamen oder Sonnenblumenkernen, stellt man fest,es gibt keine entscheidenden Unterschiede bis auf vielleicht die hohe Quellfähigkeit.

Tatsächlich ist diese hohe Wasserbindungskraft der Chia-Polysaccharide nicht ganz unbedenklich. Chia Samen binden die 25 fache Gewichtsmenge Wasser. Dies kann dazu führen, dass bei der Darmpassage Flüssigkeit aus dem Gewebe gezogen wird und die aufgequollene Masse den Darm blockiert. Dazu müsste man allerdings größere Mengen zu sich nehmen und vermutlich ist das auch der Grund, warum es eine Empfehlung der Europäischen Kommission gibt täglich nicht mehr als 15 g Chia-Samen zu verzehren.

Wechselwirkungen mit Gerinnungshemmern wie Warfarin/ Coumadin®, Acetylsalicylsäure/ASS/Aspirin sind möglich.

Auch der Anbau von Chia-Samen, der sich wegen des guten Verkaufs mittlerweile in den Subtropen immer weiter ausbreitet, kann kritisch gesehen werden: Das Saatgut wird mit Pflanzenhormonen behandelt, um die Keimung der Samen zu vereinheitlichen. Zudem werden reichlich Unkrautvernichtungsmittel verwendet, auch solche, die in der EU umstritten oder sogar verboten sind. Im Vergleich zu anderen Nahrungspflanzen liefern Chia-Pflanzen einen eher geringen Ertrag. Die für den Chia-Anbau genutzten Ackerflächen können aber gleichzeitig nicht für ertragreichere nährende Lebensmittel genutzt werden – das hat negative Folgen für die Menschen im Ursprungsland des Superfood.

Auf jeden Fall gibt es kostengünstigere und gleichwertige Alternativen, zum Beispiel Leinsamen und Sonnenblumenkerne.

Bei einer Bewertung wird hier vermutlich der Genusswert relativ niedrig ausfallen, der Gesundheitswert entsprechend hoch. Allerdings müssen dabei einige Fragezeichen gemacht werden. Die Kosten sind im Vergleich zu ähnlichen herkömmlichen Nahrungsmitteln hoch, weshalb man den Gebrauchswert als relativ niedrig einstufen muss. Der politische Wert (Ökologie, Nachhaltigkeit, soziale Fragen) dürfte ebenfalls eine ziemlich schlechte Bewertung bekommen.

Frei von – Nahrungsmittel

Glutenfreie Nudeln

Wir sind in der Nudelabteilung des Supermarkts. Unendlich dehnt sich das Angebot. Da kann man nicht nur unterscheiden zwischen Bandnudeln, Hörnchen, Spiralnudeln, Muscheln, Spätzle,  Spaghetti, Makkaroni, Gnocchi. Auch Teigwaren aus verschiedenen Mehlsorten wie Weizen-Weißmehl, Dinkelmehl oder Vollkornmehl, ja sogar Reismehl und Mehl aus unterschiedlichen Hülsenfrüchten werden angeboten, eine wahrhafte Nudeldiversität!

Auf einem guten Meter Regalbreite finden sich Packungen, die im Schnitt deutlich teurer sind und bei genauem Hinsehen erkennt man den Grund: da steht auf den Packungen „glutenfrei“  (GF)  auf manchen ist auch das Symbol einer durchgestrichenen Weizenähre zu sehen.

Der weniger gebildete Verbraucher fragt sich, was wohl dahinter stecken mag. Wird hier die Freiheit von einem Stoff garantiert, der in den üblichen Teigwaren enthalten ist und der Gesundheit schadet und sollte man deshalb sicherheitshalber auf solche glutenfreien Produkte zurückgreifen?

Gluten oder Klebereiweiß ist ein Sammelbegriff für ein Stoffgemisch aus Proteinen, das in den Samen einiger Getreidearten vorkommt, zum Beispiel im Weizenkorn. Wenn man einen Teig aus Weizenmehl anrührt und die Stärke und alle löslichen Bestandteile mit Salzwasser herauslöst, bleibt ein zähes Gemisch aus viel Proteinen und wenig Lipiden und Kohlenhydraten übrig, das für den Zusammenhalt des Teiges verantwortlich ist. Wegen seiner klebrigen Eigenschaft wird es auch „Kleber“ genannt. Der Proteinanteil ist das Gluten, das aus verschiedenen Glutamin- und Prolin-haltigen Proteinen zusammengesetzt ist. Es hat für die Backeigenschaften des Mehls eine zentrale Bedeutung. Nur aus Mehlen mit Gluten kann Brot in Form eines Laibs gebacken werden, da nur ein solcher Teig beim Erhitzen die notwendige Gashaltefähigkeit hat. Sie ist die Voraussetzung dafür ist, dass das Gebäck durch das Gärgas Kohlenstoffdioxid aufgehen kann.

Glutengehalt von Getreidemehlen pro 100 g Mehl in g (n.Wikipedia)

Dinkel (Typ 630) 10,3
Weizen (Typ 405) 8,66
Hafer (Vollkornmehl) 5,6
Gerste (entspelzte Körner) 5,6
Hartweizen, Emmer, Einkorn, Roggen 3,2
Teff, verschiedene Hirsen, Reis, Mais 0
Pseudogetreide Quinoa, Amaranth, Buchweizen 0

Das ist der Grund, warum man aus Mais oder Hirse kein Brot, allenfalls Fladenbrote, backen kann.

Aber was ist schlecht an Gluten? Manche Menschen vertragen bestimmte der im Gluten enthaltenen Proteine nicht. Sie entwickeln dagegen eine Immun- und in der Folge auch eine Autoimmunreaktion. Sie führt zu einer pathologischen Veränderung der Dünndarmschleimhaut und in der Folge zu einer Degradation der Darmzotten. Dadurch wird die Resorptionsfähigkeit des Dünndarms wesentlich verschlechtert, mit vielen nachteiligen Folgen. Diese als Zöliakie bekannte Krankheit soll aber in Deutschland nur relativ selten (bei 0,3% der Bevölkerung) vorkommen.

Symptome für Zöliakie

Intestinale Symptome
Motilitätsstörungen, von Durchfall bis Verstopfung
Übelkeit, Erbrechen, Blähungen, chronische Bauchschmerzen
Extraintestinale Symptome
Gewichtsverlust
Wachstumsstörungen bei Kindern
Anämie
Knochenveränderungen/Osteoporose, Zahnschmelzveränderungen
Periphere Neuropathie
Muskelschwäche
Nachtblindheit
Hämatome
Ödeme
Entzündungen der Mundschleimhaut

http://www.awmf.org/uploads/tx_szleitlinien/021-021l_S2k_Z%C3%B6liakie_05_2014_01.pdf

Das sind relativ vielseitige und zweifellos nicht nur mit der Zöliakie verbundene Symptome. Aber Zöliakie hat eine große mediale Aufmerksamkeit erfahren und die Gefahr besteht, dass der Verbraucher sich die Selbstdiagnose Zöliakie stellt und meint, es wäre sinnvoll,  nur noch glutenfreie Nahrungsmittel zu sich zu nehmen. Der Nahrungsmittelindustrie kommt diese Entwicklung entgegen. Sie sucht angesichts des Überangebotes ständig nach Nischen, wo noch Zuwächse erzielt werden können. Die „frei von“-Produkte haben sich dabei als sehr ergiebige Nischen erwiesen. Die Verbraucherzentrale Hamburg hat ausgerechnet, dass glutenfreie Nahrungsmittel im Schnitt zweieinhalb mal so viel kosten wie normale.

Wichtigster Wirkstoff bei der Zöliaki ist das Gliadin. In Zusammenwirken mit dem Humanen Leucocyten-Antigensystem (HLA) weden in den Dünndarmzotten der entspre3chend empfindlichen Menschen bestimmte T-Helfezellen aktiviert, vermehrt entzündungsauslösende Botenstoffe wie Interferon und Interleukine zu bilden. Die Folge ist schließlicch eine  schwere Beschädigung der Dünndarmzotten.

Mittlerweile konnte schon gentechnisch veränderter Weizen entwickelt werden, der die für Zöliakie relevanten Gluten-Proteine nicht enthält. Die meisten glutenfreien Mehle stammen bisher aber von glutenfreien Getreiden und Pseudogetreidearten wie Hirsemehl oder Amaranthmehl und einem Zusatz reiner Stärke oder z. B. auch Chiamehl ,  Agar, Maniokmehl oder Eiklar.

Angesichts der stürmischen Entwicklung der „frei von“ – Nahrungsmittel sollte das Thema in den Unterricht aufgenommen werden. Auch wenn die immunbiologischen Zusammenhänge vergleichsweise kompliziert sind, so ist eine didaktische Reduktion durchaus möglich,  zum Beispiel auf Basis der Dünndarmabbildungen in vielen Schulbüchern.

Exkursionen in den Supermarkt

Ein wichtiges Prinzip des Biologie-Unterrichtes ist es, unmittelbare Anschauung zu ermöglichen. Dies kann z. B. durch praktische Arbeiten der Schüler und Schü­lerinnen im Labor oder im Freiland erreicht werden. Ein mögliches Erfahrungsfeld für unmittelbare Anschaulichkeit sind aber auch Einkaufszentren wie Verbrauchermärkte, Su­permärkte usw. Dabei spielen diese Einkaufslandschaften als Aufenthaltsorte von Kindern und Jugend­lichen schon lange eine wichtige Rolle. Schon vor 30 Jahren haben wir bei etwa 400 Schülerinnen und Schülern von Flens­burger Haupt-, Real- und Gesamtschulen im Alter zwischen 9 und 16 Jahren eine Befragung durch­geführt. Das Ergebnis hat uns nicht sehr überrascht. Kauflandschaften sind Orte, an denen sich Schüler und Schülerinnen in ihrer Freizeit bedeutend länger und häufiger aufhalten, als dies zum Einkaufen nötig wäre. Das dürfte sich bis heute eher noch verstärkt haben. Kauflandschaften sind zu einem wichtigen Teil unserer Um­welt geworden und viele Menschen verbringen dort einen guten Teil ihrer Freizeit. Es bietet sich deshalb an, diesen Teil der Umwelt für die (biologische) Allge­meinbildung zu nutzen. Dies gilt nicht nur für Fragen von Ernährung und Stoffwechsel, aber diese Inhalte bieten sich natürlich für „Biologie im Supermarkt“ besonders an.

Für unsere drei Beispiele könnte ich mir folgende Aufgabenstellungen für Exkursionen in den Supermarkt vorstellen: 

Chicken Wings

Die meisten Schüler – soweit sie nicht Veganer oder Vegetarier sind – werden Chicken Wings und Chicken Nuggets ganz gerne essen. Ein Unterricht zu dem Thema könnte so aufgebaut sein, dass die Schüler sich zunächst über das Hühnerfleischangebot in einem Supermarkt informieren, dann eine begründete Aussage darüber machen, welche Hühnerfleischprodukte sie beim Kauf bevorzugen würden und schließlich mit der Produktion von Hühnerfleisch und speziell von Chicken Wings über vorgegebene Texte oder eigene Recherchen aufgeklärt werden.

  •  Bestandsaufnahme der angebotenen Formen von Hühnerfleisch
  • Preisvergleiche bezogen auf den Kilopreis von verschiedenen Hühnerfleischprodukten, Kartoffeln und Gemüsen.
  • Recherchen zu Hühnerfleischproduktion

Chia

  • Alle Produkte, die Chiasamen oder Mehl enthalten, aufspüren. Werbeaussagen auf den Packungen sammeln.
  • Inhaltsstoffe von Chiasamen nach Angaben auf den Verpackungen notieren und ihre Bedeutung für den menschlichen Organismus herausfinden (Recherche)
  • Quellvesuch mit Chiasamen
  • Suche nach anderen „Superfoods“ und Recherche nach Informationen über diese Lebensmittel
  • Vergleich von Chia-Inhaltsstoffen mit Leinsamen, Sonnenblumenkernen, Walnusskernen, Erdnüssen …

Frei von …

  • Nahrungsmittel, die mit „glutenfrei“ gekennzeichnet sind suchen und die Preise mit nicht glutenfreien aber sonst identischen Lebensmitteln vergleichen.
  • Durch Studium der Packungsaufschriften herausfinden, von welchen Pflanzen glutenfreie Mehle stammen.
  • Auf die Suche nach anderen „frei von“-Lebensmitteln gehen und den jeweiligen gesundheitlichen Hintergrund recherchieren
  • Herausfinden, ob auch Lebensmittel mit „frei von“ etikettiert werden, die den entsprechenden Stoff ohnehin nicht enthalten.

Zur Dokumentation der Recherchen können einfache Kameras (Handy) eingesetzt werden.

Weitere Themen für Exkursionen in den Supermarkt

  • Gerstengraupen, Haferflocken, Bulgur (aus welchen Bestandteilen besteht ein Getreidekorn und wie werden diese zu Nahrungsmitteln verarbeitet?)
  • Pseudogetreide (Amarant, Buchweizen, Hanf, Quinoa – wo kommen sie her, welche Vorteile könnten sie bringen?)
  • Pak Choi, Okra und andere exotische Gemüse und Salate
  • Protobiotische Nahrungsmittel und andere Functional Foods (Werbung und Wahrheit über funktionelle Zusatzstoffe ind Nahrungsmitteln)
  • Obstangebot und Nachhaltigkeit (Saisonalität, Herkunntsländer)
  • Light-Produkte (Helfen Sie wirklich beim abnehmen? Gibt es gesundheitliche Bedenken?)
  • Was bedeuten  die E-Nummern?
  • Natürlich, künstlich und naturidentisch
  • Inhaltsangaben (die Liste der Inhaltsstoffe, die auf Verpackungen von Lebensmitteln angegeben wird, ist auf der lang. Was sind das für Stoffe, was bewirken sie, könnte man auf sie verzichten?)

Literatur, Quellen

Biesiekierski, J, R. (2017): What is gluten? Journal of Gastroenterology and Hepatology, Volume 32, Issue S1 https://onlinelibrary.wiley.com/doi/full/10.1111/jgh.13703

Brockhaus Lexikonredaktion (Hrsg.) (2001):  Der Brockhaus Ernährung – Gesund essen, bewusst leben. Leipzig/ Mannheim: Brockhaus

Foer, J.S. (2010): Tiere Essen: Köln: Kiepenheuer und Witsch

Heindl, I.(2003): Studienbuch Ernährungsbildung, Heilbrunn: Klinkhardt

Hoffmann, I./Leitzmann, C./Schneider, K. (2011): Ernährungsökologie: Komplexen Herausforderungen integrativ begegnen. München: oekom-Verlag

Leitzmann, C. (2011): Mehr als ein Ernährungsstil: Vegetarismus. Biol.Unserer Zeit 41(2), S. 124-131

Müller,T. (2018): glutenfreie Ernährung mit bitterem Nachgeschmack. Ärztezeitung. https://www.aerztezeitung.de/panorama/ernaehrung/article/958794/ernaehrung-glutenfreie-ernaehrung-bitterem-nachgeschmack.html

Pollan, M. : Das Omnivoren-Dilemma.Goldmnn/Arkaner, München 2011

Probst, W., Scharf, K.-H. (2010): Biologie im Supermarkt. 2.A., Seelze: Aulis Verlag in Friedrich Verlag

Probst, W. (Hrsg.) (2013): Küchenbiologie. Unterricht Biologie 385 (Jg. 37), Seelze: Friedrich Verlag

Rudolf, G. (2016): Chia-Samen – ein Superfood? Unterricht Biologie 415 (40. Jg.), S.18-22, Seelze: Friedrich Verlag

Wertschätzung und Verschwendung von Lebensmitteln http://www.evb-online.de/schule_materialien_wertschaetzung_uebersicht.php

Young, S. R. (2011): Gourmet lab – The scientific principles behind your favorite foods.  Arlington, Virginia (USA): NSTApress

https://de.wikipedia.org/wiki/Gluten

Leben und Konsum

LINK-NAME

Titelfoto: Zucker als Abfall Phloemsaft konsumierender Blattläuse auf Lindenblatt.

Im September 2020 ist UB 457 „Leben und Kosum“ erschienen.

Konsum und Konsument

Der Begriff „Konsum“ und „Konsument“  bzw. „Verbraucher“ spielt in der modernen Gesellschaft eine wichtige Rolle. Man spricht von einem Konsumklima und es gibt sogar einen Konsumklimaindex, ein Verbraucherministerium und Verbraucherzentralen, die dem Verbraucherschutz dienen sollen. In Schleswig-Holstein gibt es seit einigen Jahren das Schulfach „Verbraucherbildung“, seit 2017 werden von der  Verbraucherzentrale Bundesverband (vzbv)  Schulen mit besonders vielfältigem Engagement in der Verbraucherbildung mit der Auszeichnung „Verbraucherschule Gold“ bzw. „Verbraucherschule Silber“ gewürdigt.

In Wirtschaftsberichten ist Konsumsteigerung positiv belegt. Der Konsum muss gesteigert werden, um das für die Wirtschaft notwendige Wachstum zu ermöglichen. Allerdings wird diese marktwirtschaftliche Prämisse mindestens seit 40 Jahren, seit der Studie des Club of Rome über die „Grenzen des Wachstums“ von 1972, auch kritisch gesehen,  wird über den Zusammenhang von Wirtschaftswachstum und ökologischem Wachstum nachgedacht. Dabei spielt der Begriff der Nachhaltigkeit eine zentrale Rolle. Seit 2008 findet als wichtigste Veranstaltung der Wachstumskritiker die Internationale Degrowth-Konferenz statt. Diese Kritiker fordern, dass Wirtschaftsmodelle an die realen Bedingungen angepasst werden müssen. Die ökonomischen Theorien dürfen nicht zu einem Wachstumszwang führen.

Häufig wird die Biosphäre als Vorbild für mögliche menschliche Wirtschaftsweisen herangezogen. Konsumbedingte Umweltprobleme könnten durch Konsumverzicht, aber auch durch Kreislaufwirtschaft gemindert werden. Welche Methode für nachhaltige Entwicklung vielversprechender ist, wird kontrovers diskutiert (Probst 2009).

Waxchstum der Weltbevölkerung von 1700 bis heute und prognostizierte zukünftige Entwicklung

Durch das Studium der Wachstums- und Konsumproblematik in der Biologie können Einsichten in ökologische und ökonomische Probleme gewonnen werden. Formen exponentiellen Wachstums, wie sie zum Beispiel in Bakterienkulturen oder bei Krebsgeschwüren auftreten, scheitern relativ schnell an der eigenen Dynamik. Andere Wachstumsprozesse, die kurzfristig zu einem „Umkippen“ des Systems führen sind zum Beispiel die Hypertrophierung eines Gewässers, die Massenvermehrung einer eingeschleppten Art oder das Aussterben einer Schlüsselart. Beispiele für das Zusammenspiel von Wachstum, Konsum und Abfall, die in längeren Zeiträumen ablaufen, sind Prozesse wie die Verlandung eines Gewässers, Wüstenbildung oder Walddegradation.

Das in den letzten 200 Jahren abgelaufene exponentielle Wachstum der menschlichen Bevölkerung von etwa 1  Mrd. Menschen 1804 bis auf heute 7,3 Mrd. hat eine enorme Konsumsteigerung mit sich gebracht. Die Ressourcen an Rohstoffen und Energie werden immer stärker in Anspruch genommen und Bemühungen um Recycling  der Abfälle konnten bisher nicht verhindern, dass die Lücke zwischen Verbrauch und Regenaration immer größer wird. Die wichtigste Zukunftsaufgabe der Menscheit ist es, diese Lücke zu schließen.

Konsument Lebewesen

Leben ist immer mit Konsum verbunden. Dieser Konsum bedeutet zunächst einen ständigen Bedarf an Nährstoffen, sodann eine ständige Abgabe von Abfallstoffen. Da es für Lebewesen außerdem charakteristisch ist, dass sie ständig wachsen und sich vermehren, steigen damit auch Verbrauch und Abfall an. Das Ende einer solchen Entwicklung ist abzusehen: Irgendwann sind entweder die Nährstoffe erschöpft oder die Abfallstoffe lebensgefährlich angehäuft. Die Lebewesen verhungern oder vergiften sich. Die Grenzen des Wachstums sind eng verbunden mit Verbrauch und Abfall.

Obwohl solche Grenzen im Laufe der Erdgeschichte regelmäßig zu Engpässen und auch zur Vernichtung von Lebensräumen und zum Aussterben von Arten geführt haben, konnte das Leben auf der Erde dieser gefährlichen Entwicklung  immer wieder  dadurch entgehen, dass Lebewesen in der Lage sind, sich zu verändern. Durch die Mechanismen der Anpassungsselektion gelang es ihnen, neue Nahrungsquellen zu erschließen und der Gefährdung durch Abfälle zu entgehen. Dabei haben große Mengen zunächst gefährlicher Abfallstoffe oft zu besonders großen Schüben in der Evolution geführt, in dem die Abfallstoffe als neue Rohstoffe genutzt und recycelt wurden:

  • Sauerstoffanhäufung durch photosynthetisch aktive Cyanobakterien führte zu „Erfindung“ der aeroben Dissimilation und damit zum Beginn eines sehr effektiven Stoffkreislaufs.
  • Überschuss an Zucker bei fotosynthetisch aktiven Pflanzen ermöglichte die verstärkte Bildung von stabilisierenden Stoffen auf Kohlenhydratbasis wie Zellulose und Lignin. Diese Stoffe waren eine wesentliche Voraussetzung für die Stabilität großer Landpflanzen und damit der Entwicklung von Wäldern.
  • Kalküberschuss durch Nutzung von Hydrogenkarbonat bei der Photosynthese ermöglichte Skelett- und Schalenbildung. Die endosymbiotischen Algen  in Steinkorallen verschieben durch ihre Assimilation  das Gleichgewicht zwischen Kohlenstoffdioxid und Karbonat und schaffen damit die Voraussetzung für die Bildung der Korallenriffe.
  • Proteinüberschuss war die Voraussetzung zur Bildung von Hornschuppen, Haaren und Federn.
  • Die Notwendigkeit überschüssige Stickstoffverbindungen loszuwerden, begünstigt silbrige (guaninhaltige) Fischschuppen und bei Pflanzen die Bildung von Alkaloiden.

Stoffkreisläufe

Laubstreu im Buchenwald

Ökosysteme bestehen aus Produzenten,  Konsumenten und Destruenten. Dabei kann man die Konsumenten verschiedenen Trophiestufen zuordnen. Der Konsum der höheren Stufe wird häufig durch Produktion auf der niederen Stufe reguliert (Bottom-up Regulation), umgekehrt können aber auch die Konsumenten höherer Ordnung die Konsumenten der nächstniederen Stufe regulieren (Top-down Regulation).

Die Abfall-verwertenden Destruenten sind für die Stoffkreisläufe von besonderer Bedeutung. Durch die Wiederverwertung von Abfällen haben sich die großen Stoffkreisläufe der Biosphäre herausgebildet. Photosynthese und Atmung sind bis heute die Grundlage des Kohlenstoffkreislaufs. Der Abbau organischer Stickstoffverbindungen bis zum Ammoniak bzw. durch Nitrifikation zum Nitrat ermöglichen den Stickstoffkreislauf.

Solche Stoffkreisläufe haben sich auf dem Bioplaneten Erde in seiner mehr als 4 Milliarden Jahre langen Geschichte entwickelt und dabei auch immer wieder verändert. Das wirkte sich zum Beispiel auf die Zusammensetzung der Atmosphäre und damit auf das Klima aus. So vermutet man, dass es im späten Proterozoikum, in einer Zeit zwischen 750-580 Mill. Jahren, mehrfach zu Gesamtvereisungen der Erde gekommen ist (Schneeballerde). Als Ursache wird der Zerfall des damaligen Superkontinents Rodinia angesehen. Die Aufteilung in kleinere Kontinente soll zu einer Erhöhung der Niederschläge geführt haben, dass im Regenwasser gelöste Kohlenstoffdioxid bewirkte eine chemische Verwitterung von kalkhaltigen Gesteinen und die Einschwemmung von Hydrogencarbonat in die Ozeane. Dort kam es zur Ausbildung von Kalk und zur Bildung von Kalksedimenten auf diese Weise wurde Kohlenstoffdioxid der Atmosphäre entzogen und in der Folge kam es zu einer starken Abkühlung wegen fehlendem Treibhausgaseffekt (Schüring 2001). Aber auch starke vulkanische Tätigkeit und der Ausstoß großer Mengen an Schwefelgasen in die Stratosphäre könnten die Sonneneinstrahlung abgeschwächt haben (Fischer 2017).

Die verschiedenen Teilkreiläufe des Kohlenstoffs auf der Erde

Abfallüberschuss

Abfallüberschuss, die dauerhafte Sedimentation der Abfälle von Lebewesen, führte im Laufe der Erdgeschichte zu Sedimentgesteinen. Bestandteile dieser oft kilometerdicken Sedimente können in erdgeschichtlichen Zeiträumen über geochemische Kreisläufe wieder aufs Neue von Lebewesen genutzt und in Lebewesen eingebaut werden. Auch die Nutzung solcher Sedimente als Brennstoffe und Ausgangsmaterial für die chemische Industrie ist ein Recycling von Abfallüberschüssen aus früheren geologischen Epochen. Bei dieser Nutzung werden aber in für geologische Zeiträume sehr kurzer Zeit große Mengen neuer Abfallstoffe produziert, zum Beispiel nicht abbaubare Kunststoffabfälle und klimawirksames Kohlenstoffdioxid.

Geiseltalsee, ehemaliges Braubkohleabbaugebiet (Google-Earth)

Energiefluss

Bei den Lebensprozessen werden die aufgenommenen Stoffe umgewandelt. Bei dieser Umwandlung in chemischen Reaktionen wird Energie umgesetzt. Gemäß dem zweiten Hauptsatz der Thermodynamik wird dabei immer ein Teil der umgesetzten chemischen Energie irreversibel in Wärmeenergie umgewandelt. Praktisch bedeutet dies eine Energieentwertung, die umgangssprachlich im allgemeinen als „Energieverbrauch“ bezeichnet wird. Für die Aufrechterhaltung der Lebensvorgänge ist deshalb eine ständige Energiezufuhr von außen notwendig. Auf der heutigen Erde kommt diese zugeführte Energie zum großen Teil von der Sonne.

Da die Sonne noch über 6 Milliarden Jahre in gleicher Form Energie liefern wird, werden auf der Erde alle Energieformen, die sich von der Sonnenenergie ableiten lassen, also neben der direkten Solarenergie Wind- und Wasserenergie und Energie aus Biomasse, als regenerative Energien bezeichnet. Den Gegensatz  bilden Energieformen, die durch die Verbrennung von fossilen Brennstoffen (Kohle, Erdöl, Erdgas) bereitgestellt werden, denn diese organischen Abfallstoffe früherer Erdzeitalter sind begrenzt und ihre Ergänzung durch neue organischen Abfallstoffe benötigt geologische Zeiträume, in geschichtlichen Zeiträumen können Sie sich nicht regenerieren.

Mögliche Beispiele

Lebewesen als Konsumenten:

Grundsätzliche Fragen:

Was wird „verbraucht“?

Was bedeutet „Sparsamkeit“, was „Verschwendung“?

Wie hängen Konsum, Produktion und Abfall zusammen?

Wie hängen „Energiekonsum“ und „Stoffkonsum“ zusammen?

  • Konsum von Spitzmaus und Elefant (Abhängigkeit des Stoffumsatzes von der Körpergröße, Bergmann’sche Regel, Kleinheit von Inselarten). „Die Beziehung zwischen dem Energiehaushalt und der Körpergröße der Tiere ist eine der spannendsten, ungelösten Fragen in der vergleichenden Physiologie.“ (Heldmaler,Neuweiler,Rössler 2013)
  • Zucker, der aus Bäumen regnet (Zucker als Abfall Phloemsaft konsumierender Blattläuse, siehe Titelfoto) „Die Blattlaus als Verschwender (?)“ https://www.e-periodica.ch/digbib/view?pid=fng-001:1978:67::208#64
  • Chilesalpeter (die Lagerstätten in der Atacama-Wüste und in anderen Trockengebieten und Inseln sind Reste von abgelagertem, harnsäurereichem Vogelkot)
  • Kreislaufwirtschaft benötigt Energie (Erdwärmeheizung als Modell für Kreislaufwirtschaft, hinterfragen des Begriffes „Energieverbrauch“)
  • Leben und Konsum in einer Raumstation (Für lange Reisen in einem Raumschiff oder lange Aufenthalte in Stationen auf dem Mond und auf dem Mars ist die Frage des Konsums essenziell. Denn die Möglichkeiten, Vorräte mitzunehmen, sind begrenzt. Deshalb beschäftigen sich Wissenschaftler schon seit längerem mit den Möglichkeiten, in dem begrenzten Raum eines Raumschiffes oder einer Raumstation mit bioregenerativen Lebenserhaltungssystemen, also Photobioreaktoren, die biologische Stoffkreisläufe ermöglichen, wodurch das Mitführen von Vorräten und die Produktion von Abfall minimiert wird. Neben Pflanzen spielen dabei vor allem Mikroalgen eine entscheidende Rolle).

Lebensstrategien bzw.  Lebensformen und Konsum

Welche besonderen Lebensformen sind mit bestimmten Formen des Konsums verbunden?

  • Wasserverbrauch von Wüstentieren (z.B. Kängururatte Dipodomys, Oryxantilope, Dromedar, Dunkelkäfer Onymacris)
  • Wie Pflanzen Wasser sparen (Sukkulenz, Verdunstungsschutz, zum Beispiel durch Oberflächenverringerung und Oberflächenverdichtung; physiologische Anpassungen wie C4, diurnaler Säurezyklus)
  • Massenvermehrung (Gradation): Heuschreckenschwärme (wie sie entstehen und sich entwickeln)
  • Konsumstopp: Winterruhe, Winterschlaf, Winterstarre, Austrocknungsresistenz

Der Einfluss von Konsum und Abfall auf Ökosysteme

  • Sauerstoffverbrauch in Gewässern („Umkippen“ von Gewässern, Prinzip der Pflanzenkläranlage)
  • Berge aus Abfall – Gebirge aus Sedimenten und was mit ihnen geschehen ist und geschehen wird oder Erdgeschichte als Konsumentengeschichte
  • Von Erdöl zu Plastik (biogene Abfallstoffe aus früheren erdgeschichtlichen Epochen werden zu anthropogenen Abfallstoffen der Gegenwart)
  • Torf, Kohle, Erdöl, Erdgas
  • Hochmoore: Mehr Abfall als Verbrauch
  • Was wird aus dem Abfall vom Blattfall? – Durch den jährlichen Laubfall fällt in sommergrünen Wäldern jeden Herbst eine große Menge organischen Abfalls an, der schnell aufgearbeitet wird.
  • Primärproduktion und Trophieebenen (Nahrungsketten können umso länger werden, je höher die Primärproduktion ist: Vergleiche von Wüste – Regenwald, tropisches Meer – marines Auftriebsgebiet)

Menschen als Konsumenten

  • Der letzte Baum der Osterinseln (die Osterinseln sind – möglicherweise – ein Beispiel dafür, wie eine menschliche Gesellschaft durch unbedachte Nutzung der natürlichen Ressourcen ihre eigenen Lebensgrundlagen zerstörte und daran zu Grunde ging, Diamond 2011)
  • Der Mensch als Verursacher quartärer Aussterbewellen (anthropogen bedingter Verlust der Biodiversität)
  • Kunststoffe (Plastikmüllstrudel in Pazifik und Atlantik; Mikro- und Nanoplastik in Lebensmitteln; abbaubare Kunststoffe)
  • Verbrauch von Sand und Kies
  • Seltene Erden – die Würze von High Tech (Herkunft, Verbrauch, Recycling)
  • Fleischkonsum

Quellen

Braungart, M., McDonough, W. (2008): Einfach intelligent produzieren. Cradle to cradle. Berlin: Berliner Taschenbuchverlag.

Bauman, Z. (2009): Leben als Konsum. Hamburg: Hamburger Edition.

Diamond, J (20113): Kollaps: Warum Gesellschaften überleben oder untergehen. Frankfurt: Fischer-Taschenbuch.

Gerten, G. (2018): Wasser-Knappheit, Klimawandel, Welternährung. München: C.H. Beck.

Heldmaler,, G., Neuweiler, G., Rössler, W. (2013): Vergleichende Tierphysiologie. Berlin, Heidelberg:  Springer.

Hengeveld, R. (2012): Wasted World – How our consumption challenges the Planet. Chicago: Chicago Univ.Press.

Kattman, U. (Hrsg., 2004): Bioplanet Erde. UB 299 (28.Jg.), Seelze: Friedrich.

Lampel, G. (1978): Die Blattläuse, eine wenig beachtete Insektengruppe. In: Bulletin der Naturforschenden Gesellschaft Freiburg. Band 67, Heft 1, S. 45–68

Looß, M. (1999): Abfall und Recycling. UB 247 (23.Jg.): 4-13, Seelze: Friedrich.

Probst, W. (2009): Stoffkreisläufe. Unterricht Biologie 349 (33. Jg.), S. 2-11, Seelze: Friedrich.

Reichholf, J. H. (1992): Der schöpferische Impuls: eine neue Sicht der Evolution. Stuttgart: DVA

Schmidt-Bleek, F. (1997): Wieviel Umwelt braucht der Mensch? Faktor 10 – das Maß für ökologisches Wirtschaften. München: dtv.

Zuckerkonsum von Kindern

Plastik sammelnde Aqua-Drohne

Algen für Bioplastik

Schneeballerde

Lars Fischer: https://www.spektrum.de/news/machten-schwefeltropfen-die-erde-zur-eiskugel/1457163

Joachim Schüring: Schneeball Erde. (Memento vom 12. Februar 2013 im Webarchiv archive.is) spektrumdirekt, 13. August 2001.

Exkursionsangebot für die PH Weingarten, SS 2018

LINK-NAME
Im Sommersemester 2018 biete ich unter der Veranstaltung „Exkursion Regionale Lebensräume“ vier Exkursionen an. Drei der Exkursionsziele decken sich  mit Angeboten des letzten Sommersemesters:

Eine weitere Exkursion führt uns am 3.6.2018 in das Wurzacher Ried.

Am 27.4.2018 findet von 13:00 Uhr bis 14:15 Uhr eine einführende Informationsveranstaltungim Raum NZ 1.51der PH Weingarten statt, bei der Erläuterungen zu den Exkursionszielen gegeben und mögliche Aufgaben besprochen werden.

Zusätzlich müssen die Studierenden der Veranstaltung mit einer sechsten Klasse aus dem Stuttgarter Raum, die im Juni in RV ihren Schullandheimaufenthalt verbringt, zwei Exkursionstage gestalten.

Übersicht über die Exkursionsorte

Adelsreuter und Weißenauer Wald (Sa,12.05.2018) *

*durch Anklicken kommt man zu Unterlagen der vorjährigen Exkursion

Treffpunkt: 10:00h, Wanderparkplatz bei Appenweiler

Thematische Schwerpunkte: Lebensform Baum, ökologische Ansprüche von Waldbäumen, Waldkräuter, Lebensraum Wassergraben

Mögliche Aktivitäten, die von Studierenden angeleitet werden

Bäume ertasten und wiedererkennen

Rindenoberflächen fühlen sich sehr unterschiedlich an

Ein Baumstamm mit seiner Borkenoberfläche wird blind ertastet. Anschließend versucht man diesen Baum offenen Auges wiederzufinden. Die unterschiedlichen Rindenstrukturen sind nicht nur arttypisch, sie unterscheiden sich auch von Baumindividuum zu Baumindividuum.

Jahresringe verraten das Baumalter

Wachstum und Alter der Bäume

Jahresringe von Bäumen geben Auskunft über ihr Alter, über gute und schlechte Jahre und über die Art ihres Wachstums. Bei jungen Bäumen kann man das Alter auch über die Art der Verzweigungen schätzen, da die Bildung von Seitenzweigen im Jahresrhythmus erfolgt. Die Abfolge von Jahresringen gibt – wenn man einen ausreichend langen Zeitraum von Jahren betrachtet – eine einmalige Sequenz. An der Universität Innsbruck hat man eine solche ununterbrochene Sequenz von Jahresringen für einen Zeitraum von über 10.000 Jahren festlegen können. Auf diese Weise lassen sich alte Hölzer sowohl aus Bauwerken als zum Beispiel auch aus Gletschernauf das Jahr genau datieren (Dendrochronologie).

Baumberechnung

In der Biomasse ist Kohlenstoff gespeichert, der aus dem Kohlenstoffdioxid der Luft stammt. Aus dem Volumen eines Baumstamms lassen sich Rückschlüsse auf den Wald als Kohlenstoffspeicher ziehen.

Baumarten zählen

Linientransekt zum Bäume zählen

In einem Waldstück wird die Häufigkeit verschiedener Baumarten durch Linientransekte ermittelt und grafisch dargestellt. Anschließend werden Überlegungen zu den ökologischen Ansprüchen der Baumarten und ihre forstliche Nutzung angestellt.

Mein Kraut in der Suppe – essbare Wildpflanzen

Wer Kräuter sammelt, um sie anschließend zu essen, setzt die uralte Tradition der Sammler und Jäger fort. Dieses Sammeln von Wildkräutern für den Suppenkopf kann dabei helfen, Pflanzenarten kennen und schätzen zu lernen.

Essbare Wildpflanzen

Krautvegetation im Wald – Zeigerwerte und ökologische Gruppen

Aus der Artenzusammensetzung der Krautschicht eines Waldes lassen sich wichtige ökologische Rückschlüsse ziehen. Dabei helfen „Ökologische Zeigerwerte“ und „Ökologische Gruppen der Waldbodenpflanzen“.

Häufigkeit der Waldbodenpflanzen

Leben im Wassergraben

Stechmücken

Beobachtung mit Löffel und Lupe

Typisch für die Jungmoräne am Rande des Schussenbeckens sind Mergelschichten, die zu staunassen Bereichen und Quellhorizonten führen. Die wegbegleitenden Gräben sind deshalb oft bis in den Sommer mit Wasser gefüllt und Lebensraum für verschiedene typische Tümpelbewohner wie Grasfröschen, Molchen und Wasserinsekten.

Bestimmungsschlüssel Waldbäume nach Blattmekmalen

Exkursionsweg

1 Bäume ertasten, 2 Wachstum und Alter von Bäumen, 3 Baumberechnung (Volumen, Masse, Kohlenstoffgehalt), 4 Essbare Wildkräuter, 5 Krautschicht und Zeigerwerte der Pflanzen, 6 Bestimmung von Bäumen und Sträuchern nach Blattmerkmalen

Wurzacher Ried (So, 3.06.2018)

Treffpunkt: 9:00h, Wohnmobilparkplatz Bad Wurzach

Thematische Schwerpunkte: Hochmoor und Niedermoor, Moorregeneration,  Landschaftsgeschichte, Reptilien und Amphibien im Moor

Entstehung des Wurzacher Rieds

Das Wurzacher Ried nördlich der Gemeinde Bad Wurzach ist mit etwa 18 km2 eines der größten Naturschutzgebiete Süddeutschlands. Mit etwa 6 km2 enthält es die größte noch intakte Hochmoorfläche Mitteleuropas.

Das Becken des Wurzacher Rieds wurde schon in der vorletzten bzw, vorvorletzen Kaltzeit angelegt. Während des Riss-Glazials wurde ein tiefes Gletscherzungenbecken gebildet. In der letzten Vereisung, dem Würm-Glazial, kam der Rheingletscher noch vor diesem Becken zum Stehen. Durch seine Endmöräne wurde ein Endmöränen-Stausee gebildet, dessen allmähliche Verlandung das Wurzacher Ried entstehen ließ. In einer Animation des Naturschutzzentrums Wurzacher Ried wird die komplexe Entstehungsgeschichte relativ gut vermittelt.

Entwicklung zum Wurzacher Ried seit der letzten Vereisung vor ca. 12 000 Jahren (nach Karl Bertsch, 1947)

Feuchtgebiete

Moore

Moore entstehenauf Wasser durchdrängten Böden, in denen die anfallenden Pflanzenreste wegen Sauerstoffmangels nur sehr langsam abgebaut werden. Da die Produktion organischer Substanz schneller erfolgt als ihre Reminalisierung, kommt es zur Ansammlung mehr oder weniger mächtiger, mineralstoffarmer Humussubstanz („Torf„).  Geologisch werden Moore definiert als Böden mit einer mindestens 30 cm dicken Torfschicht, deren Gehalt an brennbarer organischer Substanz 30 % übersteigt.

Vegetationskundlich werden Moore aufgrund ihrer ökologischen Bedingungen und der davon abhängigen Vegetation definiert und unterteilt:

Flachmoore entstehen an den tiefsten Stellen des Reliefs, wo Quellwasser auftritt, oder aus den Verlandungstadien stehender Gewässer. Sie sind vom Grundwasserstand abhängig und daher auf kein bestimmtes Klima angewiesen. Je nach Qualität des Wassers und des Mineraluntergrunds können sie mehr oder weniger nährsalz- und basenreich sein. Unter ariden Bedingungen entstehen Salzsümpfe.

Hochmoore sind vom Grundwasser unabhängig und allein auf den atmosphärischen Niederschlag angewiesen („ombrogen“). Sie sind charakteristisch für feuchtes, gemäßigte Klima mit hohen Niederschlägen (in Mitteleuropa über 600 mm pro Jahr) und geringer Verdunstung. Sie entstehen wenn sich auf nassem Untergrund Torfmoose  (Gattung Sphagnum) ansiedeln. Diese können aufgrund ihres anatomischen Baus das bis zu 20fache ihres Eigengewichtes an Wasser speichern. Außerdem gestattet ihnen ein besonderer Ionen-Austausch-Mechanismus, selbst aus extrem mineralstoffarmem Wasser die wenigen Kationen im Austausch gegen H+,-Ionen herauszufangen. Dadurch wird das Wasser angesäuert (bis zu < pH 4). Die meisten Konkurrenten werden damit ausgeschaltet. Die Torfmoospolster wachsen immer höher, wobei die unteren Teile absterben und allmählich zu Torf werden. In den abgestorbenen Moosen hält sich das Regenwasser wie in einem Schwamm. So können wassergesättigte Torfschilde entstehen, die sich uhrglasförmig mehrere Meter über das Relief erheben, daher der Name Hochmoor. Aus den Rändern sickert saures, nährstoffarmes Wasser und sammelt sich im sogenannten Randsumpf (Lagg).

Flachmoore können sich zu Hochmooren entwickeln. Das Zwischenstadium wird Zwischenmoor oder Übergangsmoor genannt

Typische Gehölze der Hochmoore sind Zwergsträucher aus der Familie der Heidekrautgewächse. In natürlichen Hochmooren sind sie auf die höchsten Stellen sowie trockenere Randbereiche konzentriert, in teilweise trockengelegten Mooren können sie zur Vorherrschaft gelangen. Dank der Symbiose mit Mykorrhizapilzen und anderen Anpassungen können sie auch noch auf ärmsten Torfböden gedeihen, wobei sie nur langsam wachsen.unter unseren Klimabedingungen beträgt das Torfwachstum etwa 1 cm in 100 Jahren.

Schematische Darstellung eines Hochmoors (W.Probst)

Feuchtgebiete auf Mineralboden

Feuchtgebiete, die nicht auf torfigem Untergrund stocken, sind zum Beispiel die Auen entlang von Flussläufen, oft auch die Uferbereiche von stehenden Gewässern. Da in solchen Gebieten der Wasserstand stark schwankt, kommt es immer wieder zu Perioden mit guter Sauerstoffversorgung, in denen die organischen Abfallstoffe vollständig abgebaut werden können. Entlang von Flussläufen kommt es zur Ausbildung von Auwäldern, häufiger überschwemmt sind die Weichholzauen mit Weiden, Pappeln und Erlen, etwas höher liegen die Hartholzauen mit Eschen, Ulmen und Eichen. An flachen Seeufern können ausgedehnte Schilfbestände auftreten.

Die in Oberschwaben häufige Bezeichnung „Ried“ sagt nichts über den Untergrund aus. Das Eriskircher Ried zum Beispiel stockt auf Mineralboden, im Wurzacher Ried besteht der Untergrund weitgehend aus Torf.

Überblick über die Bezeichnungen von Feuchtgebieten (W.Probst)

Kreuzottern

Kreuzotter (Vipera berus)

Die Kreuzotter ist eine an kaltgemäßigtes Klima angepasste Viper, die einzige, die auch nördlich des Polarkreises angetroffen werden kann. In Deutschland kommt sie vor allem in den Heidegebieten der norddeutschen Tiefebene und in den Mittelgebirgen vor, in Oberschwaben sind Moore und feuchte Niederungen bevorzugte Siedlungsräume. Wegen der Bedrohung ihrer Lebensräume gilt die Art in Mitteleuropa als gefährdet und steht in Deutschland unter Naturschutz. Im Wurzacher Ried lebt eine stabile Population von Kreuzottern und wir hoffen, unter fachkundiger Führung durch den Amphibien- und Reptilienkenner Dominik Hauser Kreuzottern beobachten zu können.

Mögliche Aktivitäten, die von Studierenden angeleitet werden

Wasserspeichervermögen von Torfmoosen

Torfmoose sind so konstruiert, dass sie Wasser wie ein Schwamm speichern können. Das Wasserspeichervermögen lässt sich auch im Gelände leicht messen.

Torfmoose als Wasserspeicher

Messung des Wasserspeichervermögens von Torfmoosen

Messungen des pH-Wertes im Hochmoor und im Flachmoor

Der pH-Wert gibt die Wasserstoffionenkonzentration (von lat. potentia Hydrogenii) in einer wässrigen Lösung an, und zwar als negativen dekadischen Logarithmus der Konzentration in Mol pro Liter. Kleine Werte bedeuten also eine hohe Konzentration an Wasserstoff- (H+), genauer gesagt an Oxoniumionen (H3O+), und d. h. „starke Säure“. Auf Wasserorganismen hat der Säuregrad einen erheblichen Einfluss.

Umwelt im Umschlag

Eine gezielte Suche nach unterschiedlichen Naturobjekten schult die Beobachtungsfähigkeit und führt oft zu überraschenden Entdeckungen.

Gang durch die Baumkronen

Mithilfe eines Spiegels kann man sich die Baumkronen ins Blickfeld holen. Sie sind nicht nur die wichtigsten Orte der Stoffproduktion durch Photosynthese, sie sind auch entscheidend für den Stoffaustausch mit der Atmosphäre. Die Wasserverdunstung an den Blattoberflächen ist der Motor für den aufsteigenden Strom von Wasser und Mineralstoffen durch die Leitungsbahnen der Bäume.

„Grünt die Eiche vor der Esche, gibt’s im Sommer große Wäsche“ (Bauernregel)

Exkurisionsweg

Kreuzotter-Demonstration (Schwarze Form), 3.6.2018

1 Dank Dominik Hauser konnten wir je ein Exemplar einer schwarzen Form und einer gewürfelten Form der Kreuzotter beobachten. An verschiedenen Weidenarten des Waldrandes waren zahlreiche Schaumflocken der Weiden-Schaumzikade (Aphrophora salicina) zu beobachten.

2 An einem Moorgraben, dem wir mehrere 100 m entlang gingen, flogen zahlreiche Blauflügel-Prachtjungfern (Calopteryx virgo), im Wasser blühten Gelbe Teichrosen, häufigste Sumpfpflanze war die Aufrechte Berle, ein Doldenblütler mit langen Fiederblättern, an einigen Stellen standen Brunnenkresse und der sehr giftige Wasserschierling. Das Wasser im Moorgraben hatte einen pH-Wert von etwa 6,5.

3 An dieser Stelle ist am Ende eines Bohnenweges eine Plattform aufgebaut, von der man einen Blick auf die Hochmoorfläche des östlichen Wurzacher Rieds hat (Alberser Ried). Wir rekapitulieren die Entstehung eines Hochmoores und speziell die Geschichte des  Wurzacher Rieds. Dann versuchen wir mit Erfolg, einige typische Hochmoorpflanzen zu finden (Moosbeere, Rosmarinheide, Rundblättriger Sonnentau, Torfmoose). Durch einen Auspressversuch konnten wir nachweisen, dass aus 680 g frisch entnommenem Torfmoos 250 g Wasser gepresst werden konnten. Das ausgepresste Wasser hatte einen pH-Wert von etwa 5.

4 Mittagspause

Suche nach eingeschmuggelten und vertauschten Gegenständen.

5 Hier führten wir die Übung „Umwelt im Umschlag“ durch. Eigentlich war auch die „Wanderung durch die Baumwipfel“ geplant, aber das Gebiet schien uns wegen fehlender, gut ausgebildeten Baumkronen nicht so  geeignet. Wir hoffen, die Übung am 7. Juli im Pfrunger-Burgweiler Ried nachholen zu können.

Raupe der Zwetschgen-Gespinstmotte, 3.6.2018

An dem Standort wuchs ein mehrstämmiger, völlig kahl gefressener Baum, an dessen Zweigen man noch Reste von Gespinstmotten erkennen konnte. Ein dick eingesponnener  Klumpen mit Motten hatte sich an einer darunter stehenden kleinen Fichte etabliert. Nach einigem Rätselraten konnten wir das Gehölz als Traubenkirsche identifizieren. Wir stellten fest, dass noch viele weitere Traubenkirschen aller Größen von den Zwetschgen-Gespinstmotten (Yponomeuta padella) befallen waren, allerdings nicht so stark.

Rotach bei Oberteuringen * und Hepbach-Leimbacher Ried * mit Heckrindern (23.6.2018)

*durch Anklicken kommt man zu Unterlagen der vorjährigen Exkursionen

Rotach

Fischtreppe in der Rotach bei Oberteuringen

Treffpunkt: 10:00h, Oberteuringen, Franz-Roth-Platz

Thematische Schwerpunkte: Die Rotach als drittgrößter Zufluss des östlichen Bodensees, Ökologie von Fließgewässern, Messung einiger abiotische Faktoren, biotische Faktoren: Wassertiere und Uferpflanzen,  Gefährdung und Schutz von Bächen, Renaturierungsmaßnahmen:

Verlauf der Rotach

Gefälle der Rotach (von ANKAWÜ – Eigenes Werk, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=18232893). Der Pfeil markiert Oberteuringen. Die Länge der Rotach beträgt knapp 40 km.

Mögliche Stationen, die von Studierenden vorbereitet und betreut werden

Abiotische Faktoren (Stationen 1 + 2 von 2017)

Strömungsmessung

Biotische Faktoren, Zeigerorganismen

Bachbegleitende Pflanzen

Hepbach-Leimbacher Ried mit Heckrinder-Beweidung

Nach der Mittagspause fahren wir zum Wanderparkplatz bei Unterteuringen (Richtung Modellfliegerplatz)

Thematische Schwerpunkte: Landschaftsgeschichte, Landschaftpflege und Naturschutz mit Heckrindern, Gräser, Vegetationsaufnahmen in einer Wiese, Bedeutung von Saumbiotopen in der Agrarlandschaft.

Blick auf das Hepbach-Leimbacher Ried

Pfrunger-Burgweiler Ried * (7.7.2018)

*durch Anklicken kommt man zu Unterlagen der vorjährigen Exkursion

Treffpunkt: 10:00h, Naturschutzzentrum Wilhelmsdorf

Thematische Schwerpunkte: Konzeption des Naturschutzzentrums Wilhelmsdorf, Landschaftsgeschichte, Insekten.

Pfrunger-Burgweiler Ried, auf dem Weg zum Fünfeckweiher

Nach einer Führung durch das Naturschutzzentrum werden wir uns – vorausgesetzt das Wetter ist günstig – auf der Blumenwiese bei dem Naturschutzzentrum mit Insekten beschäftigen (Fang und Bestimmung der Gruppenzugehörigkeit).

Didaktisch begründete Grobeinteilung der geflügelten Insekten nach Kattmann (Fotos W.Probst)

Am Nachmittag wird uns Frau Ackermann, Mitarbeiterin des Naturschutzzentrums Wilhelmsdorf, auf einer Wanderung durch das Naturschutzgebiet Planungen,  Ziele und Konzepte des Naturschutzmanagements im Pfrunger-Burgweiler Ried erläutern.

Literaturempfehlungen

Bestimmungsbücher

Pflanzen:

Bergau, M./ Müller, H./Probst, W./Schäfer, B. (2001): Pflanzen-Bestimmungsbuch. Streifzüge durch Dorf und Stadt. Stuttgart: Klett  (21,00€)

Fitter, R./Fitter, A./Blamey: Pareys Blumenbuch. 2.Aufl. 1986 beim Parey-Verlag, Neuauflage 2007 bei Franckh-Kosmos (preislich sehr unterschiedliche Angebote im Internet)

Kammer, P. M. (2016): Pflanzen einfach bestimmen. Bern: Haupt  (29,90€)

Probst, W./Martensen, H.-O. (2004): Illustriert Flora von Deutschland. Bestimmungsschlüssel mit 2500 Zeichnungen. Stuttgart: Ulmer (Systematik nicht auf den neuesten Stand, 9,99€)

Tiere

Bergau, M./ Müller, H./Probst, W./Schäfer, B. (2004): Tiere-Bestimmungsbuch. Streifzüge durch Dorf und Stadt. Stuttgart: Klett  (21,00€)

Brauns, A. (3. A., 1976): Taschenbuch der Waldinsekten. Grundriß einer terrestrischen Bestandes- und Standort-Entomologie. Band I: Systematik und Ökologie.-Band II:Ökologische Freiland-Differentialdiagnose – Bildteil.  Stuttgart: G. Fischer. Einbändige 4. Aufl. 1991, Berlin-Heidelberg, Spektrum  (bei Amazon ab 6,89)

Chinery, M.: Pareys Buch der Insekten. Hamburg und Berlin: Parey letzte Aufl. 2004, bei Franckh-Kosmos 2012 (62,89€)

Haymann, P. (1985): Vögel. Bern: Hallwag (bei ZVAB gebraucht ab 4,53€)

Kelle, A./Sturm, H, (1984): Tiere leicht bestimmt: Bestimmungsbuch einheimischer Tiere, ihrer Spuren und Stimmen. Bonn: Dümmler (bei Amazon  ab 1,79€)

Schwab, H. (1995): Süßwassertiere. Stuttgart: Klett  (26,00€)

Tierspuren

Bang, P./Dahlström, P. (2000): Bestimmungsbuch Tierspuren. München: BLV (19,99€)

Bellmann, H. (2.A. 2017): Geheimnisvolle Pflanzengallen: Ein Bestimmungsbuch für Pflanzen- und Insektenfreunde. Wiebelsheim: Quelle und Meyer

Bezzel, E. (2014):Vogelfedern: Federn heimischer Arten nach Farben bestimmen. München: BLV (12,99€)

Brown, R./Ferguson, J./LawrenceM,/Lees, D. (2005):  Federn, Spuren und Zeichen der Vögel Europas: Ein Feldführer. Wiesbaden: Aula (vergriffen)

Kriebel, H.-J. (2.A. 2007): Wie lerne ich Spurenlesen?: Ein praktischer Ratgeber zur Wiederentdeckung einer alten Kunst. Books on Demand  (14,90€)

Olsen, L.-H. (2.A. 2016): Tier-Spuren: Fährten/Fraßspuren/Losung/Gewölle. München: BLV (19,99€)

Wissenschaftliche Bestimmungbücher mit dichotomen Schlüsseln

Gefäßpflanzen

Jäger, E. J. (Hrsg.) (2017): Rothmaler – Exkursionsflora von Deutschland. Gefäßpflanzen: Grundband, 21. A., Berlin/Heidelberg: Springer-Spektrum (39,99 €, ebook 29,99 €) – zu dem Werk gibt es einen Atlasband (37, 99 €, ebook 26,99 €) mit sehr guten Strichzeichnungen von ca. 3000 Pflanzenarten,auf denen die Differenzialmerkmale besonders hervorgehoben sind –

Oberdorfer, E. (2001): Pflanzensoziologische Exkursionsflora: Für Deutschland und angrenzende Gebiete, 8. A., Stuttgart: Ulmer (19,90 €)

Parolly, G./Rohwer, J.G. (Hrsg.) (2016): SCHMEIL-FITSCHEN Die Flora Deutschlands und angrenzender Länder, 96. A., Wiebelsheim: Quelle und Meyer (39,95 €)

Moose

Frahm, J.-P./Frey, W. (2004): Moosflora, 4. A., Stuttgart: Ulmer (UTB 1250)

Tiere

Schaefer, M. (2016): Brohmer – Fauna von Deutschland: Ein Bestimmungsbuch unserer heimischen Tierwelt, 24. A., Wiebelsheim: Quelle und Meyer (39,95 €)

Klausnitzer, B. (2018): Stresemann – Exkursionsfauna von Deutschland. Band 1: Wirbellose (ohne Insekten), 9.A., Berlin/Heidelberg: Springer-Spektrum (49,99 €)

Klausnitzer, B./Stresemann, E. (2011): Stresemann – Exkursionsfauna von Deutschland, Band 2: Wirbellose: Insekten, 11.A., Berlin/Heidelberg: Springer-Spektrum (74,99 €)

Senglaub, K. (2013): Exkursionsfauna von Deutschland, Band 3: Wirbeltiere, 12. A., Berlin/Heidelberg: Springer-Spektrum (49,99 €)

Literatur zum Thema Baum und Wald

Bartsch, Norbert/ Röhrig, Ernst (2016): Waldökologie – Einführung für Mitteleuropa. Berlin/Heidelberg: Springer-Spektrum

Braune, W./Leman, A./Taubert, H. (9.A, 2007): Pflanzenanatomisches Praktikum I: Zur Einführung in die Anatomie der Vegetationsorgane der Samenpflanzen. Berlin/Heidelberg: Springer-Spektrum

Bundesamt für Naturschutz (BfN): www.bfn.de

Dylla, Klaus/Krätzner, Günter (1977): Das biologische Gleichgewicht in der Lebensgemeinschaft Wald. Biologische Arbeitsbücher 9, Quelle und Meyer, Heidelberg/Wiesbaden. Folgeauflagen: Das ökologische Gleichgewicht in der Lebensgemeinschaft Wald (4.A.1986); Lebensgemeinschaft Wald (1998)

Ellenberg, H./Leuschner, C. (6. erweiterte A, 2010): Vegetation Mitteleuropas mit den Alpen in ökologischer, dynamischer und historischer Sicht. Stuttgart: Ulmer

Hofmeister, H. (1990): Lebensraum Wald. Hamburg: Parey

Küster, Hansjörg (3. A. 2013): Geschichte des Waldes – Von der Urzeit bis zur Gegenwart. München: C.H. Beck

Lude, Arnim (Hrsg.) (2014): Wald im Wandel. Unterricht Biologie 395 (Jg.38)

Lude, Arnim (Hrsg.) (2014): Survival im Wald. Unterricht Biologie Kompakt 396 (Jg.38)

Mattheck, C. (1999): Stupsi erklärt den Baum. Forschungszentrum Karlsruhe

Oehmig, B. (Hrsg.) (2008): Wald. Unterricht Biologie 334 (Jg.32)

Schulbiologiezentrum Hannover-Arbeitshilfen

http://www.schulbiologiezentrum.info/arbeitshilfen.htm

Wildmann, Steffen et al. (2014): Wälder mit natürlicher Entwicklung in Deutschland

https://www.nw-fva.de/fileadmin/user_upload/Verwaltung/Publikationen/2014/Wildmann_et_al_Waelder_nat_Entwickl_D_AFZ-2014-02_28-30.pdf

Wohlleben, Peter (2013): Der Wald – ein Nachruf. Wie der Wald funktioniert, warum wir ihn brauchen und wie wir ihn retten können – ein Förster erklärt. München: Ludwig  (vom Autor gibt es zahlreiche weitere Bücher zum Thema Wald und Baum)

Literatur zum Thema Fließgewässer

Baur, Werner H. (1997): Gewässergüte bestimmen und beurteilen. Blackwell-Wissenschaftsverlag

Brehm, J./Meijering, M. P. D. (3. A.1996): Fließgewässerkunde – Einführung in die Ökologie der Quellen, Bäche und Flüsse. Biologische Arbeitsbücher. Wiesbaden: Quelle und Meyer

Engelhardt, Wolfgang (17. A.; 2015): Was lebt in Tümpel, Bach und Weiher? Stuttgart: Kosmos-Franckh

Fey, Michael, J. (1996): Biologie am Bach – Praktische Limnologie für Schule und Naturschutz. Biologische Arbeitsbücher. Wiesbaden: Quelle und Meyer

Graw, Martina (2001):Ökologische Bewertung von Fließgewässern. Schriftenreihe der Vereinigung Deutscher Gewässerschutz Bd.64.

http://www.vdg-online.de/96.html

Klee, Otto (2. A. 1993): Wasseruntersuchungen – Einfache Analysenmethoden und Beurteilungskriterien. Biologische Arbeitsbücher. Wiesbaden: Quelle und Meyer

Mischke, Ute/Behrendt, Horst (2007): Handbuch zum Bewertungsverfahren von Fließgewässern mittels Phytoplankton zur Umsetzung der EU-WRRL in Deutschland. Stuttgart: Schweizerbart’sche Verlagsbuchhandlung

Sandrock, F. (Hrsg.,1981): Fließgewässer. – Unterricht Biologie, H. 59

Schwab, H. (1995): Süßwassertiere – Ein ökologisches Bestimmungsbuch . Stuttgart: Klett Schulbuchverlag

Schulbiologiezentrum Hannover: Gewässergütebestimmung nach Tieren (Formblatt)

http://www.schulbiologiezentrum.info/Gew%E4sseruntersuchung%20Tiere%20Formblatt%20EINFACH%20mit%20Arten.pdf

Wellinghorst, R. (2002): Wirbellose Tiere des Süßwassers. Seelze: Friedrich Verlag

http://www.biologie-schule.de/oekosystem-fliessgewaesser.php

http://www.fachdokumente.lubw.baden-wuerttemberg.de/servlet/is/10119/s_28_boegew_arbeit.pdf?command=downloadContent&filename=s_28_boegew_arbeit.pdf&FIS=161

http://www.rolf-wellinghorst.de/fileadmin/rolf-wellinghorst.de/gewaesseroekologie/Gew%C3%A4sser%C3%B6kologie-BLK-Materialien1Teil.pdf

Literatur zum Thema Moor, Feuchtgebiete

Dierßen, K./Dierßen, B. (2008): Moore. Ökosysteme Mitteleuropas in geobotanischer Sicht. Stuttgart: Eugen Ulmer

Ellenberg, H./Leuschner, L. (6. A., 2010): Vegetation Mitteleuropas mit den Alpen. Stuttgart: Ulmer (UTB)

Frey, W./Lösch, R. (3.A., 2010): Geobotanik. Pflanze und Vegetation in Raum und Zeit. Heidelberg: Spektrum

Göttlich, K. (Hrsg.,1990) Moor- und Torfkunde. Stuttgart: Schweizerbart’sche Verlagsbuchhandlung

Gremer, D. (1994): Renaturierungsprojekt Wurzacher Ried 1989-1993

http://moor.naturpark-erzgebirge-vogtland.de/Renaturierungsprojekt_Wurzacher_Ried_1989-1993__Gremer.pdf

Kremer, B. P./Oftring,B. (2013): Im Moor und auf der Heide. Bern CH: Haupt

Sachunterricht Grundschule Nr.68/2015: Lebensraum Moor – Heft und Materialpaket. Seelze: Friedrich-Verlag

Succow, M./Joosten, H. (2001): Landschaftsökologische Moorkunde. Stuttgart: Schweizerbart’sche Verlagsbuchhandlung

Umweltbundesamt – Österreich – (2004): Moore in Österreich. Wien

Bundesamt für Umwelt, Wald und Landschaft – Schweiz – (2002): Moore und Moorschutz in der Schweiz. Bern http://www.wsl.ch/info/mitarbeitende/scheideg/20141103_Bericht_Studierende.pdf

LUBW (2017): Moorschutzprogramm Baden-Württemberg

http://www.fachdokumente.lubw.baden-wuerttemberg.de/servlet/is/121955/moorschutzprogramm.pdf?command=downloadContent&filename=moorschutzprogramm.pdf&FIS=200

WWF (2010): Klimaschutz-Schnäppchen: Moorschutz bringt viel für wenig Geld  http://www.wwf.at/de/moore/

http://www.aktion-moorschutz.de/wp-content/uploads/Vortrag_Succow_MooreImNaturhaushalt.pdf

https://de.wikipedia.org/wiki/Liste_der_Naturschutzgebiete_im_Bodenseekreis

Literatur zum Thema Wiesen und Weiden

Alfred Toepfer Akademie für Naturschutz (Hrsg.): Naturbegegnung auf Wiese, Weide, Rasen. Schneverdingen 1996

Balzer, K., Holtei, C. (2013): Die Wiese: Ein Zoom-Bilderbuch. Weinheim: Beltz und Gelberg

Bayerische Akademie der Wissenschaften (Hrsg.) (2005): Gräser und Grasland: Biologie – Nutzung – Entwicklung. Rundgespräch am 10. Oktober 2005. München: Friedrich Pfeil

Bertsch, K.: Die Wiese als Lebensgemeinschaft. Otto Maier, Ravensburg 1951

Bunzel-Drüke, M.  u. a. (2009) : „Wilde Weiden“ –  Praxisleitfaden für Ganzjahresbeweidung in Naturschutz und Landschaftsentwicklung. Arbeitsgemeinschaft Biologischer Umweltschutz e. V., 2. A., Bad Sassendorf-Lohne

Bunzel-Drüke et  al. (2009): „Wilde Weiden“ – Praxisleitfaden für Ganzjahres-beweidung in Naturschutz und Landschaftsentwicklung.  http://www.abu-naturschutz.de/images/wildeweiden/WildeWeiden.pdf

Dierschke, H., Briemle, G. (2002): Kulturgrasland. Stuttgart: Ulmer

Horstmann, D. (2002): Ökologische Untersuchungen im Grünland. Ein fächerübergreifendes Unterrichtsprojekt. PdN Biologie 49 (5): 1-22

Hutter, C. P./Briemle, G./Fink, C. (2002): Wiesen, Weiden und anderes Grünland. Biotope erkennen, bestimmen, schützen. 2. A., Hirzel, Stuttgart

Jaitner, C. (2012): Wiesenblumen: Sehen und verstehen. Innsbruck: Kompass-Naturführer

Jedicke, E. (1986): Blumenwiese oder Rasen? Stuttgart: Franckh- Kosmos

Jaun, A., Joss, S. (2011): Auf der Wiese. Natur erleben – beobachten – verstehen. Bern: Haupt

Kremer, B. P. (2016): Die Wiese. Darmstadt: Thiess

Kremer, B. P. (1991): Wiesenblumen kennen lernen, erleben, schützen. München: Gräfe und Unzer

Poschold, P.(2015): Geschichte der Kulturlandschaft. Entstehungsursachen und Steuerungsfaktoren der Entwicklung der Kulturlandschaft, Lebensraum- und Artenvielfalt in Mitteleuropa. Stuttgart: Ulmer

Probst, W. (Hrsg., 2012): Wiesen & Weiden. UB 375 (36. Jg.), Friedrich, Seelze

Scherf, G. (2005): Wiesenblumen – Der etwas andere Naturführer. BLV, München

Schmidt, H. (1981): Die Wiese als Ökosystem. Aulis, Köln

Zucchi, H.(Hrsg. 1984): Wiese – Weide. UB 93 (8. Jg.), Friedrich, Seelze

Literatur zum Thema Landschaftsgeschichte/Oberschwaben

Eberle, J./Eitel, B./Blümel, W. D./Wittmann, P. (2007): Deutschlands Süden vom Erdmittelalter zur Gegenwart. Berlin/Heidelberg: Spektrum (39,99€)

Geyer, M./Nitsch, E. (2011): Geologie von Baden-Württemberg. Stuttgart: Schweizerbart (68€)

Hantke, R. (1991): Landschaftsgeschichte der Schweiz. Thun: ecomed (gebraucht ab 15€)

Ott, S. (Hrsg.,2.A. 1972): Oberschwaben – Gesicht einer Landschaft. Ravensburg: Otto Maier (booklooker 10,80€)

Keller, O. (2014): Erwägungen zur Korrelation mittelpleistozäner Relikte des Rheingletschers mit der Nordschweizer Stratigraphie. – E&G Quaternary Science Journal, 63 (1): 19–43. DOI: 10.3285/eg.63.1.02

Seyfried, H., Simon, T., Beckenbach, E., Müller, T. (2019): Der Südwesten im digitalen Geländemodell.Sonderbänd der Ges.f.Naturkunde in Württ., Bd. 4. Neustadt a.d. Aisch: Verlagsdruckerei Schmidt

Zier, L. (2.A. 1998): Das Pfrunger Ried – Entstehung und Ökologie eines oberschwäbischen Feuchtgebietes. Stuttgart: Schwäbischer Heimatbund

http://www.oberschwaben-portal.de/inhalte-ausgabe/items/oberschwaben-vielfalt-der-landschaftsformen-und-geologie-im-uebe.html

http://oberschwabenschau.info/geographie/landschaften/